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of coo are present, one finds "coherences, "or "echoes" as
described in the following paper.

VIII, GENERALIZATION FOR T1 Q T2

The assumption that the two relaxation times are
equal has simpli6ed our geometric interpretations, but
the analytical expressions in the 3)&3 representation
remain almost as simple if it is dropped. Thus, the
equation of motion (3) remains valid provided we

interpret 1/T as a diagonal matrix with elements
[1/Ts, 1/Ts, 1/Ttf. Equations (4), (5), (16) then remain
valid although R(t, t') is no longer a pure rotation
matrix. The time-development matrix U(t, t ) is given by
an expression of the form (8) in which g is replaced by
(T '+g), and the solution (13) is valid, with 3 (t)
= exp) —(T '+ g) tj.The locus generated by X(t) is now
a distorted version of a cone. Similarly, the relations
(22)—(26) of Sec. IV still hold, although the geometrical
picture is less simple.

PH YSICAL REVIEW VOLUM E 98, NUM B ER 4 MAY 15, 1955

Nuclear Induction in Inhonmgeneous Fields*

ARNQLD L. BLooM
Varian Associates, Palo Alto, California

(Received December 20, 1954)

The mathematical methods developed by Jaynes are applied to the study of nuclear resonance in inhomo-
geneous magnetic fields. It is shown that a description of delayed-signal phenomena such as spin echoes is
greatly simplified by the use of the spinor representation involving 2)&2 transformation matrices. The origi-
nal results of Hahn on spin echoes are rederived in simplified fashion and more complicated situations are
discussed, including large numbers of pulses, exact time dependence in extremely inhomogeneous fields, and
continuous pulse trains. Several previously unreported types of delayed-signal phenomena are discussed and
illustrated experimentally by oscilloscope traces. The apparatus used to study nuclear induction in very
inhomogeneous fields is briefly discussed.

I. INTRODUCTION

'HIS report applies the mathematical methods de-
veloped in the. previous paper' to the study of

nuclear induction in inhomogeneous magnetic fields,
involving a class of phenomena such as spin echoes. ' In
previous papers on spin echoes' ' the analysis always
involved successive operations in the three-dimensional
rotation group, and the use of linear transformation
operators was implied even if these operators were not
always written iri matrix format. It is thus not our
intention merely to demonstrate the use of matrices for
predicting spin echoes. What we wish to accomplish is
the following: (1) to demonstrate the use of Cayley-
Klein parameters in spin-echo problems, and (2) to
show how the simplicity and generality of the Cayley-
Klein formalism makes it possible to study more
complicated situations with a minimum of effort.

II. MATHEMATICAL PRELIMINARIES

We shall assume that the reader is familiar with the
original spin-echo experiments of Hahn, and with the

* Supported by the OfIice of Naval Research.' K. T. Jaynes, preceding paper t Phys. Rev. 98, 1099 (1955)],
hereafter referred to as I.

2 E. L. Hahn, Phys. Rev. 80, 580 (1950).' E. L. Hahn and D. K. Maxwell, Phys. Rev. 88, 1070 (1952);
D. E. Maxwell, thesis, Stanford University (unpublished).

4 T. P. Das and A. K. Saha, Phys. Rev. 98, 749 (1954).' H. Y. Carr and K. M. Purcell, Phys. Rev. 94, 630 (1954).

mathematical and geometrical interpretations presented
in the Hahn paper. We shall follow the same general
method of attack. Starting with a vector M(d«u) which
obeys Bloch'ss equations LEqs. (1) or (3) of I] and
which is initially in the s direction, we perform successive
transformations corresponding to discrete time intervals
during which a given rf field Bi is either present or
absent. Finally, after all rf signals have been applied, the
polarization in the xy plane takes the form,

M, ,„(hto)= g(Ace)P, G, («1tu) exp( —iA&u(t —t,)j, (1)

where g describes the effect of the magnetic field inhomo-
geneity and the 6's are functions of relaxation, self-
diffusion and three-dimensional rotation; it is only the
latter variable that is of interest to us. The observed
nuclear induction signal depends on the integral of (1)
over all values of A~. In general the integral is zero
unless t is in the vicinity of t, , in which case there is a
signal of intensity proportional to t",. If t; coincides
with an rf pulse the signal is a "free decay, "otherwise it
is an "echo."

