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with pions. If so, this could indicate a mode of produc-
tion for heavy mesons different from that for pions.
It may be noted, however, that heavy mesons of greater
energy have been observed in cloud chamber work,
but little is known about the energy spectrum at
present. Powell4 conjectures that the hyperons and
heavy mesons may often originate from secondary
interactions of pions (produced in nucleon-nucleon
collisions) with other nucleons in the same nucleus.
Evidence that hyperons and E-mesons are created in
the interaction of pions with hydrogen nuclei has been
obtained in work with the Brookhaven Cosmotron. '
Recent work on a very high-energy nuclear shower by

'Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 91,
1287 (1953).

Koshiba and Kaplon gives a production ratio of
neutral mesons to charged shower particles of 0.50%0.11
indicating little, if any, production of heavy mesons in
such an event as opposed to what might be expected
from the statistical theories of multiple-meson produc-
tion. This apparent lack of an abundant production of
heavy mesons at high energies could also be in accord-
ance with a secondary mode of production for the
heavy mesons.

(4) We are indebted to the office of Naval Research
for enabling our emulsions to be exposed on "Skyhook"
balloon Bights, to Miss Margaret Stott for some scan-
ning of the emulsion used, and to Miss Jacqueline
Daze for the drawings.

e M. Koshiba and M. F. Kaplon, Phys. Rev. 97, 193 (1955).
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Methods of specifying the state of polarization of a particle of spin 1 are discussed. Selection rules for
polarization effects in simple nuclear reactions are derived; in general four parameters are needed to describe
the deuteron polarization due to such reactions. Methods of determining these parameters include the use
of magnetic deflection. A rough analysis is made of the polarization of deuterons scattered by carbon.

INTRODUCTION

ECENTLY many successful experiments have
been done with polarized beams of protons and

neutrons. The present paper deals with the theoretical
possibilities of extending such experiments to spin 1
particles, in particular, the deuteron. Considerable
care must be taken in defining the state of polarization
of a spin 1 particle, and this is discussed in Sec. 1. Sec-
tions 2 and 3 present general theorems applicable to
experiments involving polarized spin i particles, whereas
Sec. 4 presents a rough analysis of polarization effects
for the special case of scattering of deuterons by a
nucleus with zero spin and zero isotopic spin, such as
carbon. The 6rst three sections apply to any particle
of spin 1 and may be of interest in considering the
possibility that some of the heavy mesons have spin 1.

1. POLARIZATION STATES OF THE DEUTERON

The spin state of a particle (or nucleus) taking part
in a nuclear reaction in general must be described as a

* Submitted in partial ful6llment of the requirements for the
degree of Doctor of Philosophy at Carnegie Institute of
Technology.

t Aided in part by the Otiice of Naval Research. A brief report
of some of this work was given in Phys. Rev. 90, 365 (1953).

$ Now at General Electric Research Laboratory, Schenectady,¹wYork.

statistical mixture of the pure spin states in whigh the
particle may be found. If the description consists of
weighting equally all members of any basis set of
mutually orthogonal spin functions, the mixture is
spatially isotropic and describes Nnpolctrisecl particles
Any diferent distribution will describe anisotropic
states and refers to polarized particles. ' States which
may be described by a single wave function will be
called completely polarized In the . case of particles of
spin —,

' the most general spin state may be described as
a mixture of a completely polarized state with sta-
tistical weight E and an unpolarized state with weight
(1—P), where P is the percentage polarization. No
such simple picture exists for particles of spin greater
than ~~.

