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The Newtonian gravitation theory is generalized to an inhomogeneous wave equation for a tensor gravi-
tational potential in Euclidean space-time by invoking the special relativity postulates of Lorentz invariance
and equivalence of mass and energy. Under the assumption of Lagrangian derivability, this is found to lead
uniquely to the generally covariant 6eld theories (including the general relativity theory) augmented by
four auxiliary conditions. Appendices treat the general definition of the energy tensor, and an empirically
disquali6ed special relativistic scalar generalization of the Newtonian theory.

INTRODUCTION

HE general theory of relativity has long occupied
a position of isolation with respect to the rest of

contemporary fundamental physics. The special theory
of relativity has been intimately and indispensibly
amalgamated with quantum mechanics in evolving
current theoretical representations of elementary proc-
esses, but the general theory, despite the elegance of
its concepts, has not exhibited any real relation what-
ever to quantum physics. The attempts which have
been made to connect general relativity and quantum
mechanics have been directed largely at showing to
what degree the two disciplines may be compatible rather
than seeking a basic interdependence. Thus formalisms
have been developed in which the fundamental equa-
tions of quantum theory are written in generally
covariant form, and, on the other hand, both approxi-
mate and exact methods for subjecting the Einstein
metric 6eld to quantization have been proposed.

There seems a distinct possibility that the wide gap
between general relativity theory and quantum me-
chanics is in part due to a difference in language. In the
relativity theory the paths of particles or light rays are
defined by invariant geometric properties and the
coordinate representation of the paths is secondary
and, except in regions where the field is asymptotically
Euclidean, ambiguous. The formalism of quantum
mechanics, on the other hand, is based on a classical
Hamiltonian theory in which fields, potentials, and
trajectories have a perfectly explicit coordinate repre-
sentation, apart from Lorentz transformation. As a
prerequisite to making a detailed conceptual translation
from one discipline to the other, it would seem necessary
to decide what coordinate conditions, so to speak, are
implicit in the quantum-mechanical equations of motion
at small distances, and there is no clue as to how to do
this in the present form of the relativity theory. The
question is not resolved by writing the quantum-me-
chanical wave equations and commutation relations in
generally covariant form, for this procedure has no
more u priori justification than naively rewriting the
field equations of pre-Einsteinian gravitation theory in
generally covariant form. The latter is easy to do but

~ Publication of this paper was assisted by the Ernest Kempton
Adams Fund.

it does not lead in itself to the correct results, since the
essential characteristic of the Einstein theory is not the
formal covariance of the equations to coordinate trans-
formation but the relationship of the metric tensor and
the gravitational potential.

The present paper is intended as a preliminary step
in exploring one possible relationship of the generally
covariant theories to the immediate classical basis of
quantum theory, and to the quantum formalism itself.
It tries to show that there exists a physically logical
basis for the generally covariant theories without an
a priori conceptual identification of the field tensor
with the metric of space. The principle of equivalence
and the associated geometrical postulates of general
relativity are abandoned as a foundation, and, instead,
a starting point is taken which employs concepts closer
in some respects to those which have been found per-
tinent to microscopic physics. The Newtonian gravita-
tion theory is generalized in accordance with the special
relativity postulates of Lorentz invariance and the
equivalence of mass and energy. This amounts to
postulating an ordinary Euclidean second-order wave
equation for a tensor potential f„i, in which the source
term, however, is the total Lagrangian derived energy-
momentum tensor as defined in special relativistic field
theories. It is then found that the requirement that
such a wave equation be consistent with the Lagrangian
6eld equations leads to a set of four auxiliary conditions
and a unique class of Lagrangians which are the Rie-
mannian invariants built on a single tensor function
g»„which is in turn a function of f», and the Euclidean
metric tensor g„y. With an appropriate choice of the
Riemannian invariant, g» may be identi6ed with the
Einstein 6eld tensor. The four auxiliary conditions are
not unique, and depend on an arbitrary assignment of
covariancy or contravariancy, and of tensor density
weight, to f„, i.

