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Electron Broadening and Shift of Spectral Lines of Helium*
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The quantum mechanical treatment of electron broadening as used by Kivel, Bloom, and Margenau is
extended to include line shifts and is applied to the He x spectrum. The 3d ~ 2p line is anomalous, since it
has a small Stark shift and consequently a small Holtsmark broadening. For it the electron effects dominate.
Comparison of this line's width and shape with others in the He i spectrum provides a simple experimental
check on the theory.

I. THEORY

HE methods for treating electron broadening de-
veloped by Kivel, Bloom, and Margenau (KBM)'

are here extended to include line shifts and applied to
He x spectrum. In KBM the broadened line was shown
to have a Lorentz shape 1/I (y+yi+Yir)'+at'j, the
half-width being the sum of natural (y), universal
(pit) and polarization (yi) contributions. For practical
applications the polarization term dominates the
broadening. It corresponds to the lack of rigid quan-
tization in the perturbed atom which, shocked out of
its initial state by the passing electron, has a shortened
lifetime and more uncertain energy.

In this paper we treat the interaction between atom
and free electron as a perturbation and expand the
Schrodinger 8' function with plane wave factors for
the free electron. This will give pU incorrectly, a short-
coming which is not urgent, since in our applications we
neglect y~, which was shown to be small compared to
yp in KBM.

The time rate of change of the expansion amplitude
of an initially excited state of the atom, state 2, with
no photons present and a free electron with wave
number vector kq, is

+Q Q C et((ata+Qxttltts (l)
%+2 p

The first sum of matrix elements (J„),of the interaction
between radiation field and atom, coupling atomic
state 2 to the ground state 1 and a single photon with
energy Ace„, leads in the usual way to spontaneous emis-
sion (y). The second sum over the diagonal collision
matrix elements contributes to yU. Although the atomic
state is undistorted, an energy exchange between elec-
tron and the emitted photon is introduced. The last
sum couples state 2 to all others (rt), giving rise to
polarization broadening (which also includes quench-
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ing). Several amplitudes appear on the right side of
Eq. (1): b„&,

—atom in state 1, photon with energy
Sot„, free electron in state ki, (with energy e& =A'k&P/2m);
d„—atom in state 2, no photons, electron state k„; and
n„at—om in state I, no photons, electron state k„. The
energies involved are

The solution of these coupled differential equations is
more easily obtained if all terms on the right of Eq. (2)
with amplitudes other than the one on the left (dq)
can be neglected. This is a valid procedure if one can
average over arbitrary phases associated with these
amplitudes. Since the electrons come from diGerent
sources (i.e., are incoherent), the d, have factors exp(ig„)'
containing unrelated arbitrary phases g„. An average
over these phases leads to the cancellation of all terms
on the right of Eq. (2) except the one with di. To see
this, consider the simpler example of a similar differen-
tial equation:

ae'& = A et&+Be' &'

Assuming this to be true when averaged over p and p',
one obtains d= A.

Thus Eq. (1) becomes

J~l e'~~' 'ddt, (r)dr
PP r aJ p

t

+ZICsg, s~I' I e'n»&t '&d), (r)dr—

+E ZIC». ~~l e" "'"+"»itt 'id'i, (r)dr . (3)
n ju 0

The solution,

di,= at, exp (—ps+ ihs) t,

where E„is the energy of the atom in state e.
Similar equations exist for each of the amplitudes.

They can be used to reduce Eq. (1) to the form

pt
saudi, =g C „sie»t'P —Cs„,spe'"»'d„dr+ . (2)
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ti+~ -e[t(tt—22)+yt] t—1
f(x)

I& „ i(y —3,)+~, I

(5)

f(y) is a sum over degenerate states; e.g., see Eq. (7)
where

of Eq. (3) is sought. The quantity &2 contributes to
the spectral line width and 82 shifts the line center.

The summations over r and p on the right side of
Eq. (3) can be replaced by an integral over energy and
a sum over degenerate states. Then using Eq. (4), one
obtains the equation for d), in the form,

For small K, we expand

e'K'=1+iK r+
Since the [[ are orthogonal, the leading term survives
only in the diagonal elements where it is canceled by
the nuclear interaction term. The next term leads to
polarization broadening. Retaining this term only,
since the E 4 factor weights small E heavily,

QpIC2), , „~I 2 me 1
6*4 &

O2 Vkskh3 "
' t.+" k),+k„

)&cos0dr I 2 ln dy

Cps, „„I=) f(y)dy and y=o)2„+0)„.

