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Plane elastic waves can be propagated in every direction of an
unbounded elastic medium. It is known that associated with each
direction there are three independent waves, the displacements of
which form a mutually orthogonal set. In general none of the
three displacement vectors coincides with the vector of the normal
to the wave front, that is, in general the waves are neither longi-
tudinal nor transverse. The purpose of this paper is to find specific
directions in a medium of given anisotropy, along which the
displacement of one of the three possible waves is exactly parallel
to the direction of wave propagation. A method is developed
which leads to the complete set of such "longitudinal" directions,
if the matrix of the elastic coe%cients is known.

The method is applied to several groups of crystal symmetry,
namely to the trigonal, hexagonal, tetragonal, and cubic systems,
and the general conditions are established under which pure
longitudinal waves exist. For n quartz, for example, the numerical
calculation shows that there are five such distinct directions, not
counting the ones which are equivalent by symmetry properties.

As a by-product of the results, special conditions between the
elastic constants are obtained under which longitudinal waves
could be propagated in any direction in a hypothetical anisotropic
medium fulfilling these conditions. Owing to their relation to an
early investigation by G. Green in 1839, the latter are called
specialized Green's conditions.

1. INTRODUCTION

'HE general laws of elastic waves propagated in
crystalline media are well known. ' In an infinitely

extended crystalline medium, plane elastic waves can
be propagated along any direction. If ( is the vector of
particle displacement and k the wave-vector normal to
planes of constant phase, the elastic wave motion is
described by

(—( ei(rutwk r)

r being the position vector of any point I' in the
medium. The displacement vector (has certain specified

directions, which, in general, are not parallel to the
wave-vector k.

The theory of wave propagation through in6nitely
extended anisotropic media reveals that for any chosen
direction of the wave-normal, that is, of the vector k,
there are three possible displacement vectors ( which

are functions of the direction of k. These three displace-

ment vectors are independent of each other and form a
mutually orthogonal set; they belong to three inde-

pendent plane waves propagated, in general, with three
different velocities in the direction of k. If it happens
that one of the three displacement vectors coincides

with k, the other two necessarily lie in a plane perpen-

dicular to k; in this case the wave-triplet consists of
one purely longitudinal (i.e., compressional) and two

purely transverse waves. '

*This paper constitutes a technical report under a contract
with the United States Air Force, Inonitored by the Once of
Scienti6c Research, Air Research and Development Command.

t Now at Gordon MacKay Laboratory of Applied Science,
Harvard University, Cambridge, Massachusetts.

'For a condensed treatment see A. E. H. Love, The Mathe-
rnatica/ Theory of Elasticity (Cambridge University Press, London,
1934), p. 298; and W. G. Cady, Pieeoetectricity (McGraw-Hill
Book Company, Inc. , New York and London, 1946), p. 104.
The subject is dealt with in detail by R. Bechmann, Arch. d.
elektr. I)bertragung 6, 361 (1952).

s If g has any arbitrary direction, it can always be decomposed
into a longitudinal and a transverse component, the components
not, however, being independent of each other.
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For certain crystals, for example quartz, special
directions of k are known, along each of which the
direction of ( coincides with that of k, or, in other
words, along each of which compressional waves can be
propagated. The only strain connected with a com-
pressional wave in an infinitely extended region is the
one normal to the wave front. By superposition of two
such longitudinal waves traveling in opposite directions,
a standing wave pattern is formed with planes of nodes
and antinodes of stress and strain. The nodal planes of
strain are then nodal planes for the total set of stresses.
These planes therefore can serve as free boundaries of
an infinitely extended plate, which then vibrates in a
pure compressional thickness mode.

It is the purpose of this paper to outline a general
method for 6nding the complete set of directions along
which compressional waves can be propagated in an
anisotropic medium and to apply the method to a
number of crystal classes.

In the general case, where the displacement vector is
not parallel to the wave normal, it can also be shown
easily that in an infinitely extended medium there exist
equidistant planes parallel to the wave front, in which
all strains, and therefore all stresses, disappear. Any
two such planes can serve as the free boundaries of a
plate, which then can be excited in thickness vibration.

