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By use of matrix notation, solutions of the Bloch equations may be kept in simple, manageable form even
in the case of applied fields that are complicated functions of time. Effects that from the usual standpoint are
grossly nonlinear appear as linear relations between matrices, of the same form that one encounters in simple
radioactive decay problems. A general property of transients in the case of an arbitrary repetitive applied
signal is established, and a formalism is set up in terms of which a large class of special problems may be

solved.

I INTRODUCTION

HE following is an exposition of a method of
finding solutions of the Bloch equations' making
use of matrix theory. It has the advantage that formal
solutions are derived in matrix form, with details
worked out only at the end of a calculation, the desired
result appearing typically as one element of a certain
matrix. Although it is undoubtedly true that no solu-
tions can be found by matrix methods which could not
have been found without them, the saving of labor due
to the condensed notation makes a wider range of
calculations feasible. For example, in the companion
paper? it is shown that Hahn’s results® on the theory of
spin echoes can be rederived in a very simple way and
extended to more complicated situations; at the same
time certain finer details such as the exact timing and
shape of spin-echo signals are readily accounted for. In
addition, the matrices correspond to simple geometrical
operations so that a great deal of physical information
can be read off directly from a matrix expression.

II. GENERAL FORMALISM

The Bloch equation! of motion of the nuclear mag-
netization M due to a magnetic field H will be taken in
the form,

oM
ot

M—xH
+~T—+‘Y (HXM)=0, 1

where x is the static susceptibility, v the gyromagnetic
ratio, and T the relaxation time. Throughout this paper
we make the assumption that the two relaxation times
are equal: T=T,=T5, a condition that is often well
satisfied in liquids.* As indicated below, the theory is
easily extended to the more general case.

In most applications of this theory one will be con-
cerned with a constant magnetic field Ho in the z
direction, with a superimposed alternating field H,. If
the latter oscillates with a single frequency w, the usual
procedure is to transform the problem into an effectively

* Supported in part by the Office of Naval Research.

1F. Bloch, Phys. Rev. 70, 460 (1946): see also Rabi, Ramsey,
and Schwinger, Revs. Modern Phys. 26, 167 (1954).

2 A. Bloom, following paper [Phys. Rev. 98, 1104 (1955)].

3 E. L. Hahn, Phys. Rev. 80, 580 (1950).

¢ Bloembergen, Purcell, and Pound, Phys. Rev. 70, 988 (1946).

stationary one by passage to a coordinate system
rotating about Ho with angular velocity w and neglecting
the component of H; rotating in the opposite direction.!
Equation (1) remains valid in the rotating system pro-
vided we now interpret H as the “effective” field with
components (H,, Hy, H,—w/v). Our general discussion
based on (1) is thus applicable in either the laboratory
or the rotating frame.

Equation (1) is cast into matrix form by defining a
matrix 3(f) with the property that @ operating on any
vector has the effect of taking the cross product with
vH; symbolically, 3=vyHX. Thus, in right-handed
Cartesian coordinates, § takes the form,

0 -—H, H,
6=vy| H. 0 —H,|. 2)
-H, H, 0

It is often convenient to use the “axial” representation
in which a vector M is specified by the components
[(Mi=M +iM, M_=M,—iM, M,] rather than by
the Cartesian [M ., M ,,M.]. Since the change from one
system of representation to another is accomplished by a
similarity transformation on all matrices, for example,

Baxial= S @Cartesians—l,

with
1 i 0
S=[1 —i 0],
0o 0 1

the general relations may be developed without com-
mitting ourselves to any particular representation.
The Bloch equations thus appear in matrix form as

ﬂ-{-[—l‘-}- ) M=A( 3
—+|—+0 ] -A0, 3

with A(¥)=xH/T. If all quantities in (3) were scalars it
would reduce to the equation of radioactive decay or of
buildup of voltage in an R—C circuit, the geheral solu-
tion of which can be written down immediately; by
analogy, we find the solution of the matrix equation.
First, we define the time-development matrix U(z,#),
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which satisfies the homogeneous equation,

U@,y 1
() +[;+@(t)]v<z,z'>=o, @

with U(z,) =1. It is readily verified by substitution that
the general solution of (3) is

MO=U6OMO)+ [ UaHAG.