It is usually assumed that
I
J„I2 varies slowly with

the photon energy, and that the corresponding f(y) in
Eq. (5) can be given its resonance value 2 i.e.,

+~ gfs(y —~2)+&2] t'

where

222()),o), t'22„) ' I+" k),+k„
21n dy,

32r [ al & „k),—k„

z2„=— $2 f„r cos8dr,

o.g ——2r/kg2.

2rfJ (32)A VA.

Here the factor p is real, since fz(y) is real; and radka
tive decay contributes the natural width p to p2.

In KBM, this same approximation was used for
the collision matrix elements. However, it was seen
that some matrix elements had logarithmic variations.
For these matrix elements a resonance approximation
is not strictly valid. The more detailed analysis below
shows that in addition to a real part y~, there is an
imaginary term ib~.

Following KBM, we write

The factor —,'enters when an average is taken over the
random orientation of the atom with respect to the
direction of the incident electron.

The coefFicient of d), on the right side of Eq. (5) is

—2)2()),o) (z2„& '
t
+"

3~ & (hi

[s(y—52)+y2] t 1
dy. (8)

2(y 32)+72

We introduce a new variable of integration,

2 I C2~. -.I'=
V

dk„
(22r)'

Our treatment will be restricted to nondegenerate
states where co2„))52. Then,

f
fe'K' (

X 42*4„I — Id.dR
v "&IR—.

I IRI

m ~+ (aq+k„)
dE'

(22r)'2i2k), " „3(2, 2„)2

4xe' p (e'K' 1)6*4-«, (7)—
VE2~

where k„=final wave number vector of electron,
K=k„—k), =momentum transfer vector, V=reciprocal
of electron density 22, /=atomic function, r(R) =posi-
tion vector of atomic (free) electron from nucleus, and

(o2n+flxp'

2 G. Wentzel, Hottdbgch der Physth (Verlag Julius Springer,
Berlin, 1933), second edition, Vol. 24.1, p. 733.

k),+k„ i2(k),+k„)'

k),—k„2m(Fw1) (I o)2„—()2 I)

2x ln
A(k),+k„)'

2m(I ~2„—32 I)

-&['v+r] r
2

iver
»I Vw1l d V, (9)

provided k„ is the resonance value

k„'= (2m/)hl) (o)2„—i)2)+k),2

where the —(+) sign corresponds to o)2„—3» 0
(o)2~—82(0). The integral in Eq. (8) is simPlifhed by
use of a resonance approximation for the slowly varying
part of the logarithm, namely,



SHIFT OF SPECTRAL LINES OF He

and, by definition,

The resonance approximation is not satisfactory for
2 ln

l
Y&1

l
which diverges at Y=&1.With this factor

the integral in Eq. (9) has an imaginary part. First we

evaluate the imaginary part of the first term in the
integrand, which is on the order of I'((1; i.e.,

—Im {2lnl Y&1l expL(iY+r)T])/

(iY+r)d Y=o(r).
To show this we de6ne

correctly. The method is analogous to Eq. (6) for the
radiation Geld perturbation. To demonstrate its va-
lidity we expand 21nl Y&1l in a Taylor series about
the resonance value Y=o, obtaining 21nl Y&1l—&2K—I". The slowest variation is the constant
resonance value zero, which gives no correction to the
term already removed in Eq. (9). The next term in the
expansion has an odd integrand and also contributes
nothing. The contribution from the neighborhood of
the resonance for the Y' term is O(1'2). Hence, the
resonance approximation appears to be reasonable in
this case and we neglect the real part of I(&1).

Second, we write the remaining term in the integral
of Eq. (9) as a real and an imaginary part,

I(a)= " {2 ln
l
Y+a

l exp(i Y+r) T)/(i Y+I')d Y,

t+- 2 inl Y~I
l

.+-

+) dY'=FJ
iYyr

dI'
F2+ Y2

and use

Since

t+ pdIy
I(a)= '

l

—
l
dx+I( a). —. &da),

I(a) =LI(—a)]*,

t'+" 2Y lnl Y&1l
dI".

r'+ Y'

The real part is of the order of F'. To show this we define

t+ (dIq
2 ImI(a) =

l

—
I

dx.. &da) . where

~+"»nl Y~ I
Ir d Y=—I'Ig(%1),

J F2+ Y2

and

2m
—2

(ir+a)