In firtite plates, however, such standing waves cannot
exist except in very special cases, without being associ-
ated with parasitic vibrations. Owing to elastic cross-
coupling, a special set of stresses exists throughout the
vibrating plate. In order to enforce the boundary
conditions of stress-free edges of the plate, other 'modes
of vibration will be set up which are inseparably
associated with the original one-dimensional standing
wave pattern, thus destroying its purity. '

3 A detailed physical outline of the mechanism of mode-coupling
may be found in H. G. Saerwald, U. S. Patent No. 2,485,129,
October 18, 1949.
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2. PLANE ELASTIC WAVES IN ANISOTROPIC MEDIA found from the fol]owing set. of equations:

Ke now summarize in brief the pertinent features of
the theory of propagation of plane elastic waves in
anisotropic media. The theory was first worked out
completely in 1839 by Green, although modern writers
refer predominantly to a paper by Christoffel in 1877.4

Green was interested in the mechanical theory of light
propagated through crystalline media, and looked for
the conditions under which transverse waves may exist.
He found, between the 21 elastic coefficients needed
for describing the most general stress-strain relations,
14 relations which must be fulfilled in order to ensure
displacement vectors normal to any chosen direction
of wave propagation. Besides the two transverse waves,
according to Green's theory, there is always a third
purely longitudinal wave possible. Green's problem,
therefore, is closely related to the one treated here.
Whereas Green derived certain relations between the
elastic coefficients which must be satisfied in order to
obtain transverse waves in any arbitrary direction, we
assume those coefficients to be known and seek the set
of special axes along which purely compressional waves
may be propagated. These axes are necessarily associ-
ated with the two independent transverse waves in
which Green was interested. We shall obtain conditions
similar to those found by Green as a by-product of
our results.

In a continuous anisotropic medium under adiabatic
conditions the general stress-strain relation is'

&'=Zs c'3 &3—Zt It'tDt,

(i, k=1, 2 6; /= 1, 2, 3), (2)

where c;~ ——c~; . The D~ are the components of the
electric displacement vector. We shall limit ourselves
to purely mechanically excited waves and therefore
shall assume that no external electric fields are applied
to the medium. Then the vector D is necessarily
constant in both space and time. Since we are interested
oniy in harmonic wave motion, D can be assumed to be
zero and Eq. (2) can be written

T;=+3 c,p53. (i, /'3=1, 2 6).

We choose a unit vector s with direction cosines
I&, E&, 13 as the direction of wave propagation. Any of
the three independent and mutually orthogonal dis-
placement vectors g associated with the three possible
plane waves propagating along s may be characterized
by its direction cosines m&, m&, m3. Then Green's theory
shows that for a given s the direction of any ( can be

' G. Green, Trans. Cambridge Phil. Soc. 7, 121 (1839); Mathe
matical Papers (Macmillan and Company, London, 1871), p. 307;
E. W. Christoffel, Ann. di matematica pura ed applicata (2) 8, 193
(1877). An excellent account of Green's work can be found in
Lord Kelvin's Baltimore Lectgres (Cambridge University Press,
London, 1904), Lectures XI and XII.

8W. G. Cady, J. Acoust. Soc. Am. 22, 579 (1930). For the
notation see Proc. Inst. Radio Engrs. 37, 1378 (1949).

mlI 11+m2I 12+m3F13= mls/

m1I'12+ m2I'22+ m, I'23 m——sq,

m1F18+m2I 23+m F ~ =m3g.

The coeKcients F;~=I'I„are given by

(4)

r„—q r„r„
I12 122 g 123

I 23
' I 33 g

=0 (6)

With the values l'~, 12, 13 of s given, the F;I, can be
computed from Eq. (5), and the three values of q are
found from Eq. (6). Each value of t/ belongs to one
set of direction cosines m&, m2, m&, which are found by
inserting t/ in Eq. (4). The three wave equations are

c)2(„/itt2= tj„it2(„/its2 (tt = I, 2, 3), (7)

the solution of which has been given in Eq. (1). The
wave velocity is

e.=~/&. = (V./p)',

p being the density of the medium. q„ is therefore called
the stiGness coeKcient of the wave with the displace-
ment g„.