To investigate the properties of U(z,#), note first that
the relaxation term may be eliminated from (4) by the
transformation,

U(t,t)=exp[— (¢—#)/TIR (1), (6)
and the differential equation satisfied by R(z,') is
oR(t,r)/0t+B(OR(,Y) =0. )

According to (7), the value of R at time (¢+df) is given

by
R(t-l'dty tl) = l:l - @(l)dt]R(l:t,)y

and this process can be repeated indefinitely, leading to
the following representation of R(2,'):

)
b D) o) o

where 7=¢—¢. The matrix [1—@(f)d¢] represents, ac-
cording to the definition of B, an infinitesimal rotation
about the instantaneous direction of H through an angle
v |H|dt; therefore, the matrix R(2,¢), being the resultant
of an infinite number of such rotations, is a finite rota-
tion matrix, representing the total change of M that
would be produced in the time interval (#—t) by
Larmor precession if the relaxation and static sus-
ceptibility terms were absent.

We note in passing that in consequence of (8),
R(#,¢') has the group property

R@OR@,)=R(t"), 9)
and that in the case §(¢) = const, we have
R(t,t)=exp[—B8(—2)]. (10)

The matrix (10), when applied to any vector, carries out
a rotation about H as an axis, through an angle
v|H|(@¢—1).
III. STEADY SIGNAL

As an illustration of the method, we now evaluate (5)
for the case where the magnetic field in the laboratory
system is given by H.,=2H, coswt, H,=0, H.=H,
= const. This is the situation in which use of the rotating
coordinate system is useful; in it the matrix § is
symbolically BX, where B is the vector with compo-
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nents [vHy, 0, yHo—w |. We further assume Ho>>Hj, so
that the vector A in (5) is effectively a constant. The
time-development matrix is now, from (6) and (10),

U@ =2 (—t) =exp[— (%+ @) (t——t’)], (11)

and the integral in (5) is readily evaluated, since the
formula for integration of the exponential function
applies to matrices as well as to scalars:

fo =i = [1—x(:)](%+g)ﬂ. (12)

Thus, the solution (5) reduces to

M@®)=20O[M(0)—M(»)]+M(»),  (13)
with the steady-state magnetization given by
M(w)=(1/T+8)"'A. (14)

The inverse of (1/7+48) may be evaluated by de-
terminants, giving the result,

B.B,T*?
xHo

1+b2T2[

M(o)= (15)

I,
14-B 1 T?

where b= | B|. This agrees with the steady-state solution
given by Bloch! for the case T1=T,.

To investigate the transient in (13), we note that & (7)
represents a rotation about the vector B through an
angle b#, with accompanying exponential decrease in
length. Thus, as time goes on, A(f)A is a vector whose
tip describes a spiral on the surface of a cone, as
illustrated in Fig. 1. This will be called a A cone; if the
initial polarization is taken as the equilibrium value
M(0)=xH,, it opens out into a disk normal to B. Every
transient in the presence of a steady signal is one in
which the difference between initial and final polariza-
tion decays to zero along a A cone. The frequency of
rotation about the A cone is

b=[(vH)+ (vHo—w)*

which appears in the laboratory frame as a nutation
frequency.

