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Calculations of elastic scattering of electrons have been carried out for simple, spherically symmetric
charge distributions. The atomic numbers considered are Z=13, 29, 50, 74, and 79, and the electron energy
varies from 15 to 90 Mev. The results for the homogeneous and shell distributions indicate that shape inde-
pendence exists for energies such that 2R, 1.5, where R, is the radius of the homogeneous model and £ is
the electron wave number. This is a consequence of requiring that these two densities have the same mean
square radius or second moment. The assumption that the scattering at higher energies depends on higher
even moments has also been investigated. The scattering was calculated as a function of the fourth moment
at an energy just above the shape independent region. Equating the second and fourth moments of two
charge densities results in identical scattering for scattering angles up to 120°, but beyond this point the
scattering differs by about 10 percent. An analysis of the existing experiments below 100 Mev indicates that
the mean square radius of the nuclear charge density is given by a homogeneous distribution of radius
Ry=r0A}X 1078 cm., with 7o=1.2 to within 10 percent.

I. INTRODUCTION

ECENT experiments on elastic scattering of elec-
trons by atomic nuclei have yielded important
information about the nuclear charge distribution. The
results obtained by Lyman, Hanson, and Scott! with
15.7-Mev electrons have been analyzed by Bitter and
Feshbach? to indicate a radius for the nuclear charge
distribution given by 7o=1.1 in the usual rule,

R=7oA*X 1078 cm. 1)

Agreement with this value of 7y, which is about 20
percent smaller than the one formerly quoted, has been
obtained in other electron scattering experiments by
Pidd, Hammer, and Raka?® with 33- and 43-Mev elec-
trons and by Hofstadter’s group at Stanford for energies
from 84 to 183 Mev.*5 There is also much additional
evidence? % for a smaller radius, as in the measurements
by Fitch and Rainwater’ of the energy levels of u-
mesonic atoms. In this paper exact numerical calcula-
tions of the elastic scattering of electrons are performed
for energies from 15 to 90 Mev and the atomic numbers
Z=13, 29, 50, 74, and 79. Some mention will also be
made of the possibility of interpreting the experiments
in terms of the moments of the nuclear charge density.

As a simple first approximation the nucleus is con-
sidered to be a spherically symmetric, static charge
density inside a sphere of radius R. The interaction be-
tween the electron and the nucleus is simply the electro-
static potential between a point charge —e and a charge
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Ze distributed over a finite region. Consequently, one is
dealing with the diffraction of an electron of reduced
wavelength X by a charge distribution of linear dimen-
sion R. An essential parameter is the ratio of these two
lengths,

R/X=FkR,

where % is the electron wave number. For long wave-
lengths (kR<1) the nucleus may be treated as a point
charge, but when the wavelength becomes the same
order of magnitude as the radius (kR 1) significant de-
viations from point scattering will be obtained. In the
latter case the electron’s energy is much greater than
the rest energy. For a heavy nucleus such as gold kR=1
corresponds to roughly 30 Mev.

The interpretation of electron scattering experi-
ments depends on exact solutions of the Dirac equa-
tion. Such solutions have already been given by Elton®
and Acheson® for energies where only one partial wave
is modified by the finite nuclear size. Calculations at
much higher energies have subsequently been reported
by Yennie, Ravenhall, and Wilson!®!! and Brenner,
Brown, and Elton.”? Unfortunately the Born approxi-
mation and analogous perturbation expressions for the
phase shifts are too crude except for the lightest nuclei.
The failure of the Born approximation is well known
for the case of point Coulomb scattering from the
exact calculation by Bartlett and Watson!® for Z=80
and from the higher Born approximations derived by
McKinley and Feshbach.! For finite nuclei and an
energy low enough so that the familiar oscillatory be-
havior of the Born approximation cross section is not
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present, Elton has compared the Born approximation
with his exact calculation of the ratio of the scattering
to that for a point nucleus. In this case the Born
approximation gives ratios which are roughly 50 per-
cent too large for scattering angles beyond 60°. At
higher energies it has been found?!? that the Born
approximation can be misleading in that the actual
cross section decreases quite smoothly with angle as
compared to the pronounced maxima and minima of
the Born approximation.

