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Relativistic Cosmology. I
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The paper presents some general relations obtaining in relativistic cosmology. It appears from these
that a simple change over to anisotropy without the introduction of spin does not solve any of the out-
standing difFiculties of isotropic cosmological models.

I. INTRODUCTION
' PERHAPS the only point in which all the current

theories of cosmology are found to be in agreement
is the time-dependent nature of the spatial geometry.
It therefore seems of considerable interest to investigate
the temporal behavior of a gravitating system as
observed by a member of the system itself in its
neighborhood. It is true that there exists a fairly large
amount of literature where a study has been made on
similar problems; however they all depend on some
additional assumptions of which homogeneity and (or)
some symmetry postulates seem to be very common
ones. While there may indeed be some great aesthetic
appeal in favor of such assumptions, yet they seem
nevertheless open to serious doubts even on a smoothed-
out scale and very definitely do not provide an exact
picture of the universe when one considers the finer

details. Further, the introduction of such assumptions
lead to rather ambiguous situations when one runs into
some difFiculties, e.g. , the well-known difhculties re-

garding the time-scale' and the original singularity (a
creation in the finite past?) of the isotropic cosmologic
models of general relativity have been variously at-
tributed to the assumption of homogeneity and isotropy
on the one hand' 4 and to a failure of the general theory
of relativity on the other. '

In this paper, an attempt is therefore made to study
the temporal behavior of a gravitating cloud on the
basis of the Einstein gravitational equations under
very general conditions. This would presumably give
one an idea about the potentialities and limitations of
the general theory of relativity in providing a satis-
factory solution to the cosmological problem.

'Recent researches have led to a doubling of the nebular
distances and thus the "age" of the universe has been corre-
spondingly increased. However, it seems doubtful whether even
this revised time scale would be consistent with the estimates of
the age of the earth by A. Holmes, Nature 163, 453 (1949) and
some of the astrophysical estimates PF. Hoyle, Nature 163, 196
(1949)3.' A. S. Eddington, Science Progr. 34, 225 (1939).' R. C. Tolman, Revs. Modern Phys. 21, 374 (1949); G. Orner,
Jr., Astrophys. J. 109, 164 (1949).

4 R. C. Tolman, Reluti 7Jity, ThermodyrIemi cs and Cosmology
(Clarendon Press, Oxford, 1934), pp. 438—39.' For a concise review of these theories, see H. Bondi, Cosmology
(Cambridge University Press, Cambridge, 1952).

IL THE DIFFERENTIAL EQUATION GOVERNING THE
SPATIAL EXPANSION (OR CONTRACTION)

We shall assume that there is no interaction except
through the Einstein gravitational equations

S~T»„—=R»„,'R3»„+—A—3»„,

where the symbols have their usual significance. Under
this circumstance the world lines of matter will be
time-like geodesics. Further, we shall consider that
there is no chaotic motion. We may now take the
world lines of matter as our /-lines and if the coordinate
along these lines measures the proper interval, the line
element can be written in the form

ds =dt +2g4dtdx'+gzsdx'dx, (2)

where the three-space metric d(72= g;~dr'dr~ is negative
definite. Without loss of generality we can take g41, =0
at a particular point (say t=x'=x'=x'=0), i.e., the
(x'x'x') space is orthogonal to the world line at this
point. The condition that the t-lines are geodesics
gives

g4It:, 4 0p

so that g41, 's vanish everywhere on the t-axis. We shall
take this t-axis as the world line of our observer.

It may be noted that we are not taking g4&=0
everywhere, i.e., we are not assuming that the geodesic
congruence of the world lines is normal. This, according
to Godel, ' corresponds to the existence of a spin relative
to the compass of inertia. Our considerations therefore
include the spinning cosmological models as well.

The energy momentum tensor is given by

dx~ dx„dh~ dx
PP t

—
p = gvaP

dS dS d$ d$

so that for our cosmic fluid whose world lines are the
l-lines (i.e. , dx'/ds=1, dx'/ds=0), T"„has only one
nonvanishing component at points on the t-axis (where
g4&

——0), namely
T 4=p.

It is now easy to deduce the following relation from
the field equations (1):

844 ——A.—4m.p.
6In this paper, Greek indices run from 1 to 4 while Latin

indices run from 1 to 3.
s K. Godel, Revs. Modern Phys. 21, 447 (1949).
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A direct calculation of 844 gives at any point on
t-axis,

g2
~'4= D—ogV'( g)7—+kg''g»g'-g-.