Evidently the general nature of the solution can be
understood directly from (13). Finding all details re-
quires explicit evaluation of the matrix exp(— @¢). This
may be done directly, since its geometrical meaning is
already understood, or by making use of the Cayley-
Hamilton theorem, according to which each matrix
satisfies its own characteristic equation. Since the latter
method is general, it is described briefly. If G is any
(nXn) matrix, its characteristic equation is

det(G—A1)=3" CA*=0,
k=0
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and therefore

n

> CiG*=0.

k=0

By repeated application of this relation any power series
in G may be reduced to a polynomial of degree not
exceeding (z—1); thus we know that exp(—8f) is
expressible linearly in terms of 8, 8%, and the unit
matrix:

exp(— B4 = ao(H) 14-a1(£) B+ a2(1) 8% (16)

In the present case the characteristic equation of §
reduces to

6*+0°6=0. )

From (17) and the requirement,

d
— exp(—6#)=—8 exp(—61),
di

we find the system of equations do=0, d;=0b%a— ay,
d2= —ay with initial conditions @¢(0) = —d1(0) =1, @1(0)
=a2(0)=0, whose solution gives

1—cosbt

b2

sinbf

exp(— ) =1——-+

6. (18)

Thus, multiplication of any vector A by A(¢) results in

the vector
B(B-A)
R
2

B(B-A) BxA
—{—[A—— ]cosbt— ; sinbt}. (19)

Using this relation, all details of the solution (13) may
now be written down. The result, for the y component of
magnetization, as seen in the laboratory system, is

xHo T . xHoor T
M,@)= [coswt— AwT sinwt [+——-——
145217 b(1+46277%)%
X e~ T Aw sin (b¢+6) sinwt
—b cos(bt+6) coswt], (20)

where wi=vH1, Aw=vHo—w, tanf=>5T. In the case of
resonance (Aw=0) and strong driving field (w;7>3>1) the
final amplitude is small, but the steady state is well
approximated only after many relaxation periods. This
problem has previously been treated by Torrey.?

It is interesting to note that the form of the general
solution (13) corresponds exactly to the solution in
simple problems of radioactive decay or buildup of
voltage in an R—C circuit. X(#) appears as a matrix
analog of the usual exponential damping factor.

5 H. C. Torrey, Phys. Rev. 76, 1059 (1949).
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F16. 1. The X cone. Locus of the tip of the vector X (£)A as ¢ varies
from 0 to «.
IV. GENERAL PERIODIC SIGNAL

To investigate the solution in the case that the
magnetic field is an arbitrary periodic function of time,
we go back to Eq. (4) and assume @ periodic with

period 7:
B(+7)=80@). 1)
Then the following relations are consequences of (8)
U(tH-nr, ' 4+nr)=U(),
U(%T’O) = [U(T,O)]"= Q”(O),
where «(f)=U(t+1, {) is the time-development matrix
for one period, starting at time ¢. Writing for brevity,

M..(f) =M (t4nr), the solution (5) giving the change of
M during one period is

M1 () =047, HM.()

(22)

(n+1) +¢
+ f Uit nrtr, DAY
nrtt

or, noting that the integral is independent of #,

M,.()= «(OM..(D+N(), (23)

where

N()= f " Ok, AW, (24)

Equation (23) is a simple linear difference equation
whose solution is

M..() = [ Mo(£) — M () T+-M,, () (25)
with the steady-state polarization given by
M.=(1—e)N. (26)

All eigenvalues of « are less than unity in magnitude,
so the term with Mo(f) in (25) vanishes as w—o.
Equations (25) and (26) correspond in form to (13) and
(14), of which they are a discrete version. Since e:is a &
matrix, that is, it represents a combined rotation and
exponential shrinking, we see that any transient in the
presence of a periodic signal has the following property;
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if we look at the polarization only at corresponding
instants in each repetition period, we see the difference
between initial and final value decaying to zero in
discrete jumps along a A cone. At other times in the
repetition period the polarization will not, in general, lie
on the same A cone, but may describe a very complicated
path.

The operations represented by e™ and (1—e)™! may
be further elucidated by making use of (19). Let the
axis of the rotation « be given by the unit vector n, and
its magnitude by 6. The matrix e™ applies this rotation
m times, so that the result of applying a™ to any vector
Ais
oemA=¢"+{n(n-A)-+sinmb(nXA)

—cosmfnX (nXA)}, (27)

where x=17/T. To get an explicit form for (1—a)! we
use the power series representation,

(1—e)t=14eta®+---,

whose convergence is assured by the exponential
damping in . Thus, the result of applying the operation
(1—a)™! to any vector A is the sum of all the individual
vectors in (27). The sums are readily evaluated, with
the result

1 n-A
L)

1—e= 2 (coshxz— cosf)

sinf

(nXA)

1—a

e*—cosf
nX (nXA).

