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The matrix elements for the electric monopole (0+—&0+) transi-
tions between the ground and 7.68-Mev state in C" and between
the ground and 6.06-Mev state in 0' may be estimated from
inelastic electron scattering and from the pair emission lifetime,
respectively. The two are equal to each other within the rather
large error of the electron scattering determination, and are given
by (Zo ro )so=3.8X10 " cm' where 0 and f represent initial
and final states of the nucleus, and rp is the radial distance of a
proton from the center of the nucleus. Calculations based on the
alpha-particle model and on an elastic-Quid model yield three to
five times this experimental value. Therefore, a calculation was
made in the case of C'2, based on the jj-coupling independent-
particle model, according to which two nucleons undergo transi-

tions between the pg shell and the pg shell. The matrix element
vanishes if there are no internucleon forces. Pair forces are included
to first order, and the sum over con6gurations is performed exactly
by means of a Green's function. For simplicity it is assumed that
the independent-particle potential is an infinitely deep square
well, and that the pair interaction has zero range. Even assuming
that the pair interaction has its free-space triplet magnitude, the
calculated matrix element is only about one-sixth the experimental
value. It is concluded, therefore, that a model that is more
collective than the independent-particle model with pair inter-
actions, and less collective than the alpha-particle or elastic-Quid
models, is required to account for the experimental results.

I. EXPERIMENTAL SITUATION

HE half-life for emission of electron-positron pairs
from the 6.06-Mev state in 0"has been measured

by Devons, Goldring, and Lindsey' to be (5.0+0.5)
&(10 "sec. According to the theory of Oppenheimer and
Schwinger and of Dalitz, ' this provides a value of
3.8&&10 " cm' for the matrix element (M.E.) of the
electric monopole operator Pi rp' between initial and
final 0+ states, where r~ is the radial distance of a
proton from the center of the nucleus.

The energy of the 7.68-Mev state in C" has been
measured accurately by Dunbar, Pixley, Wenzel, and
Whaling. ' Its angular momentum and parity are not as

definitely known as for the 6.06-Mev state in 0",
although it is most probably also a 0+ state. Harries4 has
observed pairs of approximately the correct energy.
Bell and Jordan' have observed 7.4-Mev gamma rays,
but attribute these to neutron capture in an iron shield.
Beghian, Halban, Husain, and Sanders' have observed
3.16-Mev gamma rays that would correspond to a
transition from the 7.68-Mev state to the 4.43-Mev (2+)
state, and do not 6nd any gamma rays of about 7.5-Mev
energy. These cascade gamma rays are also observed by
Uebergang, v and an angular correlation study by Seed'
indicates that the transitions correspond to 0+—+2+—+0+.
We assume, therefore, that the 7.68-Mev state is
actually a 0+ state.

Differential cross sections for elastic and inelastic

t Supported in part by the Oflice of Scientific Research, Air
Research and Development Command.' Devons, Goldring, and Lindsey, Proc. Phys. Soc. (London)
A67, 134 (1954).

J. R. Oppenheimer and J. Schwinger, Phys. Rev. S6, 1066
(1939);R. H. Dalitz, Proc. Roy. Soc. (London) A206, 521 (1951).

'Dunbar, Pixley, Wenzel, and Whaling, Phys. Rev. 92, 649
(1953).

4 G. Harries, Proc. Phys. Soc. (London) A67, 153 (1954).' P. R. Bell and W. H. Jordan, Phys. Rev. 79, 392 (1950).
Beghian, Halban, Husain, and Sanders, Phys. Rev. 90, 1129

(1953).' R. G. Uebergang, Australian J.Phys. 7, 279 (1954).' J. Seed, Phil. Mag. 46, 100 (1955).
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scattering of 190-Mev electrons from carbon have been
measured by Fregeau and Hofstadter. ' As indicated in
an earlier paper, " the ratio of the 7.68-Mev excitation
cross section to the elastic cross section can be used to
determine the electric monopole matrix element, since
the Born approximation is valid for such a light nucleus.
For primary electron energies that are large in compari-
son with the excitation energy, the square root of this
cross-section ratio is approximately equal to