BP
+sg' g (gli, k gki, l) (gi4, m gte4, i)y

the write,

4g g™(gi4,m gm4, i) (gli, k gk4, l) = g g OeimCOlky

and this expression is easily seen to be negative definite.
Writing this as —2co2 as is consistent with the classical

(6) analogy, we get from (6) and (8),

where dots indicate differentiation with respect to time
and g;k, l stands for (8/Bx')g;k

We can show that seg'kdklg' d„,——',L(ct/Bt) log+( —g) 7'
vanishes in case of isotropic expansion (or contraction)
and is positive otherwise. For, at the particular point
we can diagonalize the (3&&3) matrix g,k by a transfor-
mation of the form

X'= f'(X', Xs,X3), (7)

where f' is a function of its arguments, analytic at
points on the t-axis. Such a transformation does not
however disturb the value of any of the terms in (6).
Hence, without loss of generality we can assume g;A, to
be diagonalized, so that

—:g"dkig'-d-——:I—»gv'( —g) I)
=3Lg"dkigl™d '—sg"d'kg' dl 7

3 (gllgssd 2+gllg83d 2+g22g83d 27

t git gssb (gas gssb (gss g» )+—
I

——
I + I

——
I + I

——I'
12 - Egtl gss) Egss g38) (gss gll. )

=0'(say),

where @ vanishes if and only if d;k ng;k a——t the point
under consideration, n being independent of the pairs of
indices 3 and k, i.e., p vanishes if the expansion (or
contraction) at the point be isotropic. We note, further,
that the relation j;I,=ng;I, is invariant under transfor-
mation (7).

If ~& be the velocity vector of matter, then with our
choice of coordinate system it is simply the unit vector
along the t-line at the point and hence e'=0 and ~4=1
so that

io*k= 3 (&';k »; i) =3—(&'k —&k, ') =
, 3
—(g'4, k

—
gks, .) (9)

The vanishing of the tensor co;& is the necessary and
sufhcient condition for the geodesic congruence of the
world lines to be normal. s We shall identify the anti-
symmetric tensor ~;I, with spin, as seems natural from
the classical relation 8a=ss curlv. ' Using (9), we can

L. P. Eisenhart, Reemannsan Geometry (Princeton University
Press, Princeton, 1949), p. 115.

9 This de6nition of spin is slightly different from that of Godel.
%hile we consider an antisymmetric tensor, Godel defines the
spin as a vector constructed from this tensor, the velocity vector
and the Levi-Civita tensor e'~'~. However, so long as the 6eld is
purely gravitational, so that the velocity 6eld forms a geodesic
congruence, physical conclusions from either definition are very
similar.

82 1 8 -2

~'3=—Dogv'( —g)7+- —»gv'( —g) +4'—2 ', (10)
8$ 3 Bt

pG'= C(const). (13)

However, the dependence of @' and co' on 6 remains in
general arbitrary, and thus it does not seem possible to
integrate (11) without introducing further assumptions.

III. THE CASE OF A NONSPINNING
GRAVITATING SYSTEM

In case the spin vanishes, los=0 and Eq. (11) becomes

(1/G) (ctsG/cjts) = ()i.—4irp —qP)/3. (14)

It follows at once that a necessary condition for a
completely static behavior in the neighborhood is

P =A/48r,

i.e., the local density must satisfy the relation obtaining
in the Einstein static universe. It is to be noted that
this condition is arrived at without any assumption
regarding symmetry or conditions obtaining in the
distant parts of the universe. It is now easy to see that
if the whole universe is static the relation must be
satisfied everywhere. It therefore follows that no non-
spinning nonhomogeneous universe can be static and
the only static nonspinning universe is the Einstein
universe. "

' See reference 5, Chap. IX.
"The empty de Sitter universe is also sometimes regarded as

static. However, in the coordinate system in which this universe
is static, the t-lines are not geodesics and thus the static nature is
only apparent due to the absence of matter.

so that substitution in (5) gives

(1/G) (it'G/Bts) = (A —48rp —ps+2(os)/3 (11)

where we have put 0'= —g.
In the ordinary isotropic case, the corresponding

equation is
('/G) (~'G/~") = (~—4~»/3

Further, one can deduce an equation formally exactly
similar to (12) on the basis of Newtonian mechanics, "
where A corresponds to a repulsive force proportional
to distance and the term involving density arises from
Newtonian gravitational attraction. Considering Kq.
(11), therefore, one may say that on the classical
analogy the spin gives rise to a repulsive force (the
centrifugal repulsion) while any anisotropy in the local
expansion electively increases the gravitational attrac-
tion.

