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other mercury atoms produce the metastable mercury
6*Py atom.

An interpretation of the experimental results made
with the application of Winan’s partial selection rule
AJ=0 gives good explanation of the results. This work
seems to give support to this selection rule.
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The wave function for the ground state of helium has been obtained by a method which involves iterating
in one direction only, the values of the function in any one plane being made mutually consistent by solving
30 simultaneous equations in 30 unknowns. The local energy value (H¢)/4 is approximately constant over
most of space, the maximum deviations occurring at large distances between electron and nucleus. The
present accuracy is not sufficient to give a good determination of the eigenvalue, but it appears to be at

least within 0.5 percent of the experimental value.

ETERMINATION of the form of the wave func-

tion for the ground state of the helium atom has

been a baffling problem.! However, rather powerful

methods have now been developed, as a result of which

a fairly good wave function has been obtained. It seems,

therefore, appropriate to report briefly on the above
methods.

The wave equation is

1oy 1
VY- —+—(E= V=0, (1)
z 0z 4r

where, if 7, and 7, are the electron-nucleus distances
and 6 is the angle between the corresponding radius
vectors, then 4w= 277y cosf, dy=r2—rs, 48= 2717, sinf
and 4r=r+7:2. The potential energy V is such that

—1V=[20r+y) T HH20=y) ] —1(r—2)% (2)

Since the wave function for zero electron interaction
is exponential in form, ie., y=¢ #1017 we make the
substitution Y =e" and consider the function F. This
satisfies the nonlinear equation

10F 1
V3= —+ | VF|*4—(E—V)=0. 3)
2 0% 4r

The boundary conditions are F(y)=F(—y), F(z)
=F(—g), F—>—® asr— o,
Now the function

FO=— WL+ =) T+ —a)}

17. H. Bartlett, Phys. Rev. 88, 525 (1952).
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satisfies the equation
19 Vv
(V2~|——— FO—_—=0, 4)
20z 4r

Subtracting (4) from (3), and letting G=F—F©®, the
equation for G is

194G
ViG+- —+|VG|*+2(VF©-VG)
2 03
E
+|VF®[24-—=0. (5)
4r

Previous work! had shown that the Laplacian must
be approximated by an adequate difference operator.
To this end, we have assumed that G at any point
may be represented by a fourth-degree polynomial in
x, ¥, and z. If G be given at five successive mesh points
in, say, the x-direction, then the coefficients of the
polynomial may be determined. Also, the derivatives
of G may be found by differentiating the polynomial.

For the early work, it was necessary to choose a
mesh with variable intervals, and this mesh has been
retained. At first the boundary was taken to be defined
by |x|=31, |y|=31, |z|=31, and G was assumed to
be zero there. Later work with the boundary at 63
gives much the same result and this will be reported
here. The present mesh points are at x==463, +31,
+15, &7, 3, +1, and 0; y=0, 3, 7, 15, 31, and 63;
and =0, 1, 3, 7, 15, 31, and 63.

When Eq. (5) is approximated by a difference equa-
tion, it relates the value of G at a given point to values
at surrounding points. An attempt was made to use
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TaBLE I. Values of the wave function ¢.

0

3

7

15

31

x=-31 0.00156
0.00156
0.00154
0.00143
0.00109

0.00045

0.01116
0.01110
0.01066
0.00882
0.00462
0.00103

0.04636
0.04562
0.04041
0.02536
0.00839
0.00130

0.13231
0.12508
0.08919
0.03860
0.00982
0.00137

0.30399
0.24117
0.11954
0.04224
0.01004
0.00137

0.91710
0.28638
0.12243
0.04216
0.00999
0.00137

0.23527
0.21115
0.11157
0.04066
0.00982
0.00135

0.09089
0.09390
0.07376
0.03453
0.00921
0.00131

0.02793
0.02923
0.02838
0.01993
0.00725
0.00119

0.00578
0.00601
0.00622
0.00575
0.00344
0.00085

0.00066
0.00068
0.00071
0.00073
0.00064
0.00030

x=—15
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x=15
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QY =
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x=31