(Z~L jo(m~) —&3)»o

(P~ jo(qr~))oo

where 0 and f refer to the ground and excited states of
the nucleus of atomic number Z, kq is the momentum
transfer from electron to nucleus, and jo is a spherical
Bessel function. Thus a plot of the square root of the
cross-section ratio against g gives M.E. in terms of the
slope at the origin. The experiments cover a range of g'
from about 0.5 to 1.5 in units of 10"cm ', so that the
extrapolation in to q=0 requires some guesswork. A
rough value for the initial slope can nevertheless be
obtained in this way, and corresponds to about the same
value M.E.=3.8X10 "cm' as is found in the case of
0".A determination of M.E. can also be made from the
absolute value of the inelastic cross section as a function
of angle. While not as reliable, it is in agreement with
the above value.

II. COLLECTIVE MODELS»

In the alpha-particle model, we assume that C"
consists of three alpha particles with equilibrium posi-
tions at the corners of an equilateral triangle, and that
0" consists of four alpha particles with equilibrium

J.H. Fregeau and R. Hofstadter, Bull. Am. Phys. Soc. 30, No.
1, 45 (1955); and private communication.

'o L I. Schiff, Phys. Rev. 96, 765 (1954)."Calculations similar to those reported in this section have been
made by R. H. Dalitz (private communication); see also reference
1, and Devons, Hereward, and Lindsey, Nature 164, 586 (1949),
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positions at the corners of a regular tetrahedron.
Dennison" has achieved some success in accounting for
the excited states of 0"with this model. In each case,
the first excited 0+ state corresponds to single excitation
of the "breathing" mode, in which the alpha particles
oscillate radially and in phase; the restoring force is
fixed in terms of the excitation energy. The matrix
element is

M.E.= 2*'LZE ls/(A3EA) 'j,

where M is the nucleon mass, 2 is the atomic weight,
6=Ef Eo is the excitation energy, and R is the
equilibrium distance of the center-of-mass of each alpha
particle from the center of the nucleus. If we assume
that 8 is smaller than the nuclear radius 8=1.3
)&10 "Ai cm by 1.0)(10 " cm, we obtain M.E.(C")
=11&(10 ""' cm' M E.(O")=17X10 " cm' In both
cases, the amplitude of oscillation is small enough for the
model to be reasonable. However, as pointed out by
Inglis, " the period of oscillation is close enough to the
periods associated with the motions of the constituent
nucleons in each alpha particle so that the adiabatic
approximation implied in the use of the alpha-particle
model is not well justified.

In the elastic-Quid model, we assume that the nucleus
consists of a sphere of elastic Quid of radius R that has
uniform charge and mass density. The first excited 0+
state then corresponds to single excitation of the lowest
radial mode of oscillation, in which the change in
density of the Quid at radial distance r is proportional to
jp(err/E) ' agalll 'tile compressibility ls fixed lll terms of
the excitation energy. When account is taken of the
oscillation of the nuclear surface, the matrix element is
found to be

M.E.= (3'6/7r')LZRA/(AMA) *$. (3)

With the above expression for R, Eq. (3) gives M.E.(C")
= 13&&10 cm M.E.(0's) = 19X10 "cm The elastic
stiffness of the Quid that is required to give agreement
with the observed excitation energies is about one-
seventh of that deduced from other considerations. "

It is not surprising that these two collective models
yield such similar results. The fact that both give too
large a matrix element by a factor of three to five
suggests that the independent-particle model is worth
investigating, since only a small number of protons are
expected to take part in the transition on the basis of
this model.

III. INDEPENDENT-PARTICLE MODEL FOR C"

On the basis of the jj-coupling independent-particle
model, the ground. state of C"has the p; shell filled with

four neutrons and four protons. It is expected that the

'2 D. M. Dennison, Phys. Rev. 96, 378 (1954);see also Peterson,
Fowler, and Lauritsen, Phys. Rev. 96, 1250 (1954).

's D. R. Inglis (private communication); see also Revs. Modern
Phys. 25, 390 (1953), Sec. 10.