The von Neumann density matrix p is a convenient
starting point in discussing polarization. ' It may be
expressed. as a linear combination of independent Her-
mitian matrices, whose number equals the square of

' The term polarization as we use it includes both "polarization"
and "alignment" in the sense of Bleaney: B.Bleaney, Proc. Phys.
Soc. (London) A64, 315 (1951);Simon, Rose, and Jauch, Phys.
Rev. 84, 1155 (1951). Alignment may be considered as special
cases of the tensor type of polarization discussed later, whereas
polarization corresponds to the vector type.

s L. Wolfenstein and J. Ashkin, Phys. Rev. SS, 947 (1952);
R. H. Dalits, Proc. Phys. Soc. (London) A65, 175 (1952). Our
methods and notation generally follow those of the former paper.
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Tn —— ,'V3 (—S—.+iS„),
Tro= (s)&S

T„=', v3( S, +-i S)',

T„= ',&3)(S,+i—S„-)S,+S,(S.+iS„)j,
Tso = (s) '(3S*'—2)

Tz, sr=( —1) Tzsr'

The density matrix may be written

(1.3)

p=-,' gg~(Tgsr)Tyler', (1.4)

where angular brackets denote statistical expectation
values. One of the inequalities associated with p is
that the trace of p is less than or equal to unity, or

Z~~'
I (T~~) I' & 2, (1.5)

where the prime on the summation indicates that J=o
(the identity) is omitted. The equality is a necessary
and suKcient condition for complete polarization and the
left hand side equals zero only for the unpolarized state.
Therefore, one may define a percentage polarization

&= (l &~~'I(T~~) I')'. (1.6)

The components of S (if they do not all vanish)
dehne a pseudovector whose direction may be used as
the Z-axis so the (T~, ~~) vanish. In Sec. 2 we shall

show that in all states produced in the simple reactions
of interest to us, the (Ts, ~r) vanish too. We now restrict

s See for example G. Racah, Phys. Rev. 62, 438 (1942).
4See for exam le J. Blatt and V. F. Weisskopf, Theoretical

ENclear I'hysics ohn Wiley and Sons, Enc. , ¹wYork, 1952),
p. 789.

the dimensionality of the spin space, and whose ex-
pectation values determine p and thus the state of the
system. One of these may be the identity matrix, the
expectation value of which specifies the normalization;
that is, the trace of p. The remaining expectation values
determine the polarization of the system.

We choose operators which form components of
irreducible tensors' of rank zero (the identity matrix)
one, and two. The operator which transforms under
rotations like the spherical harmonic YJ~ is denoted
by T&~. This set is clearly equivalent to a set of inde-
pendent Hermitian base matrices, namely that set
formed by the Hermitian and anti-Hermitian parts of
these operators. The orthogonality and normalization
conditions are chosen:

=30'~, J'u-

The matrix elements of T&~ are determined by the
tensorial properties and normalization (1.1):

(~'I T~~lrrt) =v3C»(J —~l —~'~) (12)

where C&»s(jrN I m&ms) is a Clebsch-Gordan coefficient
for combining angular momentum. ' Explicit forms of
the tensor operators in terms of components of the
spin operator S are

our consideration to this class of states. Geometrically
this class of states is characterized by the fact that the
direction of the spin is also a principal axis of the
symmetrical second-rank tensor formed by (Tsar).
[That this follows from the vanishing of (Ts, ~&) may
be seen directly from Eqs. (1.3).j Included in this
characterization are singular cases in which it is
possible but not necessary to choose the spin direction
parallel to a principal axis; namely, cases in which
the expectation value of the spin vanishes or in which
the principal axes of the tensor are not determined
uniquely. This class obviously includes the unpolarized
state and may be shown to include all completely
polarized states.

A useful method of describing the state of polarization
is to consider the representation in which p is diagonal.
Any state then may be described as a statistical mix-
ture of the three pure mutually orthogonal states f
which form the basis of this representation, and the
corresponding eigenvalues X„of p are the weights. Our
restricted class of polarization states is a statistical
mixture of a restricted set of pure states, which may be
shown to be

4~=Xo,

$2 A X1+8X—1

A=8*x~—A*x-r.
(1.7)

Here y is an eigenstate of S„where the Z-axis is
chosen in the spin direction. If the X- and I"-axes are
taken as the other principal axes of the tensor, the
constants A and 8 must be real. )As a matter of fact,
since all pure states belong to our restricted class, it
follows that any pure state may be represented as one
of the forms in (1.7) in a suitable coordinate system.
The set of pure states (1.7) however is restricted by the
condition that the same coordinate system is used for
all three states. ] Only in special cases will the states
lt, and its be oriented': (1) when A (or 8) vanishes,
the states are oriented along the Z-axis; (2) when
A=8, the three states are yo states oriented along
three mutually-perpendicular axes, the principal axes
of the tensor. In general states fs and fs have average
spin equal in magnitude but opposite in direction.
They are analogous to two elliptically polarized states
of light with opposite senses of rotation and crossed
major axes.