QO -

0.00155
0.00155
0.00153
0.00143
0.00108
0.00045

0.01097
0.01091
0.01048
0.00869
0.00457
0.00102

0.04395
0.04328
0.03855
0.02458
0.00828
0.00130

0.11236
0.10736
0.08039
0.03693
0.00967
0.00136

0.19543
0.17236
0.10362
0.04031
0.00989
0.00136

0.25696
0.19085
0.10602
0.04027
0.00984
0.00136

0.18496
0.16341
0.09868
0.03895
0.00968
0.00135

0.09512
0.09130
0.06967
0.03338
0.00909
0.00131

0.03147
0.03117
0.02866
0.01966
0.00718
0.00119

0.00647
0.00647
0.00642
0.00578
0.00343
0.00085

0.00072
0.00073
0.00074
0.00074
0.00064
0.00030

0.00151
0.00151
0.00149
0.00139
0.00106
0.00045

0.01021
0.01016
0.00977
0.00817
0.00438
0.00100

0.03627
0.03580
0.03241
0.02172
0.00781
0.00127

0.07581
0.07340
0.05929
0.03131
0.00908
0.00133

0.11035
0.10173
0.07187
0.03388
0.00928
0.00134

0.13230
0.10913
0.07333
0.03392
0.00924
0.00133

0.10773
0.09930
0.07001
0.03305
0.00911
0.00132

0.07000
0.06778
0.05470
0.02907
0.00859
0.00128

0.02972
0.02935
0.02672
0.01829
0.00687
0.00117

0.00691
0.00688
0.00669
0.00580
0.00337
0.00084

0.00079
0.00079
0.00079
0.00077
0.00064
0.00030

0.00137
0.00137
0.00135
0.00127
0.00098
0.00042

0.00787
0.00783
0.00758
0.00648
0.00371
0.00092

0.02183
0.02162
0.02008
0.01475
0.00625
0.00116

0.03687
0.03607
0.03116
0.01966
0.00716
0.00122

0.04765
0.04512
0.03570
0.02093
0.00731
0.00122

0.05402
0.04742
0.03629
0.02101
0.00730
0.00122

0.04718
0.04466
0.03530
0.02067
0.00722
0.00121

0.03564
0.03487
0.03007
0.01892
0.00689
0.00118

0.01992
0.01972
0.01830
0.01343
0.00571
0.00108

0.00630
0.00627
0.00607
0.00522
0.00305
0.00079

0.00085
0.00085
0.00084
0.00080
0.00064
0.00029

0.00098
0.00098
0.00096
0.00091
0.00073
0.00034

0.00397
0.00396
0.00386
0.00343
0.00222
0.00069

0.00828
0.00823
0.00782
0.00630
0.00335
0.00084

0.01189
0.01171
0.01060
0.00772
0.00372
0.00087

0.01420
0.01367
0.01165
0.00808
0.00378
0.00087

0.01550
0.01416
0.01179
0.00811
0.00378
0.00087

0.01414
0.01362
0.01160
0.00804
0.00376
0.00087

0.01173
0.01156
0.01045
0.00760
0.00364
0.00085

0.00798
0.00793
0.00753
0.00604
0.00319
0.00079

0.00273
0.00357
0.00348
0.00308
0.00198
0.00060

0.00072
0.00072
0.00071
0.00067
0.00053
0.00024
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the Liebmann iteration procedure, advancing one point
at a time, and neglecting | VG |2 This was unsuccessful,
for the new value of the function at any point was
expressible as the quotient of two quantities, where the
numerator depended on the neighboring values of G
and the denominator depended on the mesh char-
acteristics at the point in question. Since the de-
nominator became small for certain points, and since
the correct neighboring values could not be known be-
forehand, such an iterative procedure results in rapidly
increasing values of G at these points. The next method
there was to solve a set of six simultaneous equations
in six unknowns, the values of G at the mesh points
2=0, %, 1, 3, 7, 15 (x and y constant). This diverged
after a time, but was an improvement. Consequently,
there was next tried the idea of treating a whole plane
(x=constant) at a time, and this, which corresponds to
block relaxation, was successful. For any one plane, one
uses the values of G on four neighboring planes, so that
a large part of space is being correlated at each such
step.

As a test to see how well any trial function ¢ satisfies
the differential equation, we have calculated the quan-
tity (H¢)/d=Eio. as a function of position. For a true
eigenfunction ¢, we would have (Hy)/=E= constant.

We have used E=—1.4516 in the iterations, and
have started with G=0 everywhere. After the sixteenth
iteration of G, there were still large differences between
E and Ey. for large z. At these points |VG|? is not
negligible compared with the other terms. In order to
include this term in the calculations, another function
was defined as

J=F—F'—-G°

where G° was taken to denote the G values from the
sixteenth iteration. The equation satisfied by J is
190J
V24— 5_+ | VT |242(VF4-VGY) -V
2 02
E—‘ Eloc(Go)
+——=0.