—_ (28)
2(coshx— cosh)

This expression may be approximated as follows in the
case that the repetition period is small compared to the
relaxation time (x<<1). The last two terms of (28) are
then small, of the order unity, except when 6 is near
some multiple of 27, where they become large, of the
order (1/x). When 6 is near 2z, the following ap-
proximations are valid :

sinf 0—2nmr 1
. =-— cosy siny,
2(coshx—cosf) 22+ (6—2nw)? =« 29)
29
e*—cosf x 1
=- cos%,

2(coshx— cosO)——xz-{— (6—2nm)? o

where tany = (6— 2#m)/x.
In a coordinate system so oriented that its z axis is
parallel to n, (1—e)~! therefore takes the form

. [ cosyy  —cosysing O
=— ! cosy siny cosy 0]. (30)
l1—a = l
0 0 1

Thus, apart from the common factor 1/x, the operator
(1—e@)™* does not change the component of A parallel
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to m, but the perpendicular components are subjected to
a rotation through an angle y and decrease in magnitude
by a factor of cosy. Therefore, we have the following
picture of the action of x(1—e«)~'; when 6 is far from
2nm, it merely projects an arbitrary vector A onto the
axis of its A cone; x(1—a)?A=n(n-A). When 6 ap-
proaches a resonance, however, x(1—a)'A swings out
from n, its tip lying on a circle whose diameter is the
projection of A onto the plane normal to n (Fig. 2a, 2b).
In the usual case, where most of the rotation in one
period consists of Larmor precession about the steady
field Ho, this resonance phenomenon occurs if the
applied signal has a spectral line near the Larmor
frequency vH,.

V. COHERENT PULSES

We now specialize the results of the preceding section
to the case where the periodic signal consists of pulses of
frequency w, duration #, separated by time intervals ¢,
during which only the steady field Hy is present. It is
convenient to regard our relations as pertaining to the
rotating coordinate system, as the solution may then be
pieced together from solutions of the type (13). Using
subscripts 1 and 2 to refer to quantities effective during
and between pulses, respectively, two time-development
matrices are needed:

M= T exp(—Bitr), Ne=e "Texp(—Bats), (31)
with
61=B1X’ Bl: [7H1, 07 ')’Ho‘—w],
B,=[0,0, yHy—w]. (32)

Denoting the polarization at the start and end of the
nth pulse by M,, M, respectively, we then use (13)
twice:

Mnl= ll[Mn_Ml(w)]'i_Ml(Oo);
Mn+1= 3~2EMn'—M2(°°):]+M2(°°)>
in which
Mi()=(1/T+48:)7A,

(33)
M:(e0) = (1/T+8:)"A=xHo

are, respectively, the steady-state polarizations that
would be reached if the signal were left on or off
indefinitely. Eliminating M, from these equations, we
have the difference equation for M, ; comparing with
(23) the result is

a=2A01=¢""'T exp(— Batz) exp(— Bif),

(34)

Therefore, after the transient has died out, we find for
the steady-state polarization just at the beginning of the
pulse:

1
Mw=M1(°°)+1:(1—3~2)[M2(°°)—M1(°°):|- (35)
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Evidently an analogous, though more complicated,
expression for M,, can be found in this way whenever
the applied signal has a constant frequency and a
stepwise constant amplitude.