3. CONDITIONS FOR PURELY COMPRESSIONAL
WAVE MOTION

For longitudinal waves the direction of the displace-
ment vector g with direction cosines m1, m2, ms is to be
parallel to the unit vector in the direction of wave
propagation s with the direction cosines l~, l~, l3. I.et us
consider the values of m, t/ in Eq. (4) as the components
p; of a vector p which lies in the direction of the dis-
placement vector g. Then y coincides with s, if p&& a= 0,
that is, if

/2ps /sp2 Op lips 4pl 0y llp2 /2pl 0p (9)

/1:/2:4=P1'P2. P3. (10)

Actually the systems (9) or (10) represent only two
independent equations. The components of y follow
from Eq. (4) upon replacing m, by /;, since p and s

r„=/, crt+/2 c66+/8 c +2/ l,c +2l / c, +2l / c

I' =l 'c +l,'c, +l,'c,+2/, l,c,+2/, l;,c„+2l,l c„,
I'33——/1'c66+ l2'c44+l3'c33+ 2lslsc34+ 2lrlsc36+2ltlsc46,

I 13 /1 C16+/2 C46+ls C35+l2/8(C46+C36)

+l1/3(c13+C56)+/]/2(C66+C14)) (5)
I"„=/,'c„+/,'c,+/, 'c, +l / (c,+c )

+ /1/3 (C46+ C36)+ll/2 (C46+ C26) )

I 12 /1 C16+/2 C26+ls C46+/2l3(C46+C26)

+/14 (C66+C14)+ /1/2 (C12+C66) ~

The three (real) values of q in Eq. (4) follow from the
roots of a cubic equation, given in determinant form by
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are assumed to be parallel:

When p; and r, i are substituted from Eqs. (11) and

(5) into Eq. (9), the latter yields a set of three equations
involving the elastic constants c;A,

D and the direction
cosines lI, l2, l~, which we wish to find. To each set of
real values of the l, satisfying simultaneously Eqs. (9),
there belongs a direction of propagation of a longitudinal
wave. By the method outlined we shall investigate
now a number of crystal groups with respect to the
existence of such directions.

C11 C12 C13

C12 CII C13

C13 CI3 C33

C14 C14 0
0 0 0
0 0 0

c14 0
—C14 0

0 0
c44 0
0 C44

0 C14

C14

s (Cll C12)

(12)

Using this scheme we compute the r,s from Eq. (5),
then insert them in Eq. (11) and by using Eq. (9)
arrive at the following set of equations:

/s/s{ (/P+ls ) ( cii+cis+2C44)+/s'( —cis+css —2c44) }
+ci4{3 (/P/s'+/P/s' —l P/s') —/s'} =0, (13)

lils{(/P+/s ) (—cii+c13+2c44)+/s ( cis+css 2c44)}

+ci4{/i/s(3/P —/P —6/s')} =0, (14)

3ctg/ils (/P —3/s') =0.

The last equation yields immediately the three solutions

(17)

(18)

FIG. 1. Set of equivalent directions in a trigonal system with
direction cosines (&1,0, 0) and (&1/2, &%3/2, 0).

4. GROUP OF TRIGONAL SYMMETRY,
CLASSES D3, C3„D3d

This group includes o, quartz. The elastic constants
form the following matrix.

ls//s —/s'/2/s——'. (23)

At this point it is appropriate to take notice of the
trigonal symmetry of the group under consideration.
A rotation of the coordinate system in a medium of
trigonal symmetry about the s-axis by &120' leads,
as is well known, to an equivalent coordinate system.
That is, any point P'(x', y', s') with reference to the
system so rotated is in every respect equivalent to the
point P(x,y, s) in the original system, if x=x', y=y',
s=s'. The points I" and I' pass into each other by a
rotation of their position vectors by &120' around
the s-axis. Consequently, associated with any direction
in the trigonal group there are two more equivalent
directions, all three directions being related, with
respect to wave propagation, to each other by a 120
rotation about the s-axis. Each direction is also equiva-
lent to its opposite direction.

Now, Eq. (20) contains a set of directions which lie
in the xy-plane, as shown in Fig. 1. When l2 ——la ——0
we have li &1; when ls/li ————&V3, we have l,=&1/2,
since /P+/s'+/ss=1. The directions thus defined Pass
into each other by a rotation of ~120' about the z-axis
and are therefore equivalent. Hence it is sufhcient to
consider only one of them. Selecting the direction
determined by l2 ——l3 ——0 we obtain the well-known
result that in a medium of trigonal symmetry the
x-axis allows the propagation of longitudinal waves.

sIt may be noted that Eqs. (13) to (15) contain all elastic
constants of the matrix (12) except crs.