©
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F1c. 1. Contour map of Ejoe, Hylleraas six-term
function yg, for z=0.
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TaBLE II. Values of | Eieo].

z y 0 3 7 15 31

x=-—31 1 14498 14503 1.4502 1.4509 1.4528
3 14501 14503 14501 14512 1.4533

7 14500 1.4504 14503 14515 1.4533

15 14505 14505 14506 14512 1.4530

31 14506 1.4505 1.4502 1.4508 1.4515

x=—15 1 14490 1.4491 14496 1.4514 14559
3 14491 14492 14495 14515 14552

7 14492 14494 14498 14515 14553

15 14500 14501 1.4501 14513 1.4542

31 14492 14498 14497 14499 1.4520

x==—7 1 14474 14474 14482 14520 1.4617
3 14476 14476 14484 14520 1.4608

7 14483 14484 14490 14521 1.4597

15 14492 14492 14498 14517 1.4566

31 14472 14473 14475 144838 1.4518

x=-—3 1 14456 1.4450 1.4449 14535 14784
3 14461 14458 14461 14531 14753

7 14466 14466 1.4473 14530 1.4707

15 14466 14467 1.4477 1.4528 1.4667

31 14360 14363 14373 14410 1.4524

x=—1 1 1.4447 14398 1.4359 1.4566 1.5395
3 14429 14407 1.4384 1.4559 1.5299

7 14375 14373 14383 1.4563 1.5245

15 14299 1.4307 14347 14546 1.5140

31 13730 1.3743 1.3787 1.3968  1.4480

z=0 1 14472 14379 1.4287 14577 1.6065
3 14383 14336 1.4276 1.4577 1.6060

7 14233 14225 1.4237 14590 1.6030

15 14042 14059 14144 14565 1.5850

31 12822 12847 12946 1.3351 1.4473

z=1 1 14504 1.4483 1.4457 1.4520 1.4927
3 14481 14469 14451 14518 1.4928

7 14439 14436 14438 14521 1.4929

15 1.4382 14388 1.4408 1.4521 1.4889

31 14081 14083 1.4112 14226 1.4543

x=3 1 14512 14510 14505 1.4514 1.4595
3 14510 14508 1.4504 1.4514 1.4597

7 14502 1.4501 14500 1.4514 1.4597

15 14491 14491 14494 14516 1.4594

31 14446 14447 14453 14475 1.4538

x="7 1 14517 14516 14516 14516 1.4531
3 14516 14516 1.4515 14517 1.4533

7 14515 14515 14516 14514 1.4530

15 14514 14513 14517 14517 1.4531

31 14513 14516 14518 14518 14533

x=15 1 14518 1.4518 14517 14517 14521
. 3 14519 14519 14520 1.4517 1.4522
7 14519 14518 1.4517 14519 1.4520

15 14517 14519 14518 1.4518 1.4519

31 14520 14518 14517 14522  1.4527

x=31 1 14516 14518 14515 14519 1.4518
3 14516 14520 14518 1.4516 1.4518

7 14520 14517 14520 1.4521 1.4518

15 14518 14520 1.4519 1.4521 14519

31 14521 1.4520 14520 1.4524 1.4516

The same iterative method was used for J as for G.
The Eio from the new function showed an immediate
improvement over Ei,, from G°.

When the Ejq for the fourth and fifth iterations of J
were calculated, improvement was found in the values
at all points of the later iteration compared with the

[T TR
IR

L

* /

LN

0—= o/ 2 - 3

X

F1c. 2. Contour map of Ejoc, Bartlett function ¢5, 2=0.

earlier. The improvement was small, however, and it
was thought that another value of E might result in
faster convergence of Ei, toward E. Therefore the two
iterations were repeated with E=—1444 and E
=—1459. E=—1444 improved Ei, at x=0, y=0,
z=231 considerably, but at the expense of worse values
at x=0, y=31, 3=1. The reverse was true for E=1.459.
These trends continued for a third iteration at each of
these eigenvalues. It was concluded that the true eigen-
value must lie between these. Smaller variations in E,
within the range —1.450 to —1.453, made no significant
changes in Ej,. Therefore this process does not limit
E more closely than 0.5 percent.

After the ninth iteration of J, the E,, values began
to oscillate without improving. The values of ¥ at this
stage are presented in Table I, together with corre-
sponding values of Eio, (Table IT).