A state of the class we are considering is seen to be
speci6ed by six parameters; this is in contrast to the
four parameters required to specify a pure state and
the eight parameters required to specify the most
general state. Three of these six parameters define the
principal axes, while the other three may be taken as
(A/8) and two of the X„(the normalization Trp is not
considered as a parameter). In place of the last three,
we shall use the three real numbers (Tss) (Trp), and

~ An oriented state is one which is an eigenstate of the operator
5, for some choice of s-axis. E. Majorana, Nuovo cimento 9, 43
(1932).
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v2(T»)' which are given by

(T») (s) (li~ lis)(~' —&')

(Tss) = (-,') l(1—3lii),

V2(Tss) = (6) i(Xs—Xs)AB.

Equations (1.8) yield

(1.8)

2. SELECTION RULES FOR SIMPLE REACTIONS

We consider reactions in which both initial and final
states contain only two particles (nuclei). The states
are specified by the momenta in the c.m. system (center-
of-mass) and the polarization. The polarization state
Inay be specified by a density matrix in the product of
the spin spaces of the two particles. Transition ampli-
tudes for the various pure spin states may be written
as a matrix M whose rows and columns are character-
ized by the spin quantum numbers of 6nal and initial
states, respectively. v We express p; and py as linear
combinations of base matrices R" and 5& in the spin
spaces of the initial and final systems, respectively. We
find, as in reference 2:

1
I(S&)z———P (R");Tr (MR."tM tS~). (2 1)

Here I is the differential cross section for this reaction,
and the basic operators are normalized so that

Tr(R~R "t)= ri 8

Tr(S~S "t)=
trash

(2.2)

where e; and e~ are the dimensionalities of initial and
6nal spin spaces. If neither initial particle is polarized
and one reaction product is a deuteron and the po-
larization of the other is not observed, the only (R");
unequal to zero is the expectation value of the identity,
and the only 5& of interest will be the direct products
of the tensor operators Tg~ in the deuteron spin space
with the identity operator in the spin space of the other
reaction product. Then (2.1) gives for the polarization

6 In the principal axis system (T») is real and equal to (T&, &).
If we consider as our base matrices the hermitian and the anti-
Hermitian parts of T22, then the expectation value of the former
is %2(T2sl and the expectation value of the latter vanishes.

7 This matrix and the following equations are a straightforward
extension of the corresponding ones in reference 2.

(Tio)'+L~(T»)7& sk(T»)+~7 (1 9)

Each possible state may be represented by a point in
a space whose coordinates are (Tie), V2(T22) and (T20)
respectively; these points fill the interior of a cone,
whose apex is at (Tsp)= v2 on the (Tss)-axis, and
whose base has a radius of gss and is normal to this
axis at (T&s)=+s&2. The completely polarized state
fi is at the apex, while the completely polarized states
fs and fs are on opposite ends of a diameter of the
base. The unpolarized state, of course, is at the origin.

of the outgoing deuterons

1
Io(TJM)f = Tr—(MM tTjsr), (2.3)

Equation (2.6) includes the vanishing of (Tip)y which
we already know, since (S)r lies on the normal.

A second problem of interest is the angular distribu-
tion of the reaction products when the initial state
consists of a polarized deuteron and an unpolarized

s Fmsr(k;, kql is a second-degree harmonic, bilinear, and sym-
metrical in h; and hg.

where Io denotes the cross section for unpolarized in-
cident particles.

