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other mercury atoms produce the metastable mercury
6'Eo atom.

An interpretation of the experimental results made
with the application of Winan's partial selection rule
AJ=O gives good explanation of the results. This work

seems to give support to this selection rule.
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The wave function for the ground state of helium has been obtained by a method which involves iterating
in one direction only, the values of the function in any one plane being made mutually consistent by solving
30 simultaneous equations in 30 unknowns. The local energy value (Hztz)/ztz is approximately constant over
most of space, the maximum deviations occurring at large distances between electron and nucleus. The
present accuracy is not sufficient to give a good determination of the eigenvalue, but it appears to be at
least within 0.5 percent of the experimental value.

' ~DETERMINATION of the form of the wave func-
tion for the ground state of the helium atom has

been a baAiing problem. ' However, rather powerful
methods have now been developed, as a result of which

a fairly good wave function has been obtained. It seems,
therefore, appropriate to report brieAy on the above
methods.

The wave equation is

1 et/ 1
V'g+ + (E V)$=0, —

z Bz 4r

where, if rl and r2 are the electron-nucleus distances
and 0 is the angle between the corresponding radius
vectors, then 4m= 2r&r2 cose, 4y = r&' —r2', 4z= 2r&r2 sino

and 4»=»ts+»ss. The potential energy V is such that

——,'V=12(»+y)$ '*+L2(»—y)$
'* —e(»—~) '*. (2)

18P 1
v Fy- —glvFls+ —(z—v)=0.

Z BZ
(3)

The boundary conditions are F(y) =F( y), F(s)—
=F( s), F —+—~ as»~—~.

Now the function

F"'=—s~~l (»+y)'+ (»—y)'*]+-:(»—*)'*

' J. H. Bartlett, Phys. Rev. 88, 525 (1952).

Since the wave function for zero electron interaction

is exponential in form, i.e., P=e '*&"z+'», we make the

substitution ztb=e~ and consider the function F. This
satisfies the nonlinear equation

satisfies the equation

tr 1cii V
IF(s) =0

s cts) 4»
(4)

Previous work' had shown that the Laplacian must
be approximated by an adequate difference operator.
To this end, we have assumed that G at any point
may be represented by a fourth-degree polynomial in
x, y, and z. If G be given at five successive mesh points
in, say, the x-direction, then the coeScients of the
polynomial may be determined. Also, the derivatives
of G may be found by differentiating the polynomial.

For the early work, it was necessary to choose a
mesh with variable intervals, and this mesh has been
retained. At first the boundary was taken to be defined
by I*I =31z lyl =31 Isl =31 and G was assumed to
be zero there. Later work with the boundary at 63
gives much the same result and this will be reported
here. The present mesh points are at @=&63, &31,
&15, &7, &3, &1, and 0; y=0, 3, 7, 15, 31, and 63;
and Z=O, 1, 3, 7, 15, 31, and 63.

When Eq. (5) is approximated by a difference equa-
tion, it relates the value of G at a given point to values
at surrounding points. An attempt was made to 'use

Subtracting (4) from (3), and letting G=F Ftsl, the-
equation for G is

18G
v'G+- —+ I

vGI'+2(vF "& v'G)
Z BZ

E
+lvFta&lay 0 (5)
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TABLE I. Values of the wave function P.
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the Liebmann iteration procedure, advancing one point
at a time, and neglecting

~ VG
~'. This was unsuccessful,

for the new value of the function at any point was
expressible as the quotient of two quantities, where the
numerator depended on the neighboring values of G
and the denominator depended on the mesh char-
acteristics at the point in question. Since the de-
nominator became small for certain points, and since
the correct neighboring values could not be known be-
forehand, such an iterative procedure results in rapidly
increasing values of G at these points. The next method
there was to solve a set of six simultaneous equations
in six unknowns, the values of G at the mesh points
s=O, ~, 1, 3, 7, 15 (x and y constant). This diverged
after a time, but was an improvement. Consequently,
there was next tried the idea of treating a whole plane
(x= constant) at a time, and this, which corresponds to
block relaxation, was successful. For any one plane, one
uses the values of G on four neighboring planes, so that
a large part of space is being correlated at each such
step.

As a test to see how well any trial function P satisfies
the differential equation, we have calculated the quan-
tity (HQ)/&=E&„as a function of position. For a true
eigenfunction P, we would have (HP)/P=E= constant.

We have used E= —1.4516 in the iterations, and
have started with G=O everywhere. After the sixteenth
iteration of G, there were still large differences between
E and E~„ for large s. At these points

~

V'G~' is not
negligible compared with the other terms. In order to
include this term in the calculations, another function
was deined as

J—P Po Go
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FIG. i. Contour map of E&„,Hylleraas six-term
function P~, for 3'=0.

where G' was taken to denote the G values from the
sixteenth iteration. The equation satisfied by J is

1 BJ
V'J+- —+1VJ~'+2(VF'+VG') VJ

8 &98

E—E(,(G')
+ =0. (6)
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FIG. 2. Contour map of 8&„,Bartlett function Pz, s= 0.

earlier. The improvement was small, however, and it
was thought that another value of E might result in
faster convergence of E~„ toward E Therefore the two
iterations were repeated with E= —1.444 and
= —1.459. E= —1.444 improved E~,. at x=0, y =0,
z =31 considerably, but at the expense of worse values
at x=0, y =31, z = 1. The reverse was true for E= 1.459.
These trends continued for a third iteration at each of
these eigenvalues. It was concluded that the true eigen-
value must lie between these. Smaller variations in E,
within the range —1.450 to —1.453, made no significant
changes in E~„. Therefore this process does not limit
E more closely than ~0.5 percent.