The transformation relations which are of interest to
us have been given in Sec. VI of I. During the ith pulse
the matrix e; is described as

(2)

s F. Bloch, Phys. Rev. 70, 460 (1946).
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FIG. 1. Diagram of the vectors M, B and the precession cone in
the rotating frame of reference.

in which' (omitting subscripts for the moment),

n =cos(ibt) i c—os8 sin(-,'bt),

P = i sin—8 sin(ibt),

(3)

—gib, a t(e

0

0

effaced i)

corresponding to precession about the z axis with angular
frequency d,u. The resultant transformation after e
time intervals is then defined as

ir n p)
n,

' ' ' 1
0 —P* rr*)

To convert Q to a three-dimensional representation, we
use Eq. (40) of I, which we summarize as follows:

p2

sp

—2n*P* M',+,„—2rrP M, ;y . (7)
(nu* —PA8*). . 3f, .

Thus, starting with M=3f, we wish to compute M, ;„
at a later time, i.e., the matrix element (—2nP) as a
function of t. From inspection of Eqs. (2), (5), and (6),
we see that (—2nP) can be written in the form

2P=Z G —p[—'~ (»—t)j, (g)

which is in the form needed to study spin echoes.

All computations in this paper are carried out in the rotating
frame of reference, in which III is taken to be always in the x
direction. See Rabi, Ramsey, and Schwinger, Revs. Modern Phys.
26, 167 (1954).

where the asterisk denotes the complex conjugate, and

b= iB[,
B=yHi+ pro,

8= tan —
'(yHi/Aoi),

Doi = '7Hp ro.

The precession is clockwise for y& 0 when viewed from
in front of the effective field vector B (see Fig. 1). In
between pulses we have the special case

To summarize, we compute n and P by combining the
2)&2 Q-matrices and multiply these two parameters
together to obtain the required three-dimensional matrix
element. This procedure is generally much simpler than
that of multiplying 3)(3 matrices directly, and many of
the results which were laboriously computed in the
earlier papers can be determined merely by a visual
inspection of the Q-matrices. In addition the generality
of the Cayley-Klein parameters allows us to waive the
restrictions (nuclei at resonance, short and intense
pulses of rf) which were necessary in the earlier work in
order to keep the computations to a manageable length.

III. GENERAL ANALYSIS

A. - Introduction

In this section, we shall calculate the amplitudes and
shapes of signals in an idealized situation in which both
Ti and T& (if they are not equal) are very long compared
to the times required to do the experiments, and in
which self-diffusion eGects are absent. For each instant
of time we must solve the corresponding Eq. (13) of I,
which can be written in the form

M (t) = [e—'i~ exp( —gt) $Mi
+[1—e '~ exp( —Iit)7Ms. (9)

Here T,= Ts T, Mi is the p——olarization at the start of
the time interval, M& is the steady-state polarization for
that interval, and g is the precession matrix. It is
customary in .treatments of spin echo' ' to assume an
initial polarization M =Mpz prior to the first pulse, and
to solve only for the 6rst term in (9), ignoring the effect
of Ms. The neglect of this second term during the time
between pulses, when it corresponds to a recovery of
initial polarization, is justifiable only for long relaxation
times; actually the recovery is quite useful for the
measurement of Ti. Neglect of [1—e 'i~ exp( —gt))Ms
during a pulse is not so easily justified. In most spin-echo
experiments, however, the rf level, if left on continu-
ously, woul. d correspond to a high degree of saturation;
in such cases it can be shown that M2 is either very
small or is nearly parallel to B, so the total effect of the
term is small. We shall follow the usual practice of
neglecting the term in Ms, it is nevertheless clear that
there are circumstances under which one cannot neglect
M&, even for relatively short pulses and intense rf fields.

We shall make no assumptions in this section about
the magnetic field inhomogeneity effect, g(D~), except
to follow the usual practice in requiring g (Doi) =g (—Ace).
An inspection of the basic equations of motion and of
Fig. 1 shows that if the initial polarization is in the z
direction the two vectors for each

~
Ace

~
are at all times

symmetrically located about the yz plane, from which it
follows that G;(D&o) = —G;*(—Doi). Thus if the above
restriction on g is fulfilled it is only necessary to use the

ln this paper e and refer to transformation operators as
defined in Eqs. (2) and 22) of I. The corresponding lightface
characters are the Cayley-Klein parameters.
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imaginary part of G; in computing signal amplitudes
and shapes.