Since M must be invariant under space rotations and
reflections MM~ must be similarly invariant. Terms of
interest must be contractions of the Tg~ with tensor
quantities formed from k; and kr, the initial and final
momenta; to be invariant under space reflection, they
must be of even degree in k; and k~. Consequently the
most general form of MMt is

MM Is+It +&~2M(k) TsM +Is ZMl 2M(kf)TsM

+Is Qitr&ssr(k, kg) Tssrt

+J4+srFisr(k, Xky)Tisrt+ . . (2.4)

Here the I's depend only on k,"k~, k, , and k~, and must
be real in order that MM~ be Hermitian. The I'~~ are
solid spherical harmonics formed from the components
of their indicated arguments, s and + indicates
quantities depending on operators in the spin space of
the second reaction product.

Equation (2.3) shows that (Tq~)~ equals the coeK-
cient of Tlirt in (2.4) divided by Is, the terms denoted
by + contribute nothing. To study the polarization
state of these deuterons, we choose the Z-axis normal
to the reaction plane. Then the Z-components of k; and
kr vanish and k,Xkr is in the Z-direction, hence all
harmonics of the type Vz, ~t in (2.4) vanish, and thus
all (Tq, ~i)i. This proves the assertion in Sec. 1 that
the polarization states produced in simple reactions
will have the spin along a principal axis; moreover, we
see this preferred direction is normal to the reaction
plane.

We have already discussed the general features of
these polarization states. However, it is useful to
examine the (TJsr) f using an axis in the reaction plane
as the polar axis, for if we try to detect polarization by
a second reaction, it is convenient to choose the direc-
tion of incidence of this second reaction as the Z-axis.
We single out the normal as the y-axis. In this coordi-
nate system, all nonvanishing second rank harmonics
involving k, and ky in (2.4) are real, while Fi ~i (k;Xky)
is pure imaginary. These determine the relations be-
tween the (Tqsi)r.
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TAM.E I. Maximum degree in cos8 of the polynomial
functions I0, A, B, C, and D.

Polynomial

Ip(a)
A (8)
B(a)
c(s)
1)(s)

Maximum degree in cos8'

2L~x
2L +2
2I «+1
2Lm~ —

&2~

target of spin j.The general form of 3f~M may now be
found by the arguments used in deriving (2.4); sub-
stituting this form into (2.1) with 5& equal to unity,
we find a general expression for the diGerential cross
section I:
I=Ip+Is QM YsM*(k;) (TpM&'+It gM FsM*(kf) (TsM)'

+Is pM I'sM*(kkf) (TsM);
+I4 QMI 1M (k'Xkf)(T1M&;, (2 7)

where the I's are real quantities depending on k;, k~,
and k; kr.

If the polarized deuterons used as projectiles in a
reaction are products of a previous reaction, the (TqM&;
in Eq. (2.7) applied to the second reaction must satisfy
(2.5) and (2.6), where the Z-axis is the direction of
incidence of the second reaction and the y-axis is normal
to the plane of the first. Combining terms containing
FqM*(kr) and 7'J; M*(kr), we obtain the dependence
of I on kr, which gives us the angular distribution

I(8,~) = I( )8+( T-&;~( )8

+L(Tst);B(8)+iC(8)(Ttt&;1 sin8 cosp

+(Tss);D(8) sin'8 cos2P. (2.8)

Here 8 is the polar angle, P the azimuthal angle meas-
ured from the plane of the first reaction, and the func-
tions Io, A, 8, C, D, are polynomials in cose. If I. , is
the maximum effective incident orbital angular mo-
mentum (in the second reaction, the degrees of these
polynomials are limited as given in Table I':

In elastic collisions, the polarization produced by
scattering unpolarized deuterons is related to the
azimuthal asymmetries obtained by scattering polarized
deuterons, assuming the Hamiltonian is invariant
under time reversal. ""If M' is the time-reverse of M,
it may be dehned

m. ,
b'=m b ., (2 9)

where —b, —a are the time-reversed states of b and g
respectively. The invariance argument becomes