'4 E. Feenberg, Revs. Modern Phys. 19, 239 (1947).

lowest excited states arise when a small number of
nucleons are promoted from the p, shell to the p; shell,
or possibly to the d; or s; shell. In none of these cases can
an excited 0+ state be produced by promoting a single
nucleon. If however two nucleons are promoted, a 0+
state can be obtained. "We assume that the 7.68-Mev
state has six nucleons or two holes in the p; shell and
two nucleons in the p; shell, so that it necessarily has
even parity. We further assume that this state has total
isotopic spin T=O, since the ground states of the
neighboring isobars lie considerably higher. The pair of
holes can be coupled together such that their total
angular momentum J is 3, 2, 1, or 0; then T=0 for odd
values of J and T= 1 for even values of J. The pair of
nucleons can similarly be coupled together such that
(T,J) is equal to (1,0) or (0,1).Thus a state with T=O
and J=0 can be produced by combining the substates
(1,0) and (1,0), or by combining the substates (0,1) and

(0,1).According to Redlich, "the effect of the interaction
between pairs of nucleons is generally to decrease the
energy of the states of highest space symmetry with
respect to the others. In the situation under considera-
tion here, the (1,0) substate of two p; nucleons has a
slightly higher energy than the (0,1) substate, by 0 to
0.73 Mev depending on the interaction assumed; on the
other hand the (1,0) substate of two p, nucleons or holes
has a lower energy than the (0,1) substate, by 1.19 to
1.56 Mev." We therefore assume that the 7.68-Mev
state results from combination of the (T,J)=(1,0)
substates of the two P, nucleons and the two Pi holes.

The matrix element of an operator like the electric
monopole operator

0= Q rr'= P -', (1+7;)r,'= P QI(i),
P=I

which is a sum of single-particle terms, vanishes be-
tween pure independent-particle states that differ in the
configurations of more than one nucleon. The effect of
the interaction between pairs of nucleons is to mix in
other nucleon configurations so that the initial and final

perturbed independent-particle states have components
that differ in the configuration of only one nucleon. The
calculation is carried through only to first order in the
pair interaction. On the other hand, all admixed states
are included, this being accomplished by means of a
Green's function. In principle, any forms can be as-
sumed for the independent-particle potential and for the

pair interaction. The complications are such, however,

that for simplicity the independent-particle potential is

assumed in this paper to be an infinitely deep square

'5 The idea that the matrix element might be small because
more than one nucleon is excited to form the upper state, was
suggested independently by D. H. Wilkinson (private communi-
cation); see also A. M. Lane and D. H. Wilkinson, Phys. Rev. 97,
A&99 (~955).

"M. G. Redlich (private communication); see also thesis,
Princeton University, 1954 (unpublished); and Phys. Rev. 95, 448
(1954).
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well, and the pair interaction to be of zero range (6
function) .

Hp ——P Hi(i),
i=1

A
H'= Q H, '(i,j),

where IIp represents the independent-particle potential
including the spin-orbit interaction, and H represents
the interaction between pairs of nucleons. The unper-
turbed energy eigenfunctions II, form a complete
orthonormal set:

IV. DETAILS OF THE CALCULATION

The Hamiltonian for the nucleus is assumed to have
the form

H=Hp+H',

(Ep Ef) H fpQ 00, (10)

sum of terms Qi(f), each of which can alter only the
radial coordinate of one particle, so that the state k
must have the same distribution of s-a-i functions as the
state 0. Now the state f differs from 0, and hence also
from k, in the s-a-i functions of two particles. The terms
in the summand of Sfp can then be divided into two
classes, those in which the nucleon that appears as the
argument of 01 is one of the two which appear as
arguments of II„', and those in which it is not. In both
classes of terms, it is apparent that the two nucleons in
II„' are those that change their s-a-i functions. Then in
the second class, the nucleon in Q1 must not change its
state at all (neither radial nor s-a-i part), so that the
states k and 0 are identical. The second-class part of Sfo
is thus equal to

The first-order perturbed wave functions are

4 —I +2 (E. Ep) —'NpH'0,

(6)
where the prime on 0 pp indicates that the summation in

(4) is carried only over the nucleons that do not change
their state. In similar fashion, the second-class part of
8pf is equal to

(Ef Eo) Q ffH fp

H'0 = JI if0H'I dr.