Putting each one of these solutions into Eq. (13) or
(14) we have to investigate whether sets of real values
li, /&, /s exist that satisfy Eq. (13) or Eq. (14).'

Inserting the first value /s
——0 into Eq. (13), we obtain

cr4/s'(3/P —l ') =0 (19)

This equation, and therefore Eqs. (13), (14), and (15)
are satisfied simultaneously by

/s ——0 and /s//r ——+V3. [ls——0$ (20)

Next, inserting li ——0 from Eq. (17) into Eq. (13)
yields either l2 ——0 or the following cubic equation for
the ratio ls//s.

(—cis+css 2c44) (/s//s)'+3ci4(/s//s)'

+ (—Cll+Cis+2C44) (/3//2) —C14= o. I /1 =o] (21)

Finally, upon inserting /i'//s' ——&v3 from Eq. (18) into
Eq. (13), we 6nd that either /s ——0 again or that the
following equation must hold:

(—cis+ css —2c44) (ls'/ls')' —
6ci4 (/s'//s')'

+4(—cii+cis+2c44) (/s'//s')+Sci4 ——0.
[l,'/l, '= av3] (22)

[The primes on /s', ls' are added to distinguish them
from /s, ls of Eq. (21).]

A brief calculation shows that Eq. (21) passes into
Eq. (22) by the transformation
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An infinitely extended plate with planes normal to the
x-axis (X-cut) can be excited in purely longitudinal
thickness vibration.

A second direction which we obtained from Eqs. (17)
and (13) is the one corresponding to the direction
cosines l1=12——0, that is, l3——1, or the s-axis, which
consequently is also an axis allowing longitudinal
waves.

Considering next ll ——0 according to Eq. (17), we
found the corresponding values of /2/l2 to be determined
by the cubic Eq. (21). When /2//2 in this equation is
replaced by ls'/2—l2' according to Eq. (23), Eq. (21)
passes into Eq. (22), which resulted from the condition
ll' &V3/2——' of Eq. (18).

It is easily seen that the conditions expressed by
Eqs. (17) and (18) are equivalent through trigonal
symmetry. Figure 2 shows the projection onto the
xy-plane of unit vectors with components 0, l2, l3

corresponding to Eq. (17),and ll' +/2'/——2, /2'= —/2/2,
33'=13, which obviously have a 120' relation about the
z-axis. Equations (18) and (22) therefore lead only to
directions which by trigonal symmetry are equivalent
to the directions determined by Eqs. (17) and (21),
so that; it will be suKcient to consider only the axes in
the ys-plane (ll ——0) resulting from Eq. (21). From the
directions thus found all other equivalent directions are
obtained by applying the rules of trigonal symmetry.
A cubic equation has either one or three real roots;
hence, there are either one or three directions in the
ys-plane resulting from Eq. (21).

Including the x- and s-axes already mentioned, we
have altogether a set of three or five "longitudinal"
directions in the trigonal group here considered.
Counting also the equivalent directions resulting from
trigonal symmetry, we have in all 7 or 13 "longitudinal"
directions, ' each of them allowing longitudinal wave
propagation in either sense.

S. GROUP OF TRIGONAL SYMMETRY, CLASSES C3, C3,

There is another trigonal crystal group containing
Class C3 and C3;, the elastic constants of which form
the matrix

C12

C13

C14—C25

C11

C13—C14

C13 C14 —C25 0
C13 —C14 C25 0
c33 0 0 0
0 c44 0 cgg

0 0 c44 c14
0 C25 c14 2 (cll c12) .

(24)

This group evidently contains one more independent
elastic constant than the group characterized by the
matrix (12), namely c25. Without going into a detailed
discussion of the complete system of compressional
axes of this group, we will treat brieQy some properties
of this group with respect to such axes.

The z-axis is counted only once.

=Xi

FIG. 2. Projection on the xy-plane of a second set of
equivalent directions in a trigonal system.