After the ninth iteration of J, the EI„values began
to oscillate without improving. The values of f at this
stage are presented in Table I, together with corre-
sponding values of EI„(Table II).

In order that one may appreciate how much better
the present function Q &) is than that due to Hylleraas
/II), contour maps of EI„at s=0 are given for each
function. Figure 1 shows the contours for the Hylleraas
six-term function, out as far as y= 7. Along the +x-axis,
EI« ++ ao, and a—long the y-axis, EI~~—~ . The
values of E~„are near to their average value of —1.45 16
in only a small region of space. Figure 2 shows the con-
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The same iterative method was used for J as for G.
The E~„ from the new function showed 'an immediate
impr ovement over Eg„ from 6'.

%hen the E~„for the fourth and fifth iterations of
were calculated, improvement was found in the values
at all points of the later iteration compared with the

h, ~ ln—
%'8

Z RO

«p .060
.055.065

FIG. 3. Contour maP of In(/II/QB), s= 0.

r
/

.070 f .OS'.060 100~
-2 0 2 4 6

X



10'70 JAMES H. BARTLETT

tours for our function, also only out to y=7. In this
region, Ei„ranges between —1.429 and —1.452, which
demonstrates clearly that the present function is
excellent. Over the whole range of space, i.e., out to

from —1.2822 to —1.6065, the extreme values being
assumed at large distances in the @=0plane.

Another way of comparing the Hylleraas function
with ours is to plot the logarithm of the ratio PH/Pii,
and this is shown in I'ig. 3. No normalization has been
carried out, but if we assume that the correct value of
the logarithm is about 0.07, then we see that the
Hylleraas function deviates from ours by roughly ~3
percent, but this is of course sufficient to cause marked
changes in Ei«.

Further work may improve iP and Ei„still more,
especially at large y and s, and it may also lead to a
more precise determination of the eigenvalue.
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High-Frequency Ionization CoefBcients in Neon-Argon Mixtures
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Breakdown electric iields at 2800-Mc/sec frequency are presented for a number of neon-argon mixtures
for a large range of pressure variation. High-frequency ionization coefBcients for mixtures varying from
pure neon to pure argon have been computed from the breakdown 6elds. The collision phenomena in the
gas mixtures are discussed and a theoretical derivation of breakdown fields is compared with experiment.

'ONIZATION coeKcients of neon-argon mixtures are
~ ~ of interest chieQy because of the energy exchange
which takes place when excited neon atoms collide
with argon atoms —the Penning eGect.'' The lowest
excited state of neon, 2'S, at 16 volts is metastable,
and is about three-tenths of a volt above the ionization
potential of argon. A neon atom in this state exists
long enough so that it makes many thousands of
collisions at moderate gas concentrations. A small
amount of argon in the neon will ensure that an excited
neon atom will collide with an argon atom. In such a
collision there is a very high probability that the neon
will return to the ground state and give up its energy
in ionizing the argon. %e then have in eGect a gas in
which no energy is lost by excitation and in which
ionization results whenever a neon atom is excited at
its lowest level. The neon atoms are excited as a result
of collisions with electrons which gain their energy from
the electric field. Extensive studies of dc discharges in
such mixtures have been carried out by Kruithof and
Penning, ' who published tables of the dc ionization
coefficient rl as a function of E/P (E being the electric
field and p the gas pressure), for several concentrations
of argon in the neon. The present paper presents the

*Supported by the Defence Research Board of Canada.
' M. J. Druyvesteyn and F. M. Penning, Revs. Modern Phys.

12, 87 (1940).' A. A. Kruithof and F, M. Penning, Physica 4, 430 (1937).

high-frequency ionization coefficient i as a function of
E/p for a number of different mixtures.

The dc ionization coefficient ri is equal to n/E, the
Townsend coefficient divided by the electric field. The
Townsend coe%cient is the number of ions produced by
an electron per cm of travel rl is a f.unction of E/p and
is perhaps more significant than n. Townsend's n may
be written v/liE; v is the ionization rate per electron
and p the electron mobility so that ri= v/IJE'. Because
diGusion replaces mobility in high-frequency discharges
as the controlling electron loss mechanism, the high-
frequency ionization coefficient f has been defined as
v/DE', where D is the diffusion coeiIicient s The ratio
of r) to |is equal to the ratio of the diffusion coefficient
to the mobility, D/IJ, , which is equal to the average
electron energy.

A high-frequency gas discharge is one in which the
electric field alternates so rapidly that electrons are not
swept out of the field during each cycle. The electrons
gain energy from the electric field between elastic
collisions and produce ionization by inelastic collisions
in the gas. At low ion densities, the probabilities of
recombination and attachment are very small and
practically all electrons are lost by diR'usion to the
container walls. Breakdown takes place when the
ionization rate equals the electron loss rate. Since the

3 M. A. Herlin and S. C. Brown, Phys. Rev. 74, 291 (1948).