(7)

We wish to calculate the matrix element of the electric
monopole operator Q given by Eq. (4), between per-
turbed initial and final states pp and ff given by Eq. (7).
The result through first order in 8' is

Since the initial and final states diGer in the configura-
tions of two nucleons and 0 is a sum of single-nucleon
terms, we have that the zero-order part of (8), Qfp, is
zero. Because of this, the restrictions on the sums over k
in the first-order parts of (8) can be dropped; then since
II' and 0 are Hermitian, we can put

ffQppdr = —Sfp —8pf)

) ffQfpdr=Qfp+Q (Ef—Ep) ' H'
fpgQp

k&f

+ Q (E0 E0) QfkH koan (g)
A:&p

Q 0„=—
,

tu 0QN„dr

Since the single-particle states involved in 0 pp and 0'f f
are the same, Eqs. (10) and (11) are equal in magnitude
and opposite in sign, and hence cancel when added in
Eq. (9). Thus only the first-class parts of Sfp and Spf
need be considered in what follows.

A typical term in the summand of the first-class part
of Sfp 1S

v, (1)v«(2)H„'(1)2)it„(i)p p(2)drldrp
K

X («g+«0 «p «d)

where the e's and e's are unperturbed single-particle
eigenfunctions and eigenvalues. None of the other
particles in the nucleus changes its state as the nucleus
goes from 0 to k to f, so that the integrations over the
coordinates of these A —2 nucleons give unity. The
integration over 2 also gives unity, as does the s-a-i part
of the integration over 1'. We write each of the ~'s as the
product of an s-a-i part I and a radial part R; for ex-
ample, p, (1)=I,(1)R,(ri), p„(1)=E,(1)R„(ri). Then,
Eq. (12) can be written in the form

Sf0=+ (E/g Ef) H fiQ00y (9) J
8.(1)Hg(2)H„'(1,2)mi, (1)p 0(2)dridrp,

Sof—=P(E~—Eo) 'Qf~H'00.
k

The unperturbed energy eigenfunctions are anti-
symmetrized products of single-particle functions, each
of which is the product of a radial function and a spin-
angle-isotopic spin (s-a-i) function. The operator Q is a

w. (1)=-', (1+ri)I.(1)Q.,(ri), «—= «,+«g —«0, (13)

Q..(r)—=Q(«.—«) 'R, (r) I R„(r')R (r')r"dr'.

The summation in the last of Eqs. (13) over all radial
states z that have the same s-a-i part I„can be evalu-
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Q„(r)= t G, (r,r')R, (r')r"dr',
0

(15)

(3) evaluating the integrals in the first of Eqs. (13), and
(4) combining terms (12) into Syp.

In order to simplify steps (1) and (2), we assume that
V, (r) is a finite constant for O~r&R and positively
infinite for r) R, and in order to simplify step (3), we
assume that the pair interaction has zero range:

H„'(1,2) =CB(ri—r2).

Step (4) is independent of the assumptions made con-
cerning the forms of V, (r) and H„'(1,2), and involves
instead the combinations of single-particle s-a-i states
that are used to build up the initial and final states.

The Green's function for the infinitely deep square
well potential is

G«(r, r') = —(2M+/I22){[ji(«&)li(«&)7
—[ji(«)ji(«') ni(uR)/ ji(nR) 7}, (17)

Pnp/2M= p —V.,
where r& and r& are the lesser and greater, respectively,
of r, r', and j& and n& are the spherical Bessel functions
that are regular and irregular, respectively, at the origin.
The second square bracket term in (17) is needed to
make G, vanish at r=E, as is required by the infinite
potential step. The normalized radial function for the
state a is

R.(r) =Bj i(npr), ji(uoR) =0,

f22i2 2/2M= p V B2 ji2(i2oy)rpdy —1 (18)
0

Substitution of Eqs. (17) and (18) into (15) gives

Q„(r)=—(2MciB/A') Ni(«) i j i(«')j i(cior')r"dy'
0

+ji(«)~I 22&(«)j i(c2or')r' dr'
r

—[ji(«)~2(~R)/ji(~R) 7
R

ji(«') ji(nor')r"dr' . (19)
0p

ated in terms of a Green's function:

Q„(o„—p)
—'R„(r)B„(r')=G., (r,r'),

—(Ii'/2M) [r '(d/dr) (r'd/dr) l(l—+1)/r'7G«(r, r')

+[V (r) 27G„—(r,r') =r 26(r—r'); (14)

here, M is the nucleon mass, / is the orbital quantum
number and V, (r) is the total (including spin-orbit)
potential associated with the s-a-i state I . The calcula-
tion thus consists of (1) finding the Green's function
(14) associated with the potential V, (r), (2) evaluating
the radial integral in (13) for Q„(r):

In the case of C" under consideration here, the radial
functions for states a, b, c, d are all of the form (18)
with /= 1. The initial states u and 0 have j= ~, and the
final states c and d have j= ~. Both pairs of states have
the same value of np, since this is determined by the
boundary condition at r=E. Thus, e —t/' =e.—V„.
also, e,—e is equal to half the excitation energy 6= 7.68
Mev. With our assumption that the excited state is
built up as the (0,0) combination of (2',J)=(1,0)
substates of two p~ nucleons and two p*, holes, it can be
shown after some calculation that steps (3) and (4) lead
to the following expression for the first-class part
of Sgp".

—[7(2)lM~2cB4/152rh 7 j 22(«)F(r)rpdr, (20)
kp

where F(r) is the curly bracket of Eq. (19) with 3=1.
The first-class part of Spy is given by Eq. (20) with ci

replaced throughout by n', where

Ii'n"/2M = p' —V„o'—= o,+ p 2
—og.

From Eqs. (17), (18), and (21), it follows that

n'= np2+ (2M'/A') n"= no' (2M'/l2') —(22)

In principle, all of the radial integrations implied in
Eq. (20) can be performed analytically. In practice, it is
desirable to calculate F(r) analytically, and then to
carry through the final integration over r numerically.
This procedure suffers from the draw back that n, n',
and np are close together in magnitude: d =7.68 Mev,
and fPno'/2M=46. 5 Mev for R=3&(10 " cm. This
means that F(r) is large because of the appearance of
ji(nR) in the denominator of the last term, since
ji(npR)=0. Moreover, since j,(i2R) is negative and
ji(c2 R) is positive, the large contributions from S~p and
Spi' nearly cancel, so that the numerical work must be
done with great accuracy. It is therefore desirable to
expand Eq. (20) as a Taylor series in u about the point
np, treat Sp~ in the same way, and keep the leading term
in the sum. It is easily shovrn that the error in this
procedure is of relative order (2M'/52no2)'=0. 027, and
a numerical check of the value quoted below shows
that the error is actually less than one percent. The
resulting expression for the sum of the first-class parts of
Sfp and Spy is the same as Eq. (20) with e replaced by Qp

and F(r) replaced by

—(6no r') '{sinx[(3p +5)—(2p'+5)x'+2x'7
—x cosx[(3P215) —Sx'7}, (23)

x—=~or, p=noR

In deriving Eq. (23), use has been made of the fact that
tanp= p, which is a consequence of ji (p) =0. The matrix

"It is convenient to make use of some relations given by E. U.
Condon and G. H. Shortley, The Theory of Atomic Spectra (Cam-
bridge University Press, London, 1935), Chap. 6, Sec. 5 and Chap.
12, Sec. 1; individual nucleon quantum numbers j, m, 7. may be
substituted for the individual electron quantum numbers 1, m&, m,
used by Condon and Shortley.
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element of 0 is the negative of the sum of the first-class
parts of Syp and Soy, and so is equal to

M.E.=L7 (z) '*MCE (8'R')'/90srh'P' j

X ~'(x)f )dx, (24)
"o

where ( ) denotes the curly bracket in Eq. (23).

V. NUMERICAL RESULT AND DISCUSSION

The x integral in Eq. (24) can be evaluated analyti-
cally, but is much easier to do numerically; it is equal to
—1.98. From Eq. (18), the normalization constant 8 is
given by 8'R'=6p/sin2p. Substitution of p=4.493 gives
finally

M.E.= —1.58X1022' cm'

where E is measured in cm and C in Mev-cm'. If now we
set ~M.E.