Using the matrix (24) we find by Eqs. (5), (11), and.
the last equation of (9) the following condition for the
direction cosines of compressional axes:

c14/ll 2 (ll' —3/2') +c25/2/2(3/1' —/2') =0. (25)

6. COMPRESSIONAL WAVES IN 42 QUARTZ

As an example of the trigonal groups considered we
study the complete set of longitudinal directions in
u quartz. The elastic constants are assumed to have
the following values expressed in units of 10" dyne
cm

C1] 87 5p c12 7 62' c]3 15 1) c14 17 2p
(27)

c33 107.7, c44 =57.3, c66=39.9.
8W. G. Cady, reference 1, p. j.37. The values of c», according

to Eq. (3), should be those at constant dielectric displacement D.
The values given here hold at constant electric 6eld E. The
diBerence between c;&~ and c;&~ for quartz, however, is small
enough to be neglected here. For simplicity the superscript 8 or
D is omitted. The coeficients in Eq. (27) are valid for both
right quartz and left quartz, if the systems of coordinate axes
are chosen according to p. 408, Fig. 76, of the reference given
above, that is a right-handed system of axes for a right quartz
and a left-handed system for a left quartz.

One solution immediately found is l3——0, which corre-
sponds to directions of compressional wave propagation
in the xy-plane. %ith /3=0 one obtains from either of
the other two equations in (9) the equation

(/1/l2) 3 (c14/c25) (/1//2) 3 (/1//2)+ (C14/c25) 0 (26)

This equation yields a set of three possible compressional
axes in the xy-.plane, the directions of which depend
only on the ratio c14/c25. The three directions are
mutually related by the 120' symmetry of the trigonal
group.

If c25=0, l2 becomes zero in accordance with the
result found in the previous section; in the group
considered there the x-axis was found to be a possible
compressional axis. This fact is due to the absence of
c25 in the matrix (12). If c14——0, ll becomes zero and
the y-axis can propagate compressional waves.

If c14———c25, it follows from Eq. (26) that ll=l2= 1;
in this case compressional waves may be propagated
along the 45' direction in the x, y-plane.
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With these values, Eq. (21) becomes

—22 (l8/ls)'+51. 6(ls/ls)'+42. 2 (l8/ls) —17.2 =0. (28)

waves with displacements lying in the xy-plane follow
from Eq. (6). With the coeflicients cg, from Eq. (27)
we obtain

The solutions are found to be
(d) ql= c88= 107.7, qtl ——qt8 ——C44 ——5'7.3. (32)

l8/ls ——0.307, 2.912, —0.874. D„=03 (29)

From /88+l88=1 one finds the following direction-
cosines:

(a)
kg=0.294

l2=0.956

(b)
0.946

0.325

(c)
0.658,

—0.753,
(30)

For the g-axis, which we found also to be a direction

allowing longitudinal waves, g» reduces to c33, as is

easily proved. The values g~ of the associated transverse

(b)

/
/

/
l

/

/

(o)
fo

FIG. 3. Directions of longitudinal wave propagation in a quartz.
The length of each arrow is proportional to the value of the
corresponding stiBness-coeKcient g.

8 It will be noted that the directions (a) and (c) according to
Fig. 3 are very close to the so-called 18.5' cut and BT-cut of
a quartz. See, for example, W. G. Cady, reference 1, p. 459.

corresponding to angles of about —73', —19', and 49'
with respect to the s-axis, as indicated in Fig. 3.
Knowing the direction cosines we can compute the
coeKcients I';& from Eq. (5) and find the stiGness

coeKcients q for the longitudinal waves along these
directions by Eq. (4), where now tttl=ll, nts=ls, 4188=is,

since the wave-normal coincides with the direction of
displacement. We can also use Eq. (6), which yields

not only the g-values belonging to the longitudinal

waves, but also the q-values of the two purely transverse

waves associated with but independent of each one of

the longitudinal waves.
The following values in units of 10"dyne cm ' have

been found for the stiGness coeKcients q~ of the longi-

tudinal wave and the sti6ness coefficients q~~ and q&2

for the associated transverse waves for the directions
indicated by (a), (b), and (c) in Eq. (30) and Fig. 3:

(a) ql
——76.65, qtl 51.09, qts = 60.24,

(b) ql = 109.40, qt1 =4290, qt2 66.04, (31)

(c) q, =131.34, q, l ——29.25, qt8 ——30.41.

For transverse waves therefore rotational symmetry
exists about the z-axis.