From the divergence relation Tl"4.,„=0,we get
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We note further that Eq. (14) shows that, in the
absence of spin, with a given value of p and g/G
(determinable in principle from local observations) at
a certain instant, the time behavior in the locality is
identical for all locally isotropically expanding systems
and is given by Eq. (12)."Further, in general, we have
as the first integral of (14):

A. 8xC(1 1 )g' —gg'= —(G' —Gg')+
3 3 EG GgJ

+— qPGdG, (15)
t

where we have used Eq. (13) and the subscript A
indicates the values corresponding to an assigned state.
Hence, finally, the time interval between two states A
and 8 is given by

7AB
& gag A. Supe—(Q' —1)+ (1—Q)+

~

—
I +o

.3 3Q

, (16)

where we have written Q for G/Gg and 0=—s Jq'q sQdQ;
hence, if Gg&G~, then over the whole range of inte-
gration Q(~1 and therefore O&~0, the equality sign
occurring only if P vanishes (i.e., isotropic expansion
or contraction). We may hence enunciate the theorem
that in the absence of spin, the time interval between
a state A of given p and g/G and another state 8 of

specified volume ratio (i.e., Gii/G~ given) is a maximum
in case of isotropic expansion (or contraction) if G~) Gii

and there is no zero of 6 in the interval considered.
In particular, in the cosmological problem in the absence
of spin, among models which start from the singular
state G=O, the time scale to the present state is a
maximum for the isotropic models.

It may appear therefore that so far as the difficulty
regarding the short time scale of relativistic isotropic
models is concerned, nothing would be gained by simply
changing over to nonisotropic models without intro-
ducing spin. However, the actual situation is slightly
diferent. The cosmological constant h. is not inde-

pendently known. For the isotropic models, the neces-

sity of a good fit with data of second order (e.g. , the
departure of the velocity-distance relation from line-

arity and the plausible bounds to the value of pressure)
sets an upper bound to A. which proves insufficient to
give a long time scale. When, however, one gives up
the assumption of isotropy, the second-order data do

not set any precise bound on A. as some other arbitrary
parameters come into the picture. One can thus allow
much higher values of A. and obtain correspondingly
longer time scales. Thus the longer time scales are due
to an increased freedom in the choice of A rather than
to anisotropy itself. "However, it should be noted that
the introduction of such an arbitrary parameter robs
the theory of much of its appeal and indeed if one sets
A.=O, then the theorem we have just proved shows
that a simple change-over to anisotropy would only
decrease the time scale.

Further, Eq. (14) shows that if A=O, then G cannot
have any minimum, so that one has to start from a
singularity at a finite time in the past as in isotropic
models. Thus a simple change-over to anisotropy does
not solve any of the difficulties.

IV. SOME IMPORTANT RELATIONS

In this section, we shall prove some interesting
relations. By direct calculations we have, at any point
on the t-axis, for the contracted Riemann-ChristoGel
tensor components,

+' =~ ' + g'r) /—c)1 gik+g '1 i 1 4k" g'—g"—g
+g"1'kr'1'4i' —g"g4,, kl'4P, (17)

where R*'I, are the corresponding .tensor components for
the three-space da'=g;~dx'dx~, and the F's are the
Christoffel 3-index symbols. Contracting Eq. (17), we

get, after some simplifications (the contraction here is
from 1 to 3),

+t"t™g«, 'g - lt'"t«. -—g"g' g"g, *
—" (18)

A very great simplification in the above relation can
be attained by making a further specification of the
coordinate system. So far, the three-space has been
taken to be only orthogonal to the t-axis. If now we
make a transformation,

x'=x', t=f+y(x'),

where the function g satisfies the following conditions,

(4', i) 0 =Oq (4', ik) 0= s (g4k, i+g4i. k) q

the suKx 0 indicating the value at x'=0. Then in the
new coordinate system (g4;, k)s will be antisymmetric,
1.e.)

(g4;, k)O=-(g4k, ')O.

Such a coordinate transformation, however, does not
affect any of the results so far obtained and (18) now

'3 See, in this connection, the papers cited in reference 3.

'2 Equation 12 has been shown to be valid by R. C. Yolman
LProc. Natl. Aced. Sci. 20, 169 (1934)]at the center of symmetry
in a spherically symmetric system. J. L. Synge /Proc. Natl Acad. .
Sci. 20, 635 (1934)] has obtained the same equation on the
assumption of "symmetry" about the world line at the point.
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so that using (1), (4), and (10), we get

S~p= ~R—R'4 —A.

R*';—qP 1 8 -2

+——log+( —g)
2 38t J

(20)

Differentiating (20) with respect to t and using (13),

becomes (on dropping bars)

g2

R"=R*"+—D ogV'( g)—j
BP

8 -2

+ —logv'( g—) —2~'; (»)
.Bt

and comparing with (11), we get the interesting
relation

8—(R*'—p') = (6p' —2R*'g—8(u') —.
Bt G

(»)

If the spin vanishes and the expansion also be locally
isotropic, then from (17), (4), and (1), we find that
R*'A, is of the form Eb'I, . It is easy to see that a three-
space whose contracted Riemann-ChristoGel tensor is
of this form is locally isotropic. Hence we have the
theorem that if spin be absent, and if the expansion be
locally isotropic, then the space is locally isotropic.
Thus local spatial isotropy follows from the restricted
assumption of locally isotropic expansion (or contrac-
tion) in case of vanishing spin.