When the transformation matrices are displayed it is
fairly evident how one may modify them to include the
effects of relaxation and self-diffusion. These e6ects
have already been calculated in detail for two- and
three-pulse systems4 and it does not appear that their
applications to more complex systems will produce
much that is physically new or interesting. Exceptions
to this latter statement will be discussed qualitatively.

and substituting Eq. (3) we have

(—2uP) = [sin28 sin'(-bti)+i sin8 sinbli]e —'~"". (11)

The only signal during this time interval is the free decay
following the pulse (ts ——0) . Near resonance the term
sin8 sinbt& is adequate to describe the free decay
amplitude as a function of pulse parameters.

Z. Two pulses. —The term (—2uP) in the matrix
Q=gs. Q is given by

(—2uP) = —2 (u,use ' ' Pi*pse+—' —4)—
&& (Piuse ' '—ui*pse+' ') (12)

where e ' is short for exp (—. 2 iAssts), e+' for exp (+2 id'&t4),
etc. Of the four terms in (12) one of them refers to times
which are negative with respect to the second pulse and
which we shall disregard. The other two represent
coherences at f4 =0 (free decay of the second pulse), and
at t4 = t2, which is the simple two-pulse echo. Substi-
tuting (3) into the coeKcient for the free decay, we

obtain for the free decay amplitude

Gi = —(uiui* —PiPi*) (2usPs). (13)

The amplitude of the echo is given by

Gs = 2ui*Pi*Ps' (14)

For pulses of equal intensity and width, and nuclei near
resonance, (14) reduces to

Gs —sinbti sin' (-,'bi i),

3. One, Two, and Three Pulses

In order to show in a simple manner how our method
of calculation works, we shall first rederive Hahn's
results' for maximum amplitudes of signals following
one, two, and three pulses in the absence of relaxation
and self-diffusion e6ects. The notation refers to the
time intervals as defined in Fig. 2. Odd numbered
subscripts refer to pulses, even numbered subscripts to
intervals between pulses. All times are measured from
the beginning of the time interval, rather than from the
start of the experiment.

1. One pulse. —The term (—2uP) in the matrix

Q =Qsgi is giveil by

( 2uP) 2uiP &
f~cats—

f~

I
I

~ ~I
I
I
I s
I I

I

FIG. 2. Timing diagram for up to four unequally spaced pulses.

at t6 = f4—f2

at t6= t4

Gs=4ui*Pi*us*PsusPs,

Gs = 2uiPA—*'Ps'

G4 ——2 (uiui* PiPi*)us—*ps*ps,

(16)

(17)

at is = t4+ts
Gs= 2ui@Pi+us+spss (19)

By substitution of the definitions, Eqs. (3), one finds
that these expressions reduce to the ones given by Hahn
for the special case which he considers.

C. Three Equally Spaced. Pulses

The numbers of echoes and their amplitudes are also a
function of the positions of the pulses. Previously we
were careful to state that the third. pulse should occur
after the simple echo following the first two pulses.
Obviously, if the third pulse occurs to o soon, certain
"echoes of echoes" cannot occur and the amplitudes and
the numbers of the echoes following the third pulse will
be di6erent. This has been brieQy mentioned by Hahn. '
Here we will discuss a special case, that of three equally
spaced pulses (ts ——t4). In this particular case there will

be only two echoes following the third pulse and these
echoes will be spaced so as to continue the original pulse
train.

The details of the calculations are the same as in the
preceding cases and we shall merely state the result for

in agreement with the result calculated by Hahn. Note,
however, that Eq. (14) is quite general and with very
little extra labor will give the echo amplitude for pulses
of diGerent width and intensity, and for- nuclei not near
resonance. [See for example Eq. (28).$

3. Three Pulses with l4) ls.—In the matrix Q =gs .Qi
both u and P consist of four terms with the following
exponents:

g
—2—4—6 g

—2+4—6 /+2 —4—6 g+'2+4—6
7

When we multiply these together to obtain (—2uP), we
obtain ten terms (signals) corresponding to the combi-
nations of the above terms taken two at a time. Of these
ten terms, two occur at t6 =0 and represent the free
decay following the third pulse. Of the remaining eight
terms, four must occur at negative time t6, which we
temporarily disregard, and four at positive time, which
predict echos. The times of the echoes, and the terms
which give their intensity, are as follows:
At ts ——ls (stimulated echo)
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the coefFicient of the echo which occurs at a time t2 (or
t4) following the third pulse, i.e., the first of the two
echoes. This coeS.cient is given by