The operator S changes sign under time-reversal and
k; and kf are transformed into —ky and —k; respec-
tively. Comparing the explicit forms for M3ft and
MtM, Eq. (2.10) yields the result that I; in Eq. (2.4)
equals I; in Eq. (2.7). It follows that, if we choose the
Z-axis in the direction of the outgoing deuterons and
the y-axis as usual normal to the reaction plane, the
values of (TqM& produced by scattering unpolarized
deuterons are related to the coefficients Io, 2, 8, C,
and D of (2.8) by

Ip(Tsp) =2,
Ip(Tpt) = sB sln8,

Ip(Tss) = sD sins8,

Ip(Ttt& = —(i/2) C sin8.

(2.11)

Then in two successive scatterings of a deuteron by an
infinitely heavy nucleus through the same scattering
angle 0, the angular distribution is

I=Ip(ps+as cos2&). (2.13)

If the pure state is x~» oriented along the y-axis the
cosp asymmetry is a maximum, but this is also true in
the more general case when the pure state is any state
like % (or 44) of Eq. (1.7) if the principal axes of the
tensor in the X-plane make angles of 45' with the
Z-axis. Then I becomes

I=Ipt 1+(Tsp)'+2((Tst&'+
~
(Ttt) ~') cosp

+2(Tsp&' cos2$j. (2.12)

Thus four parameters are required to describe the
result of a double scattering experiment in contrast to
the one parameter needed for a spin ~~ particle; in Eq.
(2.12) these parameters are taken as the expectation
values of the tensor operators after the erst scattering.
Experimentally the value of (Tzp&s is obtained by corn-
paring the total intensity averaged over g with that
produced by scattering unpolarized deuterons; then
the value of (Tpp&' is obtained from the cos2& term in
the azimuthal distribution. But the cosp term contains
contributions from both first and second rank tensors
so that a simple double scattering does not distinguish

(Ttt) from (Tst). (See Sec. 3.)
It is particularly interesting to examine some of the

cases of double scattering where the erst scattering
produces completely polarized particles. If the pure
state is xp oriented along the y-axis or x-axis, the cos2&

asymmetry is a maximum and

so that
(MMt)'= MtM. (2 10)

I=Ip(1—,'+-,' cosP+s cos2&). (2.14)

'The argument is an extension of that used for unpolarized
beams; see e.g. , reference 4, page 535. For an extension to polarized
beams see A. Simon and T. Welton, Phys. Rev. 90, 1036 (1953);
L. Wolfenstein, Phys. Rev. 92, 123 (1953).

'o E. Wigner, Nachr. Ges. Wiss. Gottingen 3I, 546 (1932).
' This is an extension of the argument of reference 2.

It may be noted by comparing (2.12) with (1.6), that
in all cases where the first scattering produces com-

pletely polarized particles the cross section I for the
second scattering at @=0 is three times the unpolarized
cross section.
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(Ts~)'=P~ C~~ (&)(Tsar), (3 1)

where the C's are determined by the rotation and are
readily calculated. Experiments discussed in Sec. II
both with and without magnetic deQection will then
determine in principle 1(T&&) I 1(T»)'

I 1(T») I

1(Tss) I, and the signs of the primed quantities relative
to the unprimed. Then (3.1) will determine all (Tsar)
and (Tsar) uniquely including all relative signs. Since
(3.1) is invariant under change of sign of all (Tsar) there
remains one ambiguity in sign. The value of the cosp
asymmetry then provides a determination of 1(T») I.
We may translate the result for the (Tzsr) to the co-
ordinate system used in Sec. 1 and represent it as a
point in the space with coordinates (Tts), v2(Tss), and

(Tsp). Then the ambiguity in the sign of (T&is') corre-
sponds to a reflection in the origin of the &2(Tss) —(Tss)
plane so that if one possible result corresponds to a
statistical mixture with a surplus (more than s) of
state fr, the other corresponds to a deficiency. In
many cases the eGect of the reQection may be to put the
point outside of the allowed cone [Eq. (1.9)j so that
in these cases there exists no ambiguity in the signs of
the (T&sr). The sign of (T») cannot be determined by
any of these experiments.