~
=3.8X10 " cm', as in Sec. I, and 8=3.0

X10 " cm, we obtain C=S.OX10 "Mev-cm'. This is
about six times as large as the volume integral of the
triplet neutron-proton interaction, when it is assumed to

be of Gaussian form. "Conversely, even if C were chosen
to correspond to the free-space neutron-proton inter-
action, in which case the first-order perturbation theory
used here would not be reliable, M.E. would have only
about one-sixth the experimental value.

This result, together with those of Sec. II, suggests
that a model that is more collective than the independ-
ent-particle model with pair interactions and less col-
lective than the alpha-particle or elastic-Quid models, is
required to account for the experimental observations.
The suggestion of Christy and Fowler, " that low-lying
excited states in the p shell nuclei arise from excitation
of four nucleons, may be promising in this connection.

The writer is indebted to Dr. D. R. Yennie and Dr.
M. G. Redlich for stimulating conversations, and to
Professor R. Hofstadter for discussion of the experi-
mental situation.

"J.M. Blatt and J.D. Jackson, Phys. Rev. 76, 18 (1949);other
forms for the interaction have roughly similar volume integrals."R. F. Christy and W. A. Fowler, Phys. Rev. 96, 851(A)
(1954), and private communication from W. A. Fowler. With the
Hamiltonian (5) and this model for the excited state, it would be
necessary to go at least to second order in EI' in order for the
matrix element not to vanish; it would probably then be desirable
for the calculation to stress the collective rather than the perturba-
tion aspects of the situation.
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The effective charge Z* for a d-electron was studied by means of a hyperfine structure (hfs) investigation;
the screening correction (Z —Z*) was found to range from 15 to about 19 for the charge number Z ranging
from 27 to 78. Investigation of the hfs of the spectra of Nb r and La i yielded the result that Q(Nb") = (—02
~0.1))& 10 "cm' and Q(La'") = (+0.6+0.2) X 10 "cm', respectively, in which the polarization correction
(due to Sternheimer) is taken into account. In the hfs of the spectrum of Os r the components due to the
rarer odd isotope Os'" were detected and it was found that Os'e' has a spin 1/2 and a magnetic moment most
probably equal to +0.12 nm (possible range being from +0.16 nm to +0.09 nm). The quadrupole moment
of Hg~' was calculated from the hfs of 6s6p 'P1 and 6s6p 'P2 of the spectrum of Hg x, taking the con6guration
interaction into account, and Q(Hg~') = (+0.45&0.04) )(10 "cm' was obtained.

I. SCREENING CORRECTION FOR A d-ELECTRON
' 'N the hyperfine structure (hfs) formulas for both
& ~ the interval factor (A) and the quadrupole coupling
constant (8) of a configuration containing d-electrons,
the effective charge Z&* for a d-electron frequently
enters. It is usual to put Z~*——Z—tT~, where 0-d is the
screening correction for a d-electron. Casimir' assumed
that ran= 10, and this value has been adopted by many
investigators. However, as far as the author is aware,
this has no sound experimental basis. In order to fill
this gap, an experimental investigation of the hfs of
several atomic spectra was undertaken. A liquid-air-

' H. Casimir, Verhandel. Teylers Tweede Genootschap, Haarlem
(1936)) p. 11.

cooled hollow-cathode discharge tube described previ-
ously' was used, and a Fabry-Perot etalon was used to
resolve the hfs.

We begin with the analysis of the configuration 4d'
of Nbz. ' Nb is known to consist of only one isotope
Nb" with spin 9/2. ' The hfs was previously measured
by Meeks and Fisher, ' using a water-cooled hollow

s K. Murakawa, J. Phys. Soc. Uapan) 9, 391 (1954).
3 The notation of the level symbol of the spectrum of Nb r was

taken from W. F. Meggers and B. F. Scribner, J. Research Natl.
Bur. Standards 14, 629 (1935).' J. E. Mack, Revs. Modern Phys. 22, 64 (1950). P. F. A.
Klinkenberg, Revs. Modern Phys. 24, 63 (1952). K. Murakawa
and T. Kamei, Rept. Inst. Sci. Technol. Univ. Tokyo 7, 219
(1953).

s W. W. Meeks and R. A. Fisher, Phys. Rev. 72, 451 (1947).