G=2(2ai*Pi*a3*PHn'P'+ (nini* —PiPi*)na*P3*PP). (20)

The erst term we recognize from (16) to be the coeffi-
cient for the three-pulse "stimulated" echo. In the
second term, the 6rst section (nini* —Pgi*) werecognize
from (7) to be the matrix element which leaves the z
component unchanged; the rest of this term is the
formula for the two-pulse echo produced by the second
and third pulses. Thus the echo is merely the direct sum
of two superimposed echoes. One might think that such
a direct sum of echoes would be likely under certain
conditions to give an amplitude greater than the
original polarization; however, an analysis of the
coeflicients shows that this is not so.

by a dotted line in Fig. 2, is therefore a "virtual" echo
that does not exist until the third pulse is applied, but
following the third pulse the nuclear system behaves in
every way as if the virtual echo had actually occurred.

If we include the virtual echo among the sources of
two- and three-pulse echoes following the fourth pulse,
we get a total of 14 such echoes. This still leaves two
echoes unaccounted for, which must be four-pulse or
"super-stimulated" echoes.

The analysis can be extended readily to e pulses. If all
pulse spacings are unequal, and if

hn —2&4+~4+ .+4m 4,

as before, then, following the eth pulse there will be
2'"—' echoes. Since the total number of coherences, real
and virtual, due to the (e—1)st pulse is 2(2'" ')+1, the
gth pulse must create (2'" '—1) new virtual coherences.

D. More Than Three Pulses

In his original article, Hahn' pointed out the existence
of two-pulse and three-pulse (stimulated) echoes. It was
of interest in connection with this project to find out if
these were the only types of echoes that could be
produced, or if there were also echoes that could be
understood in terms of four or more pulses. We shall not
try to prove the existence of e-pulse echoes for any n but
shall investigate the possibility that there exist four-
pulse echoes, which will imply that there may exist
echoes that could be formed only with n) 4 pulses.

Q'e suppose that the four pulses are spaced so that all
echoes which can be produced by any one set of pulses
occur before the next pulse is applied (Fig. 2). In the
anal transformation the matrix elements n, P each con-
sist of eight terms which, taken two at a time and
combining similar exponents, gives a total of 36 terms in
the product —2nP. Of these terms, four occur at t'=0
and represent the free decay following the fourth pulse.
The remaining terms are located symmetrically about
ts =0 giving 16 terms prior to the fourth pulse, which we
disregard, and 16 positive corresponding to echoes.
Before going any further, let us return for a moment to
the case of three unequally spaced pulses. We noted that
there must be four coherence terms for t«0, symmetric
about the third pulse with respect to the four echoes in
t6. However, there are only three actual coherences in
the time prior to the third pulse. The extra term, shown

G 4 op Q Qp Qp Qp 9 (21)

which is a stimulated echo transformed by another
pulse.

As can be seen from its genesis, this secondary echo
has many properties in common with Hahn's stimulated
echo. In particular, its amplitude is more nearly de-
pendent on T& than on T2 and is relatively immune to
self-diffusion eGects. Experimentally, if the signal-to-
noise ratio is high, this echo can often be seen even when
the time between double pulses is several times T~.

In the vicinity of resonance, and for pulses of equal
length and intensity, Eq. (21) reduces to

E. Sets of Double Pulses

A special case of four pulses which is of particular
interest is that of a two-pulse spin-echo experiment re-
peated in a time of the order of T-i or less, so that the
sample still has some memory of the previous set of two
pulses. In this case one usually observes at least one
additional echo, marked S in Fig. 3, following the pri-
mary echo. The origin of this echo is as follows: The
third pulse (Fig. 3) creates a virtual echo, V, which is
mathematically similar to the stimulated echo which
would occur at the position occupied by the fourth
pulse. The latter pulse, however, transforms V into a
two-pulse echo at S. That this analysis is essentially
correct can be seen by calculating the coefFicient for this
echo. The calculation gives

GB——-' sin'(bti) sin'(-,'bti), (22)