VI. TRANSCRIPTION TO SPINOR REPRESENTATION

Calculation of the resultant of several successive
rotations, using the above (3X3) matrices rapidly
becomes very tedious. In such evaluation it is a practical
necessity to use the two-dimensional representation of
the rotation group,® also called the Cayley-Klein
parameters.” To each polarization M, oriented with
colatitude and azimuth angles 6, ¢, i.e., with compo-
nents in the axial representation

M= M sinfe’?,
M_=M sinfe~ ',
M ,= M cosf,

we associate a spinor®
u M? cos(6/2)e el
+=()~( )
v M?sin(0/2)eiel®

and to every rotation of M generated by a matrix R:

(36)

M'=RM,
there corresponds a unitary transformation of ¥:
¥'=Qy.

The relation between the elements of Q and the axis and
magnitude of the corresponding rotation is expressed
compactly in terms of the Pauli spin matrices,

0 1 0 —i 10
(i o) =G o) =G )
10 i 0 0 —1

as follows. The rotation through an angle § about an
axis given by a unit vector n is represented by the matrix

0- (%, 1)-est-iteaon]

=1 cos(6/2)—i(n-o) sin(6/2), (37)

or the Cayley-Klein parameters for this rotation are

a=cos(f/2)—in, sin(0/2),

B=—1in_sin(6/2). (38)

Alternatively, an arbitrary rotation may be specified by
three Eulerian angles; if we carry out in succession a

6 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die
Quantenmechanik der Atomspekiren (Friedrick Vieweg, & Sohn,
Braunschweig, 1931), Chap. XV.

7 H. Goldstein, Classical Mechanics (Addison-Wesley Press, New
York, 1951).

8 H. A. Kramers, Quantentheorie des Elektrons und der Strahlung
(Akademische Verlagsgesellschaft, Leipzig, 1938), Chap. 6.
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rotation through an angle £ about the z axis; a rotation g
about the x axis, and a rotation { about the z axis, the
Q-matrix of the resultant is

exp[ — i (¢/2)] exp[ —ie,(n/2)] exp[ —ie.(£/2)],
from which we find
a=cos(n/2) exp[ —i(¢+8)/2],
B=—1isin(n/2) exp[ —i(¢—£)/2].

The R-matrix corresponding to a given Q-matrix as-
sumes the following form in the axial representation

& —9? 278
—2a8 |,

(39)

R:

J— 62 aZ

B8  —oay (ab+Bv)

where §=0o*, y=—g*.

To aid in evaluating the expressions in the preceding
section, we wish to find the Cayley-Klein parameters
corresponding to the rotation occurring during a pulse.
Referring to Eq. (32), this is a rotation about the vector
B, through an angle bi=[(yH1)?>+ (vHo—w)?J}. De-
noting by ¢ the angle between the x axis and By, Eq.
(38) thus reduces to

a=cos(bt/2)—1 sing sin(bs/2),
B=1 cose sin(bt/2).

(40)

(41)

These relations are used in the following paper for
treatment of spin echoes. In terms of the Eulerian
angles, we see on comparing (38) and (39) that the
condition for the axis of the resultant rotation to lie in
the x—z plane is #={, so that the Eulerian angles
corresponding to the rotation (41) are given by

tan{=sine tan(bs/2),

(42)
sin(n/2) = cose sin(b¢/2).

Upon using the above results, most of the preceding
equations have analogs in the two-dimensional repre-
sentation scheme. The correspondence is determined by
that for infinitesimal rotations: if 3=BX, we have
from (37)

[1—Bdt] — [1—3i(e-B)dt],

and therefore a finite rotation matrix is given by

Q@)= 1111%[1 —3ire-B(t—1)]

X[1—2%ire-B(t—27)]- - -[1—3%ire-B()]. (43)
It satisfies the differential equation
3Q(t,t)/ di+%ie-B(1)Q(t,t) =0, (44)

which may also be derived from the fact that in the
limit of infinite relaxation time, the spinor (36) satisfies
the Schrodinger equation for a particle of spin 3.
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Since the matrix

B, B_
%iu-B=%i( )
B, —B.

corresponds to the 3X3 matrix § in all the above
relations, it will also be denoted as 3 in what follows; it
will be clear from the context whether we are using the
two- or three-dimensional representation. Thus, for
example, the rotation matrix (37) may be written as
exp(— B¢), where nf=B:.