~ze (—sa+r) T-

since
2 ImI(a)= 87ri tan—'(a/r)+4m'i,

I. Ir cos(FTx) p" cos(FTx)
dx—)~ dx =—e

1+x' o 1+x' 2

d
t

"cos(I'Tx)
I
"xsin(FTx) s.

dg= dx e
—rr

drr~o 21+x'1+x'

Consequently, for 1'«1, we can expand tan —'(1/I') =-,'w
+O(I'), and

Now using the semi-circle contour in the positive half
of the imaginary plane, we find

dI r+"
{Le'*"+"']/(Y+a) (iY+r) )d Y

dG

p+" »nlY+al p (dI~qI (a)—= dY=
l l dx+I, (0)

F2+Y2 ~0 (da)
Thus,

and

Therefore,

and

dIy 2@x'

da r(r2+a')

I,(O) =(&/r) ln(r2).

Ig(a) = (~/r) ln(r'+a')

FIg(%1)=s ln(F'+1) —mr'.

—iIg(w1) —=—i
t+-2Y1

l Y+Il
-dI',

F2+ Y2

where

I2(a) =
t +" 2 Y ln [ Y+a l

dI =
F2+ Y'

(dI2(a) )
l
dx+I, (O).

~0 ( da

In a similar manner we evaluate the imaginary part,
which leads to the line shift. Ke define

2 ImI(W1)=O(r).

For the real part of I(&1),

ReI(W1)

As before,
dI2 2X' 28 X'

da 1' F (F'+a')

I2(0)=0,

=err~~ 2 lnl Y&1l
I" cos(YT)+Y sin(Y'T)~

dI', the integrand being an odd function of Y. Finally, we
Y+r2 obtain a contribution to 5 which is large compared to F:

we lack as neat an evaluation procedure. It is assumed —iI2(%1)= i2m tan '—(%1/r)
that the resonance approximation of KBM gives y~ = ~i~2+O(r) for r&&1. (11)
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and must be considered. Consequently, we return to
Eq. (1) and write

ihb, ), ——J„*e—"'"'di—(P „'Abi.)b,i.

Defining 8i=p„'6i„corresponding to 82 in Eq. (13),
and substituting B„qe'"' for b„q, one obtains for an
initially excited atom (d&,——1 at t= 0):

ggQ ~
—J +g[s(4—&1—nl) —y2]& ~

and the emitted line intensity becomes

(14)

FIG. 1. Partial term scheme for orthohelium. Since broadening
depends on near neighbors, the 4d level has different properties
than 3d, which lacks a partner corresponding to 4f.

Collecting the results, we rewrite expression (8),
with neglect of terms of order F,

A(l'si, +0„)'
&i7r2 (12)

y~—(2—n)+i82. ,

where the ~ sign corresponds to cv2„—62~0.
Consequently,

(2twi, o'i,2r) f s2~ l (eisa 52)

) - & a) l~2.—Bsl

where the sum over e includes all states that can be
excited by the free electron. Provided ~&„ is large in
comparison with 82, the contributions to the shift are
independent of the magnitude of the level separation
co2„and many levels must be considered. The shift 82„,
however, depends on the sign of co2„. If ~2„)0, then by
Eq. (13) 82„(0 and according to Eq. (14) below
co„&co». This is consistent with perturbation theory in
which coupled levels are mutually repelled. Inversely,
if co2~(0, then co„&co2~, which is also expected. Although
for broadening only the near levels need be considered,
y2 contains the same sum ands

where p„symbolizes the sum over polarizations and
angles of emission as well as the density of final states
at M, .

II. EXPERIMENTAL VERIFICATION —BROADENING4

It is not easy to obtain knowledge of electron or ion
densities and temperatures which determine the line
broadening. Consequently, an experiment which is
independent of these parameters is desired. The com-
parison of diferent line widths in a spectrum, of
radiators in the same plasma, where all the atoms emit
in a given though perhaps uncertain temperature and
density, has this property. An especially interesting
case is presented by the relative widths' of the
ndsD~ 2p 2P lines in the helium spectrum (Fig. 1).
For example, we will show that the width ratio for
lines from the principal quantum levels m=4 and m= 3
is 150 for Holtsmark ion broadening while it is only

10 for electron collision broadening. This difference
stems from the fact that there is no 3f 2F level. For the
higher principal quantum numbers, the F level is the
nearest neighbor of the D level and leads to much
larger Stark shifts and consequent Holtsmark broaden-
ing than occurs for m=3. On the other hand, the colli-
sion width receiving a contribution from the more
distant I' level which is comparable to that from P,
remains relatively unchanged with m.