Approximate methods, however, can be helpful as
guides for more precise calculations. Indeed, the effect
of the finite nuclear size on electron scattering was
first discussed by Guth'®* and Rose!'® with the Born
approximation. Another example is Feshbach’s ex-
planation of the shape independence of electron scatter-
ing for low energies. Acheson® had previously carried
out exact calculations for two simple charge distribu-
tions: (1) the komogeneous charge distribution, in which
the nuclear charge is uniformly distributed throughout
the interior of a sphere of radius Ry; (2) the skell charge
distribution, in which the nuclear charge is uniformly
distributed over the surface of a sphere of radius R,.
Acheson noticed that, for the entire range of his calcu-
lation, the shell and homogeneous phase shifts were
the same if the shell radius R, was about 2R;. Using a
variational principle for the phase shift, Feshbach!?
showed that this equivalence applied more generally
to any two charge densities, p;(7) and ps(7), whose mean
square radii or second moments were equal:

f & *01(r)= f ¥ rpa(7). (2)

For the shell and homogeneous distributions this leads
to the relation,

R,/Ry=(3/5)}=0.715, 3)

which agrees very closely with Acheson’s exact calcula-
tions. Feshbach’s restriction of this result to long wave-
lengths (kR<k1) can be discarded, however, since
Acheson’s work shows that shape independence holds
at least up to kR,=1. In fact, Elton'® and Bodmer®
have extended Feshbach’s proof up to 35 or 40 Mev
by applying perturbation methods directly to the Dirac
radial equations.

The value of a general principle such as shape inde-
pendence is that it provides a direct connection be-
tween the scattering and some essential characteristic
of the nuclear charge distribution, in this case the
second moment. This is especially useful in view of the
difficulty of exact numerical solutions. If the general
dependence of the scattering on the charge distribution
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is not known, special forms for the charge density must
be assumed until one is found which agrees with ex-
periment. However, this procedure may not be unique.
Charge densities which are rather dissimilar in radial
dependence may yet produce the same scattering, as
was found for the shell and homogeneous distributions
at low energies. What is needed, perhaps, is a standard
set of parameters or properties of the nuclear charge
density, which would apply equally well to all possible
charge densities. If all these parameters were specified,
the nuclear charge density would be uniquely deter-
mined as far as electron scattering was concerned.
Otherwise, if only a few were known, any charge dis-
tribution which had these properties would be
acceptable.

In Sec. IV we shall give some qualitative arguments
for describing the scattering in terms of the even mo-
ments of the nuclear charge density. For a charge
density p(r) with a finite cutoff R, these are defined as

R
[®=4r f @ (), (1=0,2,4 ---). (&)
0

According to the results quoted previously,>'™* the
scattering at low energies can be described in terms of the
first two even moments, the total charge, and the mean
square radius. A test of the moment interpretation at
an energy just above the range of shape independence
will be made in Sec. V. This involves exact calculations
for charge densities slightly more complicated than the
shell and homogeneous densities. The energy is such
that only one additional moment, the fourth, should
be effective. However, a brief summary of the calcula-
tional procedure will be first given in Sec. IT. Section IIT
will be devoted to calculations for the shell and homo-
geneous distributions for a wide variety of atomic
numbers and energies to determine the range of shape
independence. After the discussion of the effect of
higher moments in Secs. IV and V, the experimental
situation below 100 Mev will then be reviewed in
Sec. VI.

II. PHASE SHIFT DESCRIPTION OF ELECTRON
SCATTERING

The scattering theory for the Dirac equation has
been given by Mott, and his notation is followed here.
The wave function is expanded in partial waves char-
acterized by the total angular momentum and parity
quantum numbers j and k. Actually, Mott uses the
orbital angular momentum quantum number /, so that
for a given j, there are two values of [, j43 for «
=+(j+3) states and j—3 for k=— (j+3) states. If
the rest mass is neglected, the phase shifts for these
two states are identical'’?' and the value of / for the

20 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, London, 1949).

21T, K. Acheson, Ph.D. thesis, Massachusetts Institute of
Technology, 1950 (unpublished).
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k<0 states is sufficient for purposes of notation,
j=l+%> (120; 17 2) )

The error in the cross section from neglect of the rest
mass'>2 is of order (Za/k)?, where « is the fine structure
constant and % is the energy in units of mc2.22 For these
calculations the error is always less than 1 percent.

The effect of the finite extension of the nuclear
charge is described in terms of the difference §; between
the total phase shift n; and the point Coulomb phase
shift n;+

di=m—n". (%)

These phase shifts are defined by the asymptotic form
of the Dirac radial functions

fl ;C-——> k% sin (k7+Za In2kr— %lr+771++51),
fi—> = k cos(kr~+Za In2kr—3ln+nt+6;)  (6)
and the requirement that f; and g; vanish for r=0.

The radial functions satisfy a pair of coupled linear
first-order differential equations,

d I+1
(—~—— fi=— (k= V)
dr 7
d I+1
(—+—)gl=<k— M )
dr 7

The evaluation of the §; for the charge densities con-
sidered here follows closely the method used by Elton.3
These charge densities all have a finite cut-off radius
R, so that for > R the potential is Coulombic. In this
region the radial functions are a linear combination of
regular and irregular Coulomb functions,?