(45)

VII. APPROXIMATE SOLUTIONS

In most problems that arise we have a strong constant
field Ho, whose direction we choose as the z-axis, plus a
weak varying field H;(#). Therefore in (7) we write
8(¢) = Bo+B1(?), and the major part of the time variation
of R(t,") or Q(4,¢) is a uniform Larmor precession due to
Bo. When we use the two-dimensional representation,
this can be removed from the equation of motion (44) by
the transformation

Q1) =exp[— 8o 1Q"(1,0) exp[+Bot"],  (46)
whereupon Q' satisfies the relation
0Q' (t,1)/9t+8"(HQ' (1) =0, (47)
with
B’ () =exp[ 3ot 181(¢) exp[—Bot], (48)

and Q’(4¢)=1. This is analogous to passage to the
rotating coordinate system discussed in Sec. II, but
differs from it in several respects; for example, the
rotation frequency is here always wo=+yH, rather than
the applied frequency. Since Q' is only slowly varying if
H<H,, an approximate solution of (47) using a finite
number of terms of the expansion

Q,(t,tl)zl_‘f dtllgl(tll)_l_f' dtllgl(tll)

Xf dt’”@’(t’”)—l“ e (49)

’

is valid for a much longer time interval than is the
corresponding approximate solution of (44). Equation
(49) is now used to evaluate Q for the case that the vari-
able field H;(?) lies in the x—y plane. Then, writing
wo=vH,, we find B()=BX, where B,.(})=vH.(¥)

x(1-a)~'A
x(1-a)"'A
n A

(a) (b)

F16. 2. (a) Circle traversed by (1— @)™ A as @ sweeps through each
resonance. (b) Projection of (a) on a plane normal to n.
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Xexp(Ziwet), B,=0. When we write out (49), the
Cayley-Klein parameters for Q' are

t tll
alzl_i_,ny dl,/f dt,,,H_<t,I)H+(l/,’)
t/ t’
, Xexpliwo(”'—1")],
g ==ty [ aH (") expl(—iant"),
t,

(50)
D

in which all terms through the second order of g’ are
retained. From (46), the parameters of Q(¢,t) are

a=a' exp[ —iwo(t—1t')/2], (52)
B=0" exp[ —iwo(t+1t)/2]. (53)

As shown in the following paper, it is the product of
(52) and (53) that is needed for interpretation of experi-
ments in which one observes the effect of a signal which
has been impressed for a time short compared to the
relaxation time.

For time intervals containing many Larmor periods,
the integrals in (50), (51) are well approximated in
terms of the Fourier transforms of H_(¢). To fix reason-
able orders of magnitude of these terms, we consider the
case of protons in water, in a magnetic field such that
the Larmor frequency is about 30 megacycles/sec, while
a weak signal H_(Z) is applied with a repetition rate of
about 1000 sec™!, the relaxation time being of the order
of a second. Then we are interested in evaluating (50),
(51) for time intervals ¢, for which

wgl1~10“,

54
‘YH_IHNI, ( )

and there is a wide range of conditions under which the
relations ¢/ T<<yH_t;<<Kwot; are valid. If H_(?) is repre-
sented by a Fourier integral,

H_()= f G (@) expiwt)do, (55)

we may substitute into (50), (51) and perform the time
integrations. Approximations of the form

exp (twt)—1
im———————=7(w)
t—0 1‘ o)

will be valid, leading to the simplified expressions:
o =1=3m*(t—1)*| G(wo) %, (56)
B'=—gimy (1—1)G (o). (57)

Suppose that after a certain time interval the applied
field H_(¢) is turned off. Thereafter, in (52) and (53), o’
and @’ remain constant at the values fixed by (56),
(57), and so the product af continues to oscillate at
frequency wo with amplitude «’8’. If this amplitude
contains terms whose phase varies linearly with wo, then
in an inhomogeneous field where nuclei with all values
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interpret 1/7 as a diagonal matrix with elements
[1/T2,1/T21/T1]. Equations (4), (5), (16) then remain
valid although R(:#) is no longer a pure rotation
matrix. The time-development matrix U(Z,¢') is given by
an expression of the form (8) in which 8 is replaced by
(T-'+8), and the solution (13) is valid, with A(¢)
=exp[ — (T-'+8)¢]. The locus generated by A(£) is now
a distorted version of a cone. Similarly, the relations
(22)—(26) of Sec. IV still hold, although the geometrical
picture is less simple.

of wo are present, one finds “coherences,” or “‘echoes” as

described in the following paper.