In order that one may appreciate how much better
the present function (¥ g) is than that due to Hylleraas
(¥m), contour maps of Ei, at =0 are given for each
function. Figure 1 shows the contours for the Hylleraas
six-term function, out as far as y=7. Along the + x-axis,
Eipo— +, and along the y-axis, Ejpo—— . The
values of Ej, are near to their average value of —1.4516
in only a small region of space. Figure 2 shows the con-

7 T
/ 7/ A-In%—*
B
6 Z-0
065—ds0f 556
.\065 ( { 055 L1 /
Y ) \ ] ]
2 =
/"_\\ | _—
e //
070 V' =090 ]| |
080 N I
) 3

F1c. 3. Contour map of In(¥u/¢¥s), 2=0.
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tours for our function, also only out to y=7. In this
region, Ejo, ranges between —1.429 and —1.452, which
demonstrates clearly that the present function is
excellent. Over the whole range of space, i.e., out to
|x| =31, |y|=31, |z|=31, the value of Ei, ranges
from —1.2822 to —1.6065, the extreme values being
assumed at large distances in the =0 plane.

Another way of comparing the Hylleraas function
with ours is to plot the logarithm of the ratio ¥ /¥,
and this is shown in Fig. 3. No normalization has been
carried out, but if we assume that the correct value of
the logarithm is about 0.07, then we see that the
Hylleraas function deviates from ours by roughly =43
percent, but this is of course sufficient to cause marked
changes in Ejqe.

BARTLETT

Further work may improve ¢ and Ej, still more,
especially at large vy and 2, and it may also lead to a
more precise determination of the eigenvalue.
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High-Frequency Ionization Coefficients in Neon-Argon Mixtures™
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Breakdown electric fields at 2800-Mc/sec frequency are presented for a number of neon-argon mixtures
for a large range of pressure variation. High-frequency ionization coefficients for mixtures varying from
pure neon to pure argon have been computed from the breakdown fields. The collision phenomena in the
gas mixtures are discussed and a theoretical derivation of breakdown fields is compared with experiment.

ONIZATION coefficients of neon-argon mixtures are
of interest chiefly because of the energy exchange
which takes place when excited neon atoms collide
with argon atoms—the Penning effect.? The lowest
excited state of neon, 23S, at 16 volts is metastable,
and is about three-tenths of a volt above the ionization
potential of argon. A neon atom in this state exists
long enough so that it makes many thousands of
collisions at moderate gas concentrations. A small
amount of argon in the neon will ensure that an excited
neon atom will collide with an argon atom. In such a
collision there is a very high probability that the neon
will return to the ground state and give up its energy
in ionizing the argon. We then have in effect a gas in
which no energy is lost by excitation and in which
ionization results whenever a neon atom is excited at
its lowest level. The neon atoms are excited as a result
of collisions with electrons which gain their energy from
the electric field. Extensive studies of dc discharges in
such mixtures have been carried out by Kruithof and
Penning,> who published tables of the dc ionization
coefficient 7 as a function of E/p (E being the electric
field and p the gas pressure), for several concentrations
of argon in the neon. The present paper presents the
*Supported by the Defence Research Board of Canada.
1 M. J. Druyvesteyn and F. M. Penning, Revs. Modern Phys.

12, 87 (1940). .
2 A. A. Kruithof and F. M. Penning, Physica 4, 430 (1937).

high-frequency ionization coefficient { as a function of
E/p for a number of different mixtures.

The dc ionization coefficient 5 is equal to a/E, the
Townsend coefficient divided by the electric field. The
Townsend coefficient is the number of ions produced by
an electron per cm of travel. 5 is a function of E/p and
is perhaps more significant than «. Townsend’s a may
be written »/uE; v is the ionization rate per electron
and p the electron mobility so that n=y»/uE?. Because
diffusion replaces mobility in high-frequency discharges
as the controlling electron loss mechanism, the high-
frequency ionization coefficient ¢ has been defined as
v/DE?, where D is the diffusion coefficient.®? The ratio
of  to { is equal to the ratio of the diffusion coefficient
to the mobility, D/u, which is equal to the average
electron energy.

A high-frequency gas discharge is one in which the
electric field alternates so rapidly that electrons are not
swept out of the field during each cycle. The electrons
gain energy from the electric field between elastic
collisions and produce ionization by inelastic collisions
in the gas. At low ion densities, the probabilities of
recombination and attachment are very small and
practically all electrons are lost by diffusion to the
container walls. Breakdown takes place when the
jonization rate equals the electron loss rate. Since the

3 M. A. Herlin and S. C. Brown, Phys. Rev. 74, 291 (1948).