(- oo o

The regular (fit,g;*) and irregular (fi~,g) Coulomb
functions are solutions of Eq. (7) with V=—Za/r, and
have the indicial behavior 77+ and r—*%*1 respectively,
with py1=[(I41)2—Z%2 ]} The asymptotic forms of
these functions are given by Eq. (6) with §=0, and
n;+ replaced by 5;~ for the irregular functions. Closed
expressions for the Coulomb phase shifts have been
derived by Mott.2® By substituting the asymptotic
form of each of the functions in Eq. (8), Elton obtained
the following expression for the phase shift difference:

sin (i~ —n;*)
(4i/Ar)+cos(nim—mnit)
22 From this point, relativistic units are used in which Z=m

=c=

2 The plus and minus signs refer to regular and irregular,
respectively.

)

nﬁl
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The ratio 4;%/A4; is then evaluated from Eq. (8) at
r=R:
A+ fir—(f/e)gr
= (10)
A fit=(fi/g)git | =r

In Egs. (9) and (10), the ratio f,/g; of the interior
solutions is the only quantity, other than the radius R,
which depends on the nuclear charge density. All of
the others are point charge solutions. These have been
collected in another report* which gives the methods
of calculation and tables of the quantities themselves.
In particular, the radial functions are evaluated from
the series solutions #;= and »;* about the origin,

(5o ()

With the normalization constant B; chosen to give the
asymptotic forms in Eq. (6), the expression for 4,/ A4~
in Eq. (10) becomes

AT (2kR) 20141 L (=puat1+iZe)| T (2p1at1)
T(pp1t+1+iZa) |T'(—20114+1)

-
IH-1—pua o — (fi/g)vi™
| ;oo
IH-14prd Lut— (fi/g)vitd =g

Finally, Acheson has shown that, for energies much
greater than the rest energy, the scattering cross section
may be written as

o (6)=|G+G'|? sec2(6/2). (13)

The function G°(Za,0) is the amplitude for scattering
by a point charge tabulated by Feshbach? and
G'(Za,kR;0) is the change in the scattering amplitude
due to the finite size of the nucleus,

(11)

1
G'=— % (1) exp(Qinit) (4= 1)
7 1=0
X[ Pi(cos)+ Pry1(cosh) ].

The reason for the decomposition in Eq. (13) of the
scattering amplitude is that the convergence of the
series for G’ is much better than that for the Mott
series for G° or (G°+G’). The difficulties with the
latter are associated with the long range of the Coulomb
potential. The number of terms in Eq. (14) is only
about (kR+1). It is easier to do the difficult job of
obtaining G° just once and to evaluate G’ for specific
charge densities. On the other hand, there may be
strong destructive interference between the two ampli-
tudes. Then both G and G’ have to be known to several
more significant figures than is required for their sum.

(14)

2 A. E. Glassgold and E. W. Mack, Massachusetts Institute of
Technology Laboratory for Nuclear Science and Engineering,
Technical Report No. 65, August 31, 1954 (unpublished).
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For this reason, Yennie, Ravenhall, and Wilson® have
devised a new method for evaluating the point Coulomb
scattering amplitude G¢ which is more simple and more
accurate than previous ones.!®?* Their results for Z=13,
29, and 79 have been used here?® and their method has
been applied to the additional cases of Z=50 and Z="174.

III. SHELL AND HOMOGENEOUS CHARGE
DISTRIBUTIONS

In order to determine the range of validity of shape
independence, it is sufficient to compare the simple-
shell and homogeneous-charge densities used by Elton
and Acheson. This is a safe comparison because the
shell distribution deviates so much more widely from
the homogeneous distribution than some more physi-
cally reasonable model. The shell distribution is used,
of course, because of its simple radial functions.

The potentials for the shell and homogeneous dis-
tributions are square and oscillator wells, respectively :

Vs=—Za/R,, (r<R,); (15a)
Vh= *‘%(ZOA/R},) (3-7’2/Rh2), (1’_<_.Rh)n (15b)
The solutions of Eq. (7) for the shell distribution are

Z=13 HOMOGENEOUS
—-——— SHELL
107
\\
102 \ S
\ /POINT GHARGE
K20(0) \
N
A\
103
|0-4 R
\ 0
N
A\
KRn=1,5"\
0%
\
\

— A
30° 50° 70° o 90° 110° 130°  150°
F1c. 1. Angular distributions, #%s (), of electrons scattered by
aluminum for the homogeneous and shell distributions as a func-
tion of 2R;. The mean square radii of the two densities are equal
(kR,=0.775kR;). For kR,=0.5 and 1.0 the models are indis-
tinguishable on this plot. For kR;=1.5 and 2.0 the dash curves
are for the shell, the solid curves for the homogeneous distribution.
With 7o=1.2, kR,=1.0 corresponds to an energy of 55 Mev.