Magnetic deQection may yield valuable partial in-

formation about nuclear reactions under conditions

3. EFFECTS OF MAGNETIC DEFLECTION

In double-collision experiments, the 6rst may take
place inside the cyclotron; the magnetic field in general
will alter the polarization of the outgoing deuterons.
Such eGects would have to be considered in interpreting
the experiments; moreover, they may be useful in
studying nuclear reactions. We treat the case where
the interaction of the deuteron and magnetic field may
be treated as the interaction of a magnetic dipole with
a static field normal to the plane of the first reaction.
The spin state rotates about the field with a frequency
equal to pcs, where p, is the deuteron magnetic moment
in nuclear magnetons and + the proton Larmor fre-
quency. The deuteron's cyclotron frequency is one-half
that of the proton and thus equals the Larmor fre-
quency. Therefore the angle of rotation of the spin
relative to the direction of motion equals (ti —1) times
the angle of deflection. Since (p, —1) is about —1/7,
fairly large deQections are generally required to get
appreciable effects on the polarization. Since (S) is in
the direction of the field, it remains unchanged. The
principal axes of the second rank. tensor in the reaction
plane are rotated relative to the direction of motion
through an angle (ti —1) times the angle of deflection.

If the deuterons can be deQected through suKciently
large angles, some of the ambiguities in the double
scattering experiment discussed in Sec. 2 can be
resolved. The effect of the rotation of the principal axes
relative to the direction of motion will be to replace the
(Tssr) in (2.8) by (Tsar)'

which are not experimentally favorable for the com-
plete set of experiments described above. For example,
if the polarized deuterons are produced in the forward
direction, the selection rules show that (Tss) may be
the only nonvanishing expectation value. If (T&s) is
large enough, one can produce known relative amounts
of the (T&sr) by magnetic deflection and then obtain
the cross section I and the ratios of A, 8, and D of
(2.9) for a second reaction. This partially calibrated
detector could be useful in determining relative values
of the (Tsar) of deuteron beams.

4. ELASTIC SCATTERING OF DEUTERONS
BY CARBON

The double scattering of deuterons by carbon has
been studied experimentally by Chamberlain et al."
This experiment is particularly simple because the
target has both spin and isotopic spin equal to zero,
and the scattering amplitude may be calculated in
terms of that for protons by carbon if the impulse
approximation is valid. "The matrix M may be written

where
f(p) =fs(1)+f2(P)+12(p),

Sls(p) =3&1 p+s' p p &1 &s.

(4.2)

The tj and t2 have the same dependence upon their
arguments according to the charge symmetry hy-
pothesis and may be written

(k+ pit'Iks+p)=a+&~' L(ko+p)x(k+p)3, (43)

where g and h are scalars.
Equation (4.1) simplifies greatly if we assume the

deuteron ground state is a pure 5-state. We look first
at results that are independent of the form of g and h.
Since M is linear in the spin operator, it has the form

M=G+HS n, (44)

where n is a unit vector perpendicular to ks and k. Then

~~'= (I G I'+ l I & I')
+2(-;)& Re(G*H) QsrT, sr 7',jr*(n)

+-',&21' I

' Q T2sr''2sMr(n), (4.&)

"O. Chamberlain et at , Phys. Rev. 95,. 1104 (1954).
» G. F. Chew, Phys. Rev. 80, 196 (1950); G. F. Chew and

G. C. Wick, Phys. Rev. 83, 636 (1952). ln the present case in
which the proton scattering amplitude is sharply peaked in the
forward direction the neglect of multiple collisions may not be
justified.

'4 W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).