V

,'l

I
I

P S

g &6 ~~= &s

FIG. 3. Diagram for problem of repeated double pulses.

which has its maximum at cosbt~ = —4. If the experi-
mental repetition rate is fast enough, additional echoes
can be seen following S which can be explained in terms
of virtual echoes of 5 on pulse three, etc. In some cases
real echoes can be seen preceding the pulses as well as
following them, but these must be explained by the
symmetry property discussed in the section on continu-
ous pulse trains.
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IV. VERY INHOMOGENEOUS FIELDS

A. Introduction

In the original spin-echo experiments performed in
fields that were only slightly inhomogeneous, it was
shown that: (1) The spacing between second pulse and
echo was approximately the same as between first and
second pulse. (2) The free decay was the Fourier
transform of the moment distribution g(ho~) in the
magnetic field. (3) The echo was shaped like two free
decays placed back-to-back.

In this section we shall consider a somewhat different
case, that of a magnetic field so inhomogeneous that the
total inhomogeneity, pAH, is very much greater than
the frequency spectrum of the pulses. We shall assume
an "infinite flat-topped" distribution Lg(d&v) constant
for all Dco7, thus the exact locations and shapes of signals
will depend on the Fourier transforms of the G;(A&a). As
explained previously, it is only necessary to compute the
imaginary parts of the 6's.

Fro. 5. Free decay and edge echo following single pulse. The pulses
were repeated in a time short compared to T2.

From (25) we see that there is no one instant of time
when all components are exactly in phase. However, we
can determine a time (prior to the end of the pulse)
when the free decay, projected back to this time, would
have had its maximum value. If yH~t~& i and we con-
sider only the components about resonance, we can
approximate (25) by

Acct = —-', bt~ cos8,

and since cos8= Aced/b we have simply

(26)

1
2 1. (27)

Thus the free decay behaves as if it had started from the
midpoint of the pulse. When yHItI»1, t is different for
different groups of values of Ace, with the result that the
free decay may show considerable structure. An example
of such a free decay is shown in Fig. 4.

Fio. 4. Pree decay (above) and echo (below) when yPgfg 47r

tanAat= —cos8 tan(-,'btr). (25)

B. Free Decay

The shape of the free decay can be deduced from the
imaginary part of Eq. (11):

ImLG(hei)7= sin8 sinbti cosdco/2
—sin28 sin'( —',bfr) sinAoit, , (23)

where 8=8(ho~) is given by Eq. (4). The frequency
spectrum of the free decay is determined in this case not
by the 6eld inhomogeneity but by the rf level. Thus for a
given value of yH~t~ a long pulse of weak rf amplitude
will have a long free decay and a short pulse of strong rf
will have a short decay.

It is possible to write (23) in the form

ImG= cosAcut coshcet2+sinho~t sinhaf2,

where the maximum signal presumably occurs at t2 ——t.
A little algebra gives

C. Edge Echo

The "edge echo" is a phenomenon observable only in
a very inhomogeneous magnetic field. If a single square
pulse of length t~ is impressed on the nuclear moment
ensemble in such a Geld, the edge echo appears as a
small signal at a time t~ after the end of the pulse. The
effect becomes particularly noticeable for pulses re-
peated in a time short compared to T2 and is illustrated
in Fig. 5. The structure at the end of the free decay in
Fig. 4 can also be considered in part as an edge echo.

The origin of the edge echo can be seen by inspection
of Eq. (11).For nuclei far from resonance b is approxi-
mately equal to Ace, thus to this approximation (11)
contains terms of the form exp[ —iso~(t2 —tr)7. A coher-
ence is thus produced by nuclei far from resonance at a
time t& after the pulse termination. The shape of the
edge echo can be inferred by substituting Aor for b in
(23); it has the form J' sin[ho~(t2 —tr) 7d(do&). The shape
of this signal is not the single lobe usually associated
with an echo. Instead, if detected by a phase-sensitive
detector, it reaches a maximum, goes sharply through
zero at t~=tI, and goes through a maximum in the
opposite direction. If the edge echo is viewed only in
absolute value, it appears as two maxima separated by a
sharp minimum, as shown in Fig. 5.
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FIG. 6. Superpositions of erst pulse, second pulse, and echo showing
exact timing of echo maximum.