26 The author would like to thank Dr. D. R. Yennie for per-
mission to use these results before publication.
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F1c. 2. Angular distributions, %25 (9), of electrons scattered by
copper for the homogeneous and shell distributions as a function
of kR,. The mean square radii of the two densities are equal
(kRs=0.775kR;). For kR;,=0.5 and 1.0 the models are indis-
tinguishable on this plot. For 2R,=1.5 and 2.0 the dash curves
are for the shell, the solid curves for the homogeneous distribution.
With 7o=1.2, kR, =1.0 corresponds to an energy of 41 Mev.

spherical Bessel functions of argument (¥R,+Za):
[ilR)=ji(kRs+Ze), gu(R)=ju1(kRs+Za). (16)

In this case (k—V) is a constant and the differential
equations may be identified as the recurrence relations
for the spherical Bessel functions.?” For the homogene-
ous distribution, series solutions about the origin are
perhaps the easiest way of evaluating fi/g;:

fl=rl+l Z an(l)rn gler_l Z bn(l)rﬂ'

n=0 n=1

an

The series coefficients are obtained from the coupled
recurrence relations
10,V =—[1+3Za/kRyon1 ¥
+05Za/ (kR Jbn—s,
(n+214-2)0, P =[14+2Z0/kR}Jan-1D
—[3Za/(kR1)*]an—3P.
Once the ratios f;/g; are evaluated, the analysis of
the preceding section is complete. The angular dis-

tributions k% (f) calculated in this way are given in
Figs. 1, 2, 3, 4, and 5 for the atomic numbers Z=13,

27 P, M. Morse and H. Feshbach, Methods of Theoretical Physics
(John Wiley and Sons, Inc., New York, 1953).

(18)
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F1c. 3. Angular distributions, %% (8), of electrons scattered by
tin for the homogeneous and shell distributions as a function of
kR;. The mean square radii of the two densities are equal (AR,
=0.775kR). For kR;=0.5 and 1.0 the models are indistinguish-
able on this plot. For 2R,=1.5 and 2.0 the dash curves are for the
shell, the solid curves for the homogeneous distribution. With
ro=1.2, kR3=1.0 corresponds to an energy of 33 Mev.

29, 50, 74, and 79. The radii of the two charge densities
have been adjusted according to Eq. (3) so that their
second moments are equal. The solid curves in these
figures are for the homogeneous distribution for kR,
=0.5, 1.0, 1.5, and 2.0. The corresponding angular
distributions for the shell distribution with 2R,=0.775
X (kR;)=0.3875, 0.775; 1.1625, and 1.55 are presented
as dash curves only if they can be distinguished from
those for the homogeneous distribution. Thus the
cross sections for the shell and homogeneous distribu-
tions for 2R, =0.5 and 1.0 are indistinguishable on this
plot, corresponding to tabular differences of a few
percent. For kR,=1.5 there appear small differences
near 90° which increase to 10 or 15 percent at 150°.
As kR; becomes larger, the differences between the
angular distributions at a given angle continue to
increase. If the cross section can be measured with
better than 10 percent accuracy beyond 90°, then it
should be possible to distinguish between charge densi-
ties for £R; 2> 1.5. In terms of the electron’s energy, the
upper limit for shape independence is thus roughly 85,
65, 50, and 45 Mev for the atomic numbers Z=13, 29,
50, and 79, respectively.?® This result has been verified
by calculations with other charge densities, such as

28 With #o=1.2, kR,=1 corresponds to electron energies of 55,
41, 33, 29, and 28 Mev for Z=13, 29, 50, 74, and 79, respectively.
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those discussed in Sec. V. Potentials depending on the
fourth power of » have also been considered.

Elton'® and Bodmer" have used perturbation methods
to show that shape independence of electron scattering
holds outside the long wavelength region. The upper
limit obtained by them is only slightly smaller than
found here (kR;=1.5) from exact calculations. Elton,
for example, derived the following exact equation for
the difference in the /th phase shift for the two poten-
tials ¥y and V,:

1 ©
Sin[”l(l)~7ll(2):|=_;f df’(V1—V2)
0
X[fl(l)fl(2)+gl(l)gl(2)]- (19)

Similar expressions have also been obtained by Parzen,2
Rose,* and Elton.? If the phase shifts and radial func-
tions are known for some (unperturbed) potential V5,
then a simple approximation for the other phase shift
is obtained from Eq. (19) by using the same radial
functions for V,:

1 0
sin[m“’—m("”]’:—;f dr(Vi— Vo) fi*+g®"]. (20)
0

10?
Z:74 Homogeneous
~~~~~ Shell
10
| \ Point charge
K20'(8) \%\
\ \
10 \
N
N
N \\ \
A RN
1072 D h
kRy = 2.0 X
\\ N
~o Ry :L5
\\\
103 X
1074
30 50 70 90 1o 130 150

(5]

F16. 4. Angular distributions, k% (6), of electrons scattered by
tungsten for the homogeneous and shell distributions as a function
of kR,. The mean square radii of the two densities are equal
(kRy=0.775kR;). For kR;=0.5 and 1.0 the models are indis-
tinguishable on this plot. For kR,=1.5 and 2.0 the dash curves
are for the shell, the solid curves for the homogeneous distribution.
With 79=1.2, kRy=1.0 corresponds to an energy of 29 Mev.

29 . Parzen, Phys. Rev. 80, 261 (1950).
3% M. E. Rose, Phys. Rev. 82, 389 (1951).
3 L. R. B. Elton, Proc. Phys. Soc. (London) A65, 481 (1952).
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We have used this method to compute homogeneous
phase shifts from shell and Coulomb phase shifts. A
comparison with exactly calculated phase shifts shows
this approximation to be in error by about 50 percent.
Better results would be expected for cases where the
perturbed and unperturbed charge densities are not so
different. This has been borne out by recent calculations
of Trammel.??

IV. INTERPRETATION OF THE SCATTERING
IN TERMS OF MOMENTS

To obtain the scattering for a particular charge
density the phase shift differences §; have to be evalu-
ated by the methods presented in Sec. II. The phase
shift differences themselves are not really convenient
for describing the nuclear charge density, however,
because a clear connection is lacking between in-
dividual 8; and specific properties of p(r). Moreover,
the number of phase shift differences needed for an
exact calculation is usually larger than the number of
parameters obtained from the observed scattering.
Thus, for kR;=1, §, and §; must be evaluated although
the scattering determines only the mean square radius.
At higher energies Ravenhall and Yennie" find that

100
Z=79 HOMOGENEOUS
-——— SHELL
10
! \\ "POINT CHARGE
k2a(e)

10" \

102 L
0 NN\
\\
\\
\\\
N
-3 ™
10 <
30° 50° 70° 90° 110° 130° 150°

©

F16. 5. Angular distributions, %27 (), of electrons scattered by
gold for the homogeneous and shell distributions as a function of
ER;. The mean square radii of the two densities are equal (kR,
=0.775kR;). For kR,=0.5 and 1.0 the models are indistinguish-
able on this plot. For 2R,=1.5 and 2.0 the dash curves are for the
shell, the solid curves for the homogeneous distribution. With
ro=1.2, kR, =1.0 corresponds to an energy of 28 Mev.

2 G. T. Trammel, Oak Ridge National Laboratory Semiannual
Progress Report No. 1798, September 10, 1954 (unpublished).
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for kRy=4, where six phase-shift differences are used,
only one additional parameter can be obtained from the
experimental data, a ‘“surface distance.” This surface
distance is defined as the distance in which the charge
density decreases from its essentially constant interior
value to zero. Finally, the particular form of p(r) which
gives agreement with experiment may contain more
information than the observed scattering implies. This
is certainly so at low energies (#R,<1.5) where only
the mean square radius is essential. Similarly, in the
work of Ravenhall and Yennie from 84 to 183 Mev for
gold, it has been found that the scattering is insensitive
to details inside the surface region. '

Because the amount of information which can be
obtained from electron scattering is limited, it would
be useful to describe the nuclear charge density in
terms of some minimum set of parameters. At low
energies we have used the first two even moments of
the charge density, the total charge and the mean
square radius. For all Z and kR;2> 1.5, charge densities
with equal zeroth and second moments are indis-
tinguishable. It may be possible to describe the differ-
ences which occur at higher energies in terms of the
higher even moments defined in Eq. (4). This is sug-
gested by the long wavelength limit of Eq. (20) for §,
after two integrations by parts: :

R
sind; o« 47 f drr* (7). (21)
0

Setting /=0 leads to Feshbach’s result in Eq. (2).
Certainly charge densities which are functions of only
even powers of 7 can be characterized by the even
moments. Thus, just above the shape independent
region, the fourth moment should also be important.
If this assumption is correct, charge densities, whose
first three moments (J©, 7® @) are equal, must give
the same scattering in this energy range (kR,=>1.5).
To test this condition, we shall introduce in the next
section charge densities with variable fourth moments.
Their second moments will be set equal to that for the
homogeneous distribution,

R
R R
0

and their fourth moments will be expressed in units of
the homogeneous fourth moment,

R
1(4)=41rf drrbo(r)=N[(3/7)ZeR:*].  (22b)

V. DOUBLE SHELL AND n CHARGE DISTRIBUTIONS

The first charge density considered is a simple com-
bination of the shell and homogeneous charge densities
which will be referred to as the ‘“y distribution.” A
shell of charge n Ze and radius R, encloses a region of
constant charge density. The # distribution is not
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Z=74