3f= dsp[f(2p+k) (k+ pl tt+tsl kp+ p)

Xf(2p+ko)]. (4.1)

Here ks and k are initial and final deuteron momenta
respectively, the t's are scattering amplitudes from
carbon for the two nucleons inside the deuteron, and f
is the deuteron ground-state wave function in mo-
mentum space, which may be written"
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where Re means the real part is to be taken. The re-
sulting polarization state is a statistical mixture of the
pure states oriented along n and is unaltered by the
magnetic deQection discussed in Sec. 3. If the y-axis
is taken along n the nonvanishing (Tz~}are given by

Ip(Tu}= —(2i/~3 Re(G*H),

Ip(T»}= (pP)'Ip(Tpp) = —(I/2~3
I

HI�',

Io= IGI'+l IHI'
(4 6)

M=[2g(q)+h(q)(my+op) (kp&&k)]

&&)"fp(I2p+kl)fo(I 2 p+ko l)~pP+h(q) (~~+~p)

(—q) && pfp(I2p+kl)fp(I2p+kpl)dpP, (4 'I)

and the angular distribution of the double scattering
is given by substituting (4.6) into (2.12). A maximum
left-right asymmetry of about 17 to 1 in double scatter-
ing can occur for IGI' about equal to —', IHI'. For

I
H

I
))

I
G

I
we get the maximum cos2$ asymmetry, the

angular distribution approaching (1+-,'cos2&). The
ratio of the cosp term to the azimuthally symmetric
term in the experiments of Chamberlain et al." are
consistent with (4.6) if the ratio —,IHI'/IGI' is about
0.09 and G and B have the same phase; also if the
phases of G and H differ by 45' and -', IHI'/IGI' is
about 0.23. In both cases by choosing (—', ) '*

I
H

I
less than

IGI we have made sure that the cos2$ term is small

enough to be consistent with the experiments. Much
larger values of the relative phase are not possible.

If the g and h in (4.3) depend only on the momentum
transfer, we may take these quantities out of the in-
tegral in (4.1). This would be true if the Born approxi-
mation were valid for the scattering of protons by
carbon, but is must be noted that the important con-
tributions to the integral come from proton energies
about half the deuteron energy and scattering angles
about twice the deuteron scattering angle. Continuing
to neglect the D-state part of f, we obtain

peaked in the region where p. (kp+k)= —~(kp+k)'.
Taking this value of p. (kp+k) out of the integral, the
second integral just cancels half of the spin term in the
first and we have

M= [2g(q)+h(q) S (kp)&k)]

X fo(I2p+kl)fp(I2p+kol)d p. (4.8)

The spin term involves h(q)h' sing, which in general is
expected to increase relative to g(q) with increasing 8
for small angles 0. In the scattering of protons of the
same momentum k, the maximum polarization occurs
when the magnitudes of g(q) and h(q)h' sine are about
equal; in deuteron scattering the maximum

I (Tu} I

occurs when the magnitude of 2g(q) and (Pp) lh(q)h' sin8
are about equal, or at somewhat larger 0. In order that
the cos2& asymmetry approach its maximum, the mag-
nitude of (pp)&h(q)h'sintt must be large compared to
2g(q). This most likely would require still larger angles
0 if it occurs at all. We would like to relate the deuteron
polarization to that for proton, but it is not possible to
predict the deuteron polarization from the proton with-
out knowing the relative phase of g and h. If we take
(4.8) literally we may state, however, that for the deu-
teron double-scattering results" to be correct within
experimental error the proton polarization at the same
momentum and angle should be more than 0.05. Since
the proton polarization appears to be somewhat smaller
we may say that Eq. (4.8) predicts either a smaller cosp
term or a larger cos2& term than observed. However,
experimental data are too limited to show how poor
Eq. (4.8) may really be.

Since large momenta are important in (4.1), the D
state part of the deuteron functions may not make a
small contribution. Then 3E in general wouM contain
all terms allowed by symmetry arguments even in the
Born approximation. Since Io generally would be the
sum of Ave positive terms while the (T~~} would be
sums of terms which may have diGerent signs, polariza-
tion effects, especially the (T,~},might be reduced.

where q is the momentum transfer. The second integral
in (4.'I) has nonvanishing components only in the
direction of (kp+k). If we make the approximation
that

I kl is large compared to momenta inside the deu-
teron the product of the f's in the integrand will be
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