In a paper to follow, it is suggested that the gen-
erally covariant theories without auxiliary conditions,
including the customary Einstein gravitation theory,
may possibly allow such a wealth of solutions, in addi-
tion to familiar ones, as would permit a basic reinter-
pretation of the generally covariant theories as a means
of kinematical representation comparable in important
respects to the classical Hamilton-Jacobi formalism.
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GENERALLY COVARIANT GRAVITATION THEORY

THE GRAVITATIONAL LAGRANGIAN

In the Newtonian theory of attraction, the gravita-
tional potential V obeys the equation

V'V —)p=0, (1)

where p is the density of matter and X is proportional
to the constant of gravitation. We now seek to modify
(1) in accordance with the special relativity postulates
of Lorentz invariance and equivalence of mass and
energy. The obvious Lorentz-invariant generalizations
of (1) are the scalar equation

'y —XT„&q~"=0, (2)

and the tensor equation

fioX ~Took = po (3)

where ot and f„q are a scalar and tensor field respec-
tively, T» is the energy-momentum tensor, p» is the
(Euclidean) metric tensor and ' is the contracted
second covariant derivative with respect to q». In
accordance with the postulate of the equivalence of
mass and energy, we now require that T» represent
the total energy-momentum tensor, incllding the coe-
tributioe associated toith the rto fl, etd or f„iPeld.'-

The theory of the scalar equation is treated in
Appendix II. This equation does not lead to astronomi-
cally correct relativistic corrections to the Newtonian
gravitation law. We shall consider here the tensor
equation (3). If the "matter variables" are represented
formally by u (we do not specify here the number or
nature of these variables except to require that they
have well-defined covariance properties under coor-
dinate transformation), an invariant Lagrangian leading
to the field equations (3) will have the general form

8L/h f,= P"(f)—X (8L/htt„) . (12)

where
~
X represents covariant differentiation with

respect to g».
Multiplying (3) through by tt &tt"'(tt(«where

= det
~
tt», ~, the contravariant density form of the f„z

equation is

sfor 7ignr 0—
where f ' denotes tt "tt"'~rt

~
«f„i and we have commuted

' and tt ~ since the covariant derivative of a tensor
with respect to itself vanishes. In view of (7), any field
f" which satisfies (8) and obeys customary boundary
conditions' must also satisfy

for p

It follows that (8) is equivalent to (9) plus the set of
equations

@or(f) 7 ger P

where

&"(f)= lnl«&"(f) = II «( 'f" f-i-—e~'
f"i.e—n'+f"'i-en") (11)

obeys [@or(f)j~,=0 identically.
Now instead of seeking solutions of the implicit

equations (3) directly, we seek the class of Lagrangians
leading to the less restrictive field equations (10). The
solutions of these equations which obey the auxiliary
conditions (9) will then satisfy (3). The requirement
that (10) be the Lagrange-Euler equations resulting
from variation of the Lagrangian L with respect to f„i
may be written according to (5) and (6) as

L= I p(f,g,tt)d4x, (4)

Let I=Lt+Ls where

L =—(2/X) ~f„'R "( )d', (13)
where f symbolizes the tensor f», and tt the metric
tensor tt„q. Q will transform under coordinate trans-
formation as a tensor density of weight +1.The field
equations for f„q resulting from the usual Lagrangian
variational procedure are then

hL/8 f„i=0, (5)

and the contravariant energy-momentum tensor-density
corresponding to this Lagrangian is

Z&"=bL/htt„&. (6)

When all the field equations for f„z and I are satisfied,
X""obeys the conservation equations'

gp)l( ~ p (7)
'Some elementary consequences of this requirement on the

Euclidean gravitational Geld equation, and its approximate
realization, were treated by the author in a thesis submitted in
partial fulfillment of the requirements for the S.B. degree at the
Massachusetts Institute of Technology, January 15, 1941', and
similarly, but independently, by S. ¹ Gupta, Phys. Rev. 96, 1683
(1954).