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108
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]

Fic. 6. Angular distributions, k2% (f), for 5-distribution for
Z =74 and an energy of 55 Mev. This model consists of a shell, of
charge n Ze and radius R,, enclosing a region of constant charge
density; 7 and Ry, are chosen so that (1) the mean square radius
equals that of the homogeneous distribution with ro=1.2 and (2)
the fourth moment A assumes the values 0.84, 0.88, 0.92, 0.96,
and 1.00. These parameters are listed in Table I.

completely unreasonable, for in a primitive way it
represents the concentration of protons near the nuclear
surface suggested by Feenberg.?® Placing the shell at
the edge, makes the potential parabolic as in the case
of the homogeneous distribution in Eq. (15b),

Vy=—3Zo[ 3—n)— (1—n)r*/R;]/R,.

The radial functions are obtained by the same series
method used for the homogeneous distribution; the
series coefficients in Eq. (17) are now found from the
recurrence formulas

nan®=—[14-3Za/2kR, Jons®
+[Za/2(kR,)*]br5P,

(n2142)b, D =[14-3Za/2kR, Jan1P
—[Zet/2(kR,)*]an—sD.

(23)

(24)

Table I lists the values of  considered and Fig. 6 gives
the calculated angular distributions for Z=74 and an
energy corresponding to kR,=1.90258. If the radius of
the equivalent homogeneous charge density is given by

3 E. Feenberg, Phys. Rev. 59, 593 (1940).
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Eq. (1) with 7o=1.2, then the energy is 55 Mev. The
angular distributions in Fig. 6 differ only slightly up to
108° where they intersect. Beyond this, appreciable
differences occur. The extreme curves are for the shell
(n=1,72=0.84) and homogeneous (n=0,A=1.00) dis-
tributions. Equal changes in the fourth moment
(AN=0.04) result in nearly equal reductions (about
15 percent) in the large-angle scattering. The scattering
for angles less than 108° is characteristic of the mean
square radius.

The other charge distribution considered is the
‘““‘double-shell,” which consists of two concentric shells
of charge Zieand Zse, and of radii 7; and 7s, respectively
(r1<r3). The potential inside the inner shell is a
constant,

Zla ZzOl
k— V= k+_+__,

71 72

(r<ry), (25a)

so that the radial solutions are spherical Bessel func-
tions. Between the shells, there is a 1/7 term from the
Coulomb potential of the inner shell:

Z1a Z2C¥
b—Vo=kt—t—, (n<r<r). (25b)
v 72
Outside both shells, the potential is Coulombic:
Za
k— Vss=k+ —t (7>72). (ZSC)
7

The radial functions for 7, <7 <, are Coulomb functions
for the atomic number Z; and an energy (k+Z.a/7s).
We shall choose Z; from those values for which the
Coulomb functions are already tabulated in reference
24. The only complication is the additional matching
point, but the phase shift differences are still given by
Egs. (9) and (10) with all quantities there evaluated
for Z=Z+Z, and r=r, The only change is that
(fi/g)r=rs in Eq. (10) is now

fl)
i/ r=rg

—_ (h/h)ulﬂ @ug, (Z1,t1)’l/tl+ (Zl,tg) Fu; (Z1,t2) (26)
= (ta/ 122 EOC Y Z oty (Zuste) For (Zots) |

TaBLE 1. Parameters of the 5 distribution used to calculate
the scattering in Fig. 6. This model consists of a shell, of charge
nZe and radius R, enclosing a region of constant charge density.
The energy is 55 Mev and Z="74; n and R, are chosen to give the
values of the fourth moment A listed below, keeping the mean
square radius equal to that of the homogeneous distribution with
o= 1.2

7 R/Rn A
1.000 0.775 0.84
0.795 0.808 0.88
0.592 0.847 0.92
0.375 0.894 0.96
0.000 1.000 1.00
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with o
i (Z1t) = (1) ju)vivi- (Z,th)

uit (Z ) = (Go/ it (Zohy)

where 1= k1’1+Z2a(1’1/1’2), V1= t1+Z10l, to= k?’2+Z201.
With Z;=30, and Z=74, r; and 7, are chosen so that
Eq. (22) is satisfied and the fourth moment ranges
from A=0.84 to A=1.16 in steps of 0.04. The various
parameters associated with this model are summarized
in Table IT and the scattering is plotted in Fig. 7 for
an energy corresponding to kR;,=1.90258. The general
variation of the large-angle scattering is the same as
for the n distribution although the change from one
curve to the next is not quite as regular. The average
decrease in the large-angle scattering is about 10 percent
for an increase in A of 0.04. The corresponding change
for the n distribution is about 15 percent. The angular
distributions intersect at 110°, quite close to the inter-
section angle of 108° in Fig. 6.

The calculations for the 5 and double-shell densities
agree fairly well as regards the general shape of the
angular distributions and the rate of change of the
large-angle scattering with the fourth moment. There is
disagreement, however, in one crucial point. The angu-
lar distributions for the same fourth moment produce
identical scattering only out to 120°. Beyond this there
are differences as large as 7 percent, 5 percent, 10 per-
cent, and 11 percent for fourth moments A=0.88, 0.92,
0.96, and 1.00.3 The validity of a description of electron
scattering in terms of even moments is thus no greater
than 10 percent for these calculations. This corre-
sponds to an uncertainty in the fourth moment of
about 4 percent. Only if the fourth moment of the
nuclear charge density differs from that for the homo-