The energy separations of interest are given in
Table I (see also reference 5).

TABLE I. Experimental energy separations of some (1s)(221) and
(1s)(nl+1) coniigurations in triplet helium. '

Vn f Vnd (Cm-I) Vna —Vny (Cm I)

ps=a„'y&(2n)+y.

This result is the same as KBM under these cir-
cumstances.

Since polarization broadening depends on near atomic
levels, it is in general smal1er for the ground state.
Hence, it is reasonable to neglect this broadening con-
tribution. The level shift is not correspondingly small

3 This agrees with the results given in an earlier unpublished
report by R. Sternheimer.

7.78
4.31
2.45

536.8
227.4
116.4
67.16

a See reference 5.
4 The author is indebted to Professor G. Breit for the suggestion

to consider broadening in the nondegenerate case and to Dr.
I.. B. Seely for the choice of spectral levels.' C. E. Moore, Atomic Energy Levels, National Bureau of
Standards Circular 467 (U. S. Government Printing Once,
Washington, D. C., 1948), Vol. 1.
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The matrix elements which enter both Stark broaden-
ing and electron collision broadening are'

TABLE III. Stark shifts.

9rss (I' p)—p
(Sn, l, p; n, l-i, 0)

4P—t
8:—Zoll )
2= 2

gp( )

(ePP'as/bc)
0.0503 —7.82 —51.0 —219.3

when hydrogen wave functions are used for the radiating
electron. Table II gives values of z„l' for l= 2 and 3. (cesn —bn)=10pesn

A. Estimate of Holtsmark Broadening (Ion ESect)

The component with m=0 has the largest Stark.
shift in a uniform electric field (F). Because the levels
of helium are nondegenerate, one obtains in weak 6elds
the quadratic Stark shift. For the D levels with m=0
this shift is

t' snp
F. dplsi = epFpi +

~Fnd Fnf F—nd +ny~—

TABLE Il. (Sn, l, p;npl i, p) =SnP.

zn 32/g2

0
64.8

231.4
562.4

Z&22/a2

27.0
115.2
315.0
691.2

and take
F=3.26ee&,

and for the ion broadening width (Table IV)

h(y;pn) „d=4(3.26)'(e'/2a)'n'i'a'

(s-0'/a') (»- '/a')
X +- —. (16)

+nd +nf +nd +np

B. Electron Collision Broadening

Neglecting the natural width and considering only
the nearest neighbors, one obtains, according to Eq.
(12),

Znl
2

y„l—(2rlvl, o l,/3) P 2 ln
l=l, Z+I g2

provided we approximate

+nZ +n l—1
(17)

(kg+i„.)'—4ei„
2m

In this section, we use several results given by H. Bethe,
Haldblch der Physph (Verlag Julius Springer, Berlin, 1933),second
edition, Vol. 24, Part 1.

With the values in Tables I and II, we 6nd E gp()
(Table III). The very small shift for ss=3 reflects the
nonexistence of a 3f'F level. The shift of the ground
state (1s) (2P) can be neglected, since Es„p&'i/(e'F'a'/hc)
=0.000975. To estimate the width we follow Holtsmark

Since the broadening depends logarithmically on the
energy separation, it is not as sensitive to the principal
quantum number as ion broadening.

Table V contains contributions to y„z from the two
near levels, their sum, their successive ratios, and for
comparison the corresponding ion ratios (see Table IV).
Also included are the wavelengths of the nd 'D —+ 2p 'P
lines. Since the theory used does not correct for the
fact that distant electrons are shielded and do not
exert a Coulomb field at the atom (plasma cutoff—KBM), the broadening given will be too large. At
the density considered, this correction is not serious.

Unlike hydrogen, where there is a large linear Stark
eGect, helium exhibits an electron broadening thatis
larger than or comparable to ion broadening. Another
advantage in the use of helium is the possible appear-
ance of the forbidden transitions as 4f 'F ~ 2p 'P and
4PPP~2P'P. Since the uniform field intensity for
their appearance is known, this may serve as an in-
dicator of the ion density.