'The definition and some properties of the energy tensor are
discussed in Appendix I.

and «R&" (tt) is the contracted Riemann-Christoffel
tensor density derived from p„), as fundamental tensor.
Since K&"(tt) vanishes for the Euclidean tt„i, 8Ls/8 f», =0.
It is easily verided that for in6nitesimal variations of

q, from the Euclidean values,

7 (SL,/h~. ,) =Z-(f), (14)

so that (12) is equivalent to the following equation for
Ll ~

(15)

It is clear that the general solution of (15) is

Li Li(tt., Xf.—„—st). — (16)

That is, L1 must be a function of the matter variables
and the single tensor argument tt„—Xf„. Thus, de-
noting tt„Xf„by g„, the ge—neral solution for I. in

3 We imply the exclusion of the half-advanced, half-retarded
solutions ot the homogeneous equation Q'forgo =0.
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empty space is

I.= g(g)d'x—(2/X) ~f iR&"(g)d'x,
J

where R(g) is a Riemannian invariant-density con-
structed from g„alone; that is, a "general invariant"
in the language of relativity theory. Since the terms in
2/lt vanish due to the assumption of Euclidean q„i, the
6eld equations for g„are simply those resulting from
variation of j'Q(g)dsx alone. The simplest nontrivial
form 2 is 2=Ã""(g)g„i, where 5&"(g) is the contracted
contravariant Riemann-ChristoGel tensor-density con-
structed from the fundamental tensor g„),. This is a
form of the Lagrangian for the Einstein gravitational
equations so that g„), may then be identified with Ein-
stein's metric tensor in empty space. In nonempty
regions, Q(g) will be replaced by some invariant func-
tion of both g„), and N. Its form will of course depend of
the covariance properties of the N variables and on the
type of coupling assumed.

NONUNIQUENESS OF THE AUXILIARY
CONDITIONS

In the preceding analysis, we have assumed that the
tensor f„i, which is the generalization of the Newtonian
potential, is a covariant tensor. There is nothing in
the original equation (1) to force this choice, and, we

might as well have started with a contravariant tensor,
or either a covariant or contravariant tensor density
of arbitrary weight. We shall now show that these alter-
native choices are closely related to the theory already
developed, and may be realized by a change in the
auxiliary conditions. Since the notation of the tensor
calculus requires a definite choice of covariant or con-
travariant character in an expression, we shall carry
through the analysis for a contravariant tensor density
of arbitrary weight, and then indicate the minor
changes appropriate to the covariant choice.

If we replace J by a new Lagrangian

(18)

where f&" is any tensor density function of f„z and g„z of
weight 1V, connected to f„z by an invertible transfor-
mation, the 6eld equations for f„i,are unaltered because
of the vanishing of %„z(p). The new energy tensor is

~L/s~ =x-'l ~ l
&'-»»D-(P) -2x-i

y (BP&"/Bg„)R„i,(g) l g l
"~'d4x+hL&/bg. ,

=bL/bq —lt 'X)sr(f)

+y

ilail

&i &&»D«(P) (19)

since Q„i(g)=0. Hence, the field equations (10) may

8I 8L hL (Bf p) 8I
+

fi'Qsi RsX ~jap ~ ~'gsi ~ p« son=st ~'Ink
(21)

when the field equations 8L/hf p Oar——e satis6ed.
Hence, the 6eld equations for P&" (20) may be written

N)I2D«(f) l (8L'/8g. .) =0. (22)

If now we impose the auxiliary conditions

/sic p

(22) becomes
(23)

'if'" —lilgl '~ »"(8L*/bq„) =0, (24)

which is as valid a generalization of (1) as (8). The
actual Lagrange-Euler equations resulting from vari-
ation of L* with respect to pap may be written

8f„i 8L*
Dn&(p) —y

l „l &~-»» =0
gpap Bg„),

(23)

which although equivalent to (22) are not formally
identical as was assumed in the analysis which led to
(16). If the analysis is carried through for a covariant
tensor density P„i, of weight X, the equations analogous
to (23) and (24) are

(26)

Q„i—'Alpl tN 'i»q g i,(5L~/8q„) =p. (27)

It thus appears that there is associated with any
given general invariant a family of Lagrangians leading
to equations of the type (10) and differing only by
terms which do not affect the field equations but which
have the eGect of altering the energy tensor by ex-
pressions with identically vanishing divergencies. Al-
though the 6eld equations for this family of Lagrangians
are all identical in the sense that they can be obtained
from each other by variable transformations, the
auxiliary conditions (23) or (26) required to satisfy
the wave equations of the form (24) or (27) for each
choice of variables P(or) will not be equival. ent in
general.