geneous distribution by much more than 4 percent can
the moment interpretation be used.

VI. EXPERIMENTAL RESULTS BELOW 100 MEV

In Fig. 8 the scattering observed by Lyman, Hanson,
and Scott! for 15.7-Mev electrons is compared with

Cl (Zl,tl) =

TasLE II. Parameters of the double shell density used to calcu-
late the scattering in Fig. 7. This model consists of two concentric
shells of charge Zie and Zse and radius 7; and 7,. The energy is 55
Mev, and Z=Z:+Z,=74 with Z,=50; r; and 7, are chosen to
give the values of the fourth moment X listed below, keeping the
mean square radius equal to that of the homogeneous distribution
with 7o=1.2.

r1/r2 72/Rh A

1.000 0.775 0.84
0.803 0.888 0.88
0.738 0.931 0.92
0.691 0.963 0.96
0.654 0.989 1.00
0.623 1.011 1.04
0.596 1.031 1.08
0.576 1.049 1.12
0.550 1.065 1.16

% No comparison can be made for A=0.84 because both models
reduce to the simple shell in this case, or for A>1.00 because the
fourth moment of the 5 distribution is less than or equal to one.
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Frc. 7. Angular distributions, k25 (8), for the double shell dis-
tribution for Z="74 and an energy of 55 Mev. This model consists
of two concentric shells of charge Zie and Zse and radii 7; and 7,.
In this case Z;=350 and Z;+Z,="74; r; and 7, are chosen so that
(1) the mean square radius equals that of the homogeneous dis-
tribution with 7o=1.2, and (2) the fourth moment \ ranges from
%8{% toII.16 in steps of 0.04. These parameters are listed in

able II.

calculations for the homogeneous charge distribution,
which are labeled by the value of 7o in Eq. (1). The
experimental points for a particular element do not
match any one curve so that estimates of 7, must be
made at each angle and then an average taken. For
aluminum the finite size effect is very small and the
only angles yielding reasonable values are 120° and
150°, for which 7= 1.2. The 30° measurement for copper
is significantly low; the other points give an average
value of 7¢=1.20. For silver, calculations of the ratio
of the actual scattering for Z=350 have been used by
normalizing the theoretical and experimental values
at 30°. A correction has to be made, of course, for the
fact that, for the same kRj, ¢/¢. decreases more
rapidly with angle for Z= 50 than for Z=47. The radius
for silver is then 7o=1.13. Finally the result for gold is
ro=1.29. All of these estimates involve an uncertainty
of roughly 10 percent due to the standard errors in the
data. Thus these determinations are not sufficiently
precise to detect any variation with atomic number of
the value of 7o needed in Eq. (1). The average radius
for the four elements considered is 7o=1.2 to within 10
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Fic. 8. Comparison of the experimental data at 15.7 Mev with
curves for the homogeneous distribution, labeled by the corre-
sponding value of ro. Neglecting observations which cannot be
fit by any reasonable choice of 7o, the average radius for each ele-
ment is given by 7o=1.2, 1.20, 1.13, and 1.29, for Z=13, 29, 50,
and 79, respectively. The over-all average is 1.2 with an uncer-
tainty of about 10 percent.

percent, which is somewhat higher than the previous
analysis of Bitter and Feshbach.?

The experimental values in Fig. 8 are absolute
measurements and include an increment of from 5 to 9
percent from the Schwinger formula for radiative cor-
rections.®® Without these corrections all of the 30°
measurements and some of the 60° measurements are
too low for any reasonable choice of the radius. Best
agreement is expected, however, for just these cases
for which the deviations from point scattering are
small. One conclusion is that the radiative corrections
are not negligible at these energies. If the measurements
are not considered as absolute, however, comparison
with theory can still be made by normalization of the
calculated and observed cross sections without radiative
corrections at 30°. The average 7, obtained in this way
is very close to 1.2, the value obtained with the radiative
corrections. The Schwinger formula is valid only for
very small Z, since it is the Born approximation to the
radiative corrections for a point charge. A more accurate
examination of the radiative corrections, including the
effect of the finite nuclear size, is thus essential. Without
it, the 5 or 10 percent corrections of the Schwinger

35 J. Schwinger, Phys. Rev. 76, 790 (1949).
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formula represent a limit on the reliability of conclu-
sions from electron scattering.3t

Some other experiments below 100 Mev are the
work of Pidd’s group at Michigan. The very precise
determination by Pidd, Hammer, and Raka? of ¢(60°)/
0(90°)=7.77240.08 for Z=50 at 34 Mev gives ro=1.22
=#+0.01. From relative measurements at 33 and 43 Mev
they concluded that the radius of the tungsten nucleus
is given by Eq. (1) with 7y=1.04=0.1. This value is too
small, partly because the single-phase-shift analysis® is
inadequate for tungsten at these energies. Pidd and
Hammer®” have recently obtained new angular dis-
tributions (66.25° to 114.5°) for tungsten at 31, 40,
and 60 Mev. These are relative measurements with a
standard error of about 5 percent. A comparison with