It is likely that our calculation overestimates p&. The
electrons have been assumed monoenergetic and are
represented by plane waves. Actually, the electrons are
distributed in energy and our calculation is poor for
the slower ones (failure of the Born approximation).
If the very slow electrons produce ion-like (Stark)
eGects, then we may expect that the electron density
to be used in pI is less than the actual density. This
diminution of our calculated pI may mean that electron
eGects are actually less important than ion eGects for
the lines nd 'D —& 2P 'P where rl) 3 Hence, . these
lines would have contours predictable from Stark
shifts. " On the other hand, 3d 'D ~ 2p 'P can still have
the anomalous electron broadening shape, i.e., the
Lorentz shape L(y+yi)'+pe'] '. Also this line should
be broader than expected on comparison with the other
members of the series when only ion eGects are con-

TABLE IV. Ion broadening width and width ratios for n= 10'~.

(pion)ag (SeC 1)a

+3,80X108—5.91X10'P
—3.85X10»—1.65X 10»

(/ion) 00+1,d

(yfon) n, Z

155.
6.5
4.3

a + indicates blue asymmetry; —,red.

7 Toshio Takamine, Sci. Papers Inst. Phys. Chem. Research
(Tokyo) 5, 55 (1926).
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TAsLE V. Electron broadening widths for @=10"and ey=es/30o.

nd gD —s 2P gI'
Wavelength

(A)

COntributiOnS tO gad frOm

p level f level
(sec ') (sec ')

'y rsd

Sum (sec 1)
Prs+l, d

'mrs, d

(Pion) ss+),d

(pion) a,d

5877
4473
4027
3821

1.21X10"
6.43X10"

03X10»
4.93X10"

0.
6.42X10M
2.46X10"
6.40X10"

1.21X1010
1.28X10"
4.49X10"
1.13X10»

10.6
3.50
2.52

155
6.5
43

sidered. The ions present may still superpose a slight
asymmetry toward the violet. The corresponding singlet
line 3d'D —

+ 2p
'P would have the asymmetry to the

red side, since unlike the triplet case the energy level
3p is greater than 3d. Thus, electron broadening effects
as treated in this report may find a fairly simple experi-
mental verification.

The experimenter must overcome difhculties imposed
by the Doppler width, which for the 3d —+ 2p line at

ev, and e=10" is comparable with the electron
broadening. By going to the wings of the line where the
Doppler eGect is small, the electron "dispersion" width
can be determined. This complication in the measure-
ment of the line shape can be avoided by working at
higher electron densities. If e is increased by a factor
10 without change in temperature, then electron
broadening dominates. Hence, it is suggested that the
helium spectrum be studied in an atmosphere of a more
easily ionized element, for example, argon for which
densities of 10" at 1 ev have been obtained in shock
tubes.

III. EXPERIMENTAL VERIFICATION—
SPECTRAL LINE SHIFT

I.aporte and Kantrowitz" have observed large shifts
of spectral lines from atoms radiating in shock tubes.
Baranger" has proposed that these shifts are the result
of collisions with electrons. According to the quantum

This Doppler complication was brought to our attention by
Dr. R. K. Meyerott.

s O. Laporte (private communication).
+ A. Kantrowitz, Phys. Rev. 90, 368 (1933)."M. Baranger, Phys. Rev. 91, 436 (1933).

mechanical calculation previously given, there is a line
shift. In order to make the result more quantitative,
we consider two He r lines: 3d 'D —+ 2p 'P and 4d 'D~
2p 'P.

For the metastable ground state 2p 'P, only coupling
to 2s'S shifts the levels. This is because the matrix
element to the 1s level vanishes (since we have neglected
exchange collisions), and the free electrons lack suK-
cient energy to excite the atom. Thus, for s=e'/50@
and v=10", 2eeo.n./3=2. 015X10 sec '; and the level
is shifted according to Eq. (13) by 8»———1.814X10'
sec '. The shift of the 3d level is found by considering
only coupling to 3p and 2p levels; 8s&

———6.650X10'
sec '. For 4d, since the atom can be excited, we include
2p, 3p, , 6p and 4f, Sf, 6f (a total of 8 levels);
84&

———1.163X10' sec '. Consequently, 3d'D —& 2p 'P
is shifted to the violet 4.836X10' sec ' (0.056 A) whereas
4d 'D —+ 2P 'P is shifted to the red by 0.651X10' sec '
(0.0043 A). Although these are small shifts, it should be
remembered that they are in proportion to the free
electron density. If, as reported by Kantrowitz,
m= 10", then these shifts are increased by a factor 10'.
Thus, suSciently high electron densities can introduce
measurable line shifts.
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