We have thus been led to the result that generaliza-
tion of the Newtonian potential equation, in accordance
with the postulates of special relativity, to the tensor
6eld equation of the form (3) leads uniquely to the class
of generally covariant 6eld theories, augmented by
auxiliary conditions. There seems to be no way of dis-
tinguishing between the various choices of auxiliary
conditions on the basis of the assumptions we have made
thus far in generalizing the Newtonian law (1). In the
usual interpretation of Einstein's gravitation theory as

be rewritten

I g I
&'-"&»D-(|t)—x(8L/bg„) =0. (20)

Now let us rewrite the new Lagrangian in terms of q„q
and the new variables f&". Denoting I expressed in
this form by L*,



GENERALLY COVARIANT GRA VI TATION THEORY ii2i

a law regulating the metric structure of space, auxiliary
conditions of the type introduced are considered merely
to fix the form of the (arbitrary) coordinate system and
are not regarded as having any physical content. In a
paper to follow, however, the question of the physical
significance of the auxiliary conditions will be reex-
amined.

ACKNOWLEDGMENT

A part of this work was done while the author was
at the Institute for Advanced Study in 1949—i950. He
wishes to thank Dr. J. Robert Oppenheimer for the
hospitality of the Institute, and Dr. Albert Einstein for
the privilege of working with him.

APPENDIX I. DEFINITION OF THE ENERGY TENSOR

The method of constructing the Lagrangian derived
energy tensor used in this paper is due to Eddington4
and been discussed by Chang' and others. The general
type of Lagrangian considered is of the form

form

(8L/baal„i) (irt„bx =0,

where
~

7i indicates covariant dilferentiation with respect
to p». Since this must hold for arbitrary br~,

(1.7)

and in view of this conservation property the energy
tensor density may be identified as

This definition of the energy tensor is unique to the
extent that the form of the Lagrangian leading to given
field equations (I.3) is unique. However the Lagrangian
may be altered by the formal addition of terms of the
form

(I.9)

where P is any function of the Euclidean metric tensor

p», the dynamic variables m& ' and their derivatives of
any order, which transforms as an invariant density of
weight +1 under an arbitrary change of coordinate
system. 1.will then be an invariant. The dynamic vari-
ables m') are not speci6ed in number or kind except
that they have well defined covariance properties under
coordinate transformation. Since L is an invariant, the
variation

8L= P (8L/brt i)brt i++.(bL/b'av & &)bw ' & Jdex (I.2)

will vanish when bq„q and Rv' & are variations due to an
arbitrary infinitesimal coordinate transformation. The
Lagrange equations for the dynamic variables m & ) are

8L/bta& & 0, (I.3)

so that when the lmld equations are satisfied, (I.2) is
simply

(5L/brt„), )brt„id'x =0

Under the infinitesimal coordinate transformation
x'&=x&+bx&, the change in the covariant tensor il„i is

~here the q„~ are expressed in terms of the new coor-
dinates. Assuming the bx& vanish outside a finite region,
(I.4) may be transformed by partial integration to the

' A. S. Eddington, Mathematecal Theory of Relatzeity (The
University Press, Cambridge, 1937), second edition, pp. 140-141.' T. S. Chang, Proc. Cambridge Phil. Soc. 44, 76 (1948).

(where A, A„i„are scalar or tensor functions of the
dynamic variables and rt„z and Q(rt), Q&"(rt), are
contractions of the Riemann-Christoffel tensor density
built on rt„i) without aBecting these equations since
the Riemann-ChristoGel tensor vanishes. Denoting an
expression of the form (I.9) by E, since 8E/btv&'&=0
for all to&'& values, (I.7) becomes the identity

(bE/bri„i, ) (
i=0. (I.10)

where %(g) is the invariant density formed by con-
traction of the Riemann-ChristoGel tensor formed on

g„q. Since this Lagrangian does not contain the metric
tensor q„z at all, the energy tensor as dined above
vanishes. However, let us replace each derivative g„),,„
g„z,.„occurring in (I.11) by g„z~ or g», ~., where
indicates covariant diGerentiation with respect to q„),.
This will not destroy the invariance of the Lagrangian
to coordinate transformations, and since the form of
the Lagrangian will be unaltered in Cartesian coor-
dinates, the field equations will not be affected in any
coordinate system. The alteration of the Lagrangian

Hence the effect of such formal additions to the La-
grangian is to change the energy tensor by an expression
whose divergence vanishes identically. This ambiguity
is unavoidable since the requirement on an energy
tensor is simply that it be conserved when the 6eld
equations are satisfied.