the scattering from the homogeneous distribution can
be made by normalizing the observed and calculated
values at the smallest angle for which measurements
were made. No radiative corrections have been included.
The values of 7o determined at each energy are o= 1.01,
1.22, and 1.18 at 31, 40, and 60 Mev, respectively.
The uncertainty in this analysis is about 10 percent.

2:79
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10°E
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O o 5 ¢ lor Bor o°

F16. 9. Comparison of experimental data at 84 Mev for gold
with calculations for the homogeneous distribution, labeled by
the corresponding value of 7. The curve for 79=1.1 gives the best
agreement with the measurements out to 110°.

36 R. Hofstadter (reference 4) has pointed out that, for relative
measurements at much higher energies, the Schwinger correction
is negligible because it changes so slowly with angle compared to
the observed cross section.

37R. W. Pidd and C. L. Hammer (private communication).
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In Fig. 9 we have compared the 84-Mev data for
gold obtained at Stanford® with calculations for the
homogeneous distribution. Here the curves are nor-
malized to the cross section at 35°. For angles less than
110°, good agreement is obtained for a radius given by
7o=1.10. The deviation of the three points beyond 110°
may be indicative of a fourth moment slightly larger
than that for a constant charge density.

In conclusion, the present experimental data for
energies below 100 Mev indicate that the mean square
radius of the nuclear charge distribution is given by a
uniform charge density with 7o=1.2. The spread in the
experimental data and the uncertainty in the radiative
corrections make this determination uncertain by about
10 percent.}

1 Note added in proof.—Recently the problem of the radiative
corrections has received further study by H. Mitter and P. Urban,
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result for the one-photon radiative corrections to high-energy
electron scattering is that the leading term (for large momentum
transfer and good resolution) of the fractional decrease is given

by the Schwinger correction to @/l orders of the Born approxima-
tion in the nuclear field.
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Transmission measurements in good and poor geometry have
been performed at the Brookhaven Cosmotron to measure the
total and absorption cross sections of several nuclei for neutrons
in the Bev energy range. The neutrons are produced by bombard-
ing a Be target with 2.2-Bev protons. The neutron detector re-
quires the incident particle to pass an anticoincidence counter
and produce in an aluminum radiator a charged particle that will
traverse a fourfold scintillation telescope containing 6 in. of lead.
Contribution of neutrons below 800 Mev are believed small. The
angular distribution of neutrons from the target is sharply peaked
forward with a half-width of 6°.

The integral angular distributions of diffraction scattered
neutrons from C, Cu, and Pb are measured by varying the
detector geometry. The angular half-width of these distributions
indicates a mean effective neutron energy of 1.440.2 Bev.

The total cross sections og and ep—on are measured by at-
tenuation differences in good geometry of CH;— C and D.0O —H0,
with the result: og=42.4+1.8 mb, sp—or=42.24:1.8 mb.

I. INTRODUCTION

HERE has been, in the last few years, a con-
siderable amount of work™!° done on the meas-
urement of neutron-nuclei cross sections in-the energy

* Work performed under contract with the U. S. Atomic Energy
Commission.

1 Now at Forrestal Research Center, Princeton, New Jersey.

1 The subject matter of this paper is part of a dissertation pre-
sented to the Massachusetts Institute of Technology in partial
fulfillment of the degree of Doctor of Philosophy by D. A. Hill.
Now at General Electric Laboratory, Schenectady, New York.

§ On leave to the Physics Department, Princeton University,
Princeton, New Jersey.

|| On leave to the Physics Department, University of Wiscon-
sin, Madison, Wisconsin.

( 1 Cook, McMillan, Peterson, and Sewell, Phys. Rev. 75, 7
1949).

The cross sections of eight elements from Be to U are measured
in good and poor geometry, and the following values of the total
and absorption cross sections are deduced (in units of millibarns):

Be C Al Cu Sn Pb Bi U

310 380 700 1390 2200 3210 3280 3640
190 200 410 670 1160 1730 1790 1890

Experimental errors are about 3 percent in otota1 and 5 percent in
Oabsorption-

An interpretation of these cross sections is given in terms of
optical model parameters-for two extreme nuclear density dis-
tributions: uniform (radius R) and Gaussian [p=po exp— (#/a)%].
The absorption cross-section data are well fitted with R=1.284}%
or ¢=0.3240.624% in units of 107 cm. A nuclear density dis-
tribution intermediate between uniform and Gaussian will make
the present results consistent with the recent electromagnetic
radii.

CTtotal
CGabsorption

ey

range 40-400 Mev. The emphasis has been mainly on
transmission measurements in good geometry to meas-
ure total cross sections, although in some cases inelastic
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