VIII. GENERALIZATION FOR T,#T.

The assumption that the two relaxation times are
equal has simplified our geometric interpretations, but
the analytical expressions in the 3)X3 representation
remain almost as simple if it is dropped. Thus, the
equation of motion (3) remains valid provided we
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The mathematical methods developed by Jaynes are applied to the study of nuclear resonance in inhomo-
geneous magnetic fields. It is shown that a description of delayed-signal phenomena such as spin echoes is
greatly simplified by the use of the spinor representation involving 2X2 transformation matrices. The origi-
nal results of Hahn on spin echoes are rederived in simplified fashion and more complicated situations are
discussed, including large numbers of pulses, exact time dependence in extremely inhomogeneous fields, and
continuous pulse trains. Several previously unreported types of delayed-signal phenomena are discussed and
illustrated experimentally by oscilloscope traces. The apparatus used to study nuclear induction in very

inhomogeneous fields is briefly discussed.

I. INTRODUCTION

HIS report applies the mathematical methods de-
veloped in the. previous paper' to the study of
nuclear induction in inhomogeneous magnetic fields,
involving a class of phenomena such as spin echoes.? In
previous papers on spin echoes*=® the analysis always
involved successive operations in the three-dimensional
rotation group, and the use of linear transformation
operators was implied even if these operators were not
always written in matrix format. It is thus not our
intention merely to demonstrate the use of matrices for
predicting spin echoes. What we wish to accomplish is
the following: (1) to demonstrate the use of Cayley-
Klein parameters in spin-echo problems, and (2) to
show how the simplicity and generality of the Cayley-
Klein formalism makes it possible to study more
complicated situations with a minimum of effort.

II. MATHEMATICAL PRELIMINARIES

We shall assume that the reader is familiar with the
original spin-echo experiments of Hahn,? and with the

* Supported by the Office of Naval Research.
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2 E. L. Hahn, Phys. Rev. 80, 580 (1950).
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D. E. Maxwell, thesis, Stanford University (unpublished).

4T. P. Das and A. K. Saha, Phys. Rev. 93, 749 (1954).

SH. Y. Carr and E. M. Purcell, Phys. Rev. 94, 630 (1954).

mathematical and geometrical interpretations presented
in the Hahn paper. We shall follow the same general
method of attack. Starting with a vector M (Aw) which
obeys Bloch’s® equations [Egs. (1) or (3) of I] and
which isinitially in the z direction, we perform successive
transformations corresponding to discrete time intervals
during which a given rf field H, is either present or
absent. Finally, after all rf signals have been applied, the
polarization in the xy plane takes the form,

M. iy(Aw) =g(Aw)Y ; Gi(Aw) exp[ —idw(i—1;)], (1)

where g describes the effect of the magnetic field inhomo-
geneity and the G’s are functions of relaxation, self-
diffusion and three-dimensional rotation; it is only the
latter variable that is of interest to us. The observed
nuclear induction signal depends on the integral of (1)
over all values of Aw. In general the integral is zero
unless ¢ is in the vicinity of ¢;, in which case there is a
signal of intensity proportional to G;. If ¢; coincides
with an rf pulse the signal is a “free decay,”” otherwise it
is an “‘echo.”

The transformation relations which are of interest to
us have been given in Sec. VI of I. During the 4th pulse
the matrix Q; is described as

(5 )

¢ F. Bloch, Phys. Rev. 70, 460 (1946).