ImG2 ———Sins|/ Sin(bt2) Sins('sb/!2) COS[do/(t4 —t2) ]

—sin28 sin'0 sin'(-,' bt~)

&(Sins(-,'b/!2) Sin[ho/(t4 —t2) $. (28)

This differs considerably from (23) and the echo is

therefore not the same as two free decays placed back-
to-back. The common factor sins' in (28) cuts down the
high-frequency terms in the echo, with the result that
the echo is a considerably rounded-off version of the
original square pulse. If we write (28) in the form

cospkM (f4 $2 3)) we again get (26) and (27) as ex-
pressions for t. In other words, if we sweep the oscillo-

scope with repetition rate (t~+/!2) ', where ts is the time
between pulses, and if yH~t~=yH~t3&1, we will 6nd the
echo maximum exactly at the center of the pulse. (See
Fig. 6.) For &H&t&))1, the echo shape can get quite
complicated (Fig. 4).

V. CONTINUOUS PULSE TRAINS

A. Introduction

In this section, we shall discuss the spin-echo type of
solution for continuous trains of pulses. We can assume
that the pulse trains start at some initial time 1=0 and
then continue for a time very much longer than the
relaxation time T of the substance so that the sample
has essentially forgotten when the beginning of the
pulse train occurred. We shall follow the same assump-
tions as in the previous sections with regard to equality
of relaxation times and negligible self-diftusion, except
that when working with terms that represent in6nite
series it is necessary to include relaxation time explicitly
in the formula in order to insure that the series converge.
In what follows, we shall call the repetition time be-
tween successive cycles of pulses r and other de6nitions
shall be as in preceding discussions. We shall, in general,
assume that pulse widths are short compared to z and
that 7.&&T.

D. Two-Pulse Echo

For two pulses of equal H& the echo signal is obtained

by substituting (4) into (14) and taking the imaginary
part:

B. Symmetry with Respect to Time Inversions

One of the more interesting properties of the nuclear
system when subjected to continuous pulse trains is the
property of time symmetry. Consider the basic equa-
tions of motion for the polarization, such as Eq. (1) of I.
If we make T large so that the relaxation term is small
compared with the other terms in the equation, then
reversal of the sign of t is equivalent to a reversal of the
sign of the gyromagnetic ratio p. Thus, if we go back-
ward in time, any solutions which we obtain must also
be solutions of Bloch's equations, except for the sign of y
which will make no difference in a system which does not
detect phase. ' If we have an rf driving function which is
an even function of time, then after the nuclear system
has settled down to steady state it will make no diGer-
ence whether we take time in the backward or forward
direction. Thus the nuclear system must not only
produce free decays and edge echoes following the
pulses but must anticipate the pulses in exactly the
same way. If the driving function consists of double
pulses there will be echoes preceding and following the
pulses. This property of anticipating the driving func-
tion is shown in Fig. 7. Actually, the signal shown in this
6gure is not perfectly symmetrical owing to self-
diGusion sects.

C. End of a Train of SingIe Pulses
The solution of Bloch's equations for a continuous

train of pulses has been given in I. If subscript 1 applies
to the pulse, 2 to the interval between pulses, and t is
the time following the last pulse, then the solution can
be written as

M=M' exp( —g2/!), (29)

~~; =[det(1—n/)$ '(f+ge&a~~2+//se —r'»~2)e ~»~ (31)—

where f, g, h are polynomials in n2, p, , and e /r. Of
interest to us is the eGect of the denominator, which can
be expanded in a power series as follows:

[det(1—n)]-' ~ P
n,=o

-(e r/r e
—2r/T) (&

2—
e
—ikrat2+CC) ~ n

(1. casse r/2') (1—casse sr/2')—
~ This argument is similar to the symmetry property discussed

by 3.Jacobsohn and R. K. Wangsness, Phys. Rev. 73, 942 (1948).
The argument shown there, valid for a weak, frequency-modulated
rf signaI, requires no assumptions about the magnitude of TI.

M'= M2(~)+ (1—~)-2(1—gs) [M,(~)—M2(~) j, (30)

where (30) is just Eq. (35) of I with subscripts inter-
changed. It is, unfortunately, not possible to add three-
dimensional rotation operators by performing any
simple operation on the corresponding Q-matrices.
Calculation of the solution must therefore be carried out
with 3)&3 matrices and becomes quite tedious. The
solution can be written in the form