A special illustration of the effect of the freedom of
definition of the energy tensor is provided by the
Lagrangian of the general relativity theory. If the
Einstein fie'd tensor g„z is regarded as the dynamic
variable, the field equations may be obtained from the
Lagrangian

I g(g)dex,
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can be represented as the addition of terms of form
similar to (I.9). The resultant energy tensor identically
obeys the conservation conditions (1.7). A tensor which
obeys the conservation conditions only when the field
equations are satisfied can be formally derived by
changing to new dynamic variables f„z=(g»—g»).
The two energy tensors diGer only by the expression
%»(g) —2g»R(g) and hence are identical when the
field equations are satisfied. In that case, they are
closely related, in Cartesian coordinates, to the usual
"pseudo energy-tensor" as defined, for example, by
Eddington. '

APPENDIX II. SCALAR THEORY

Lagrangian,

I.= R(e "e-g»)d4x+ J(e "~q„g,N)d4x

where Q and Q are any general invariant densities
built on the fundamental tensor e "&g». Since the last
term vanishes for Euclidean q„q, the equations of
motion will be unaltered by dropping it and hence,
making the change of variable P= e "~, the field equa-
tions may be obtained by variation of the Lagrangian

The scalar gravitation theory corresponding to the
field equation

L= tg(Pg»)d'x+~t g(fg»„N)d'x (II.8)

(2)

may be developed in close analogy to the treatment of
the tensor theory. If the energy tensor T» is derived
from a Lagrangian L(p, g„i,g), where I represents the
matter variables, then (2) is equivalent to the Lagrange-
Euler equation if

It will be noted that if g» ——Prl», this is the general
Lagrangian for the tensor theory, and it follows then
that if there do exist solutions of the tensor theory of
this form, then f must obey the field equation of the
scalar theory.

If RP&»)=%(fp»), it may be verified that for
Euclidean q», (II.8) reduces to

Let L=L&+L&, where
L= ' 0 V, A, e'-I el'd'*+ J(A.i,N)d'* (» 9)

L2 —(Bli)
—' yg ——(il)d'x, (II.2)

x(SLY/bg„),)g„i= IgI &

Hence the resulting equation for I.j is

eLi/ep+Xg„i (eLi/eg„i) =0. (II.4)

Now make the transformation y»=e "&q», so that

(II.5)

Then, (II.4) may be written

kg* SLY* By„), 8LI* 8y P SLY*
0= + +X g„i=, (II.6)

~4 &v» ~4 ~v e ~n» ~4'

which shows that L~* must be a function of u and the
tensor y» alone. Hence, Eq. (2) leads to the general

~ A. S. Eddington, reference 4, pp. 134-137.

where %(g) is the Riemannian curvature invariant. For
Euclidean q»„8L2/Bp then vanishes and

This form bears an interesting resemblance to the
Lagrangian of the general relativity theory, which
Kddington7 has pointed out can be written as an ex-
pression homogeneous of order 2 in the quantities
g&", and homogeneous of order —1 in the g&~. However,
in distinction to the general relativity case, a simple
variable transformation renders this scalar theory linear.

It is readily seen that the class of scalar theories just
developed can give rio bending of light by a gravita-
tional field. In the absence of gravitational field, the
Lagrangian of the electromagnetic field may be written

L. = "(A„i Ag„) (,
A—„, ,A. .)p& —p"'I p. I

&d'x (II.10).

This expression is homogeneous of degree 0 in the g»,
and hence it is apparent that it will be unaltered if q„q
is replaced by Pq„z

The Lagrangian (II.9) leads in first approximation
to the Newtonian law of gravitation, but it predicts a
motion of the perihelion of Mercury diGerent from the
observed advance. The motion can be obtained exactly.

~ A. S. Eddington, reference 4, pp. 131-134.