The x-axis, commonly used as a direction for pure
longitudinal waves, has for the longitudinal waves
g~=c~~. The numerical values for the longitudinal and
the associated transverse waves are"

c]] c33y 2c44 cgf cusp c$4 0 (34)

If there were a medium of trigonal symmetry obeying
these relations between its elastic constants, it could

propagate both pure longitudinal and pure transverse
waves in every direction. The condition c&4 ——0 would
convert the trigonal symmetry into hexagonal sym-
metry. Upon computing the I";& from Eq. (5) by the
use of the relations (34) and inserting the I';8 thus
found into Eq. (11), one finds that the stiGness coeffi-

cient q for the longitudinal waves becomes g=c~~ inde-

pendent of the direction. For the associated transverse
waves, however, velocity and polarization are not
independent of the direction of wave propagation.

'7. GROUP OF HEXAGONAL SYMMETRY

The matrix of elastic constants c,7, of the hexagonal
system is obtained by setting c14——0 in the matrix (12)
of the trigonal system considered above. The possible
directions of longitudinal wave propagation in a crystal
of hexagonal symmetry are therefore determined by our
former Eqs. (13) to (15) with c14=0. Equation (15) is
then fulfilled automatically and we are left with the
equations

lsl8{ (ll'+ls') (—cl1+C18+2C44)

+l8'( —C18+C88—2C44) ) =0, (35)

ills{ (ll +ls ) ( Cll+C18+2C44)

+4'(—C18+C88—2C44) }= o. (36)
I I. Koga, Reports of Radio Researches and Works in Japan

2, No. 2, 157 (1932). Koga's values differ slightly from the
ones given in Eq. (33), owing to the slight difference between
Koga's values for the c;& and the values used here from Eq. (27).

(e) ql cil 87.5, q 1=2932, q 8 = 67.88. (33)

To conclude the considerations of media of trigonal
symmetry we may consider the special hypothetical
relations between the elastic constants c,~ which would

have to hold in order to ensure purely longitudinal
wave propagation in any direction. These relations,
which we will call "specialized Green conditions"
follow immediately from Eqs. (13) to (15), which are
ful6lled for any set of direction-cosines l~, E2, l~, if
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These equations are satis6ed by

l3= 1, lg= l2 ——0;
t, =O, l,=~t,.lg=0, (46)

(38)l3=0, /12+/22= 1;

cy&—c]g
—2c44

Equations (43) and (44) express the tetragonal sym-
metry, since they pass into each other by interchanging
li and l2. From Eqs. (43) to (46) it is seen immediately
that the x-, y-, and s-axes are compressional directions.
Further compressional axes are determined by

(39)
/1 +/2 —C13+C33—2c44

Equation (37) renders the s-axis, and Eq. (38) any
axis in the x, y-plane, as possible directions of longi-
tudinal wave propagation. Equation (39) gives another
set of directions, all of which lie on a circular cone, the
generating lines of which form an angle 8 about the
s-axis with

lg=~l2
and

-l -2 -$ -2
2 c13—c33+2c44

Cll C12+2C13+4C44 2C66-l3

Unless cii—c12—2c66 happens to be zero, Eq. (45)
yields the solutions

(37)

tan8=
c33—cy3—2c44

C11 C13 2C44

&/2 C13—C33+2C44
lg ——0 and

- l3 —C 11+C13+2C44
(48)

All compressional directions show rotational sym-
metry about the s-axis, that is the hexagonal character
of the crystal-structure does not manifest itself with
respect to such directions as it was the case in the
trigonal classes considered.

As an example of the hexagonal group we consider

P quartz, which is stable from 573' to 870'C. The
elastic constants, in units of 10"dynes cm ', at 600'C
are taken as"

8. GROUP OF TETRAGONAL SYMMETRY,
CLASSES Vg, D4, C4~, D4I,

The elastic constants of this group have the following
matrix:

c~~ c~~ c~~ 0 0 0 '
c~2 c~~ c~3 0 0 0
C~3 C~ 3 C33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66,

(42)

From this matrix we compute the F;& from Eq. (5);
from Eqs. (11) and (9) the foHowing set of equations
is then obtained:

/2/3{/1'( —C12+C13+2c44—2c66)+l2'( —cii+ C13+2c44)

+l32(—c13+c33 2C44)) =0, (43)

/1/3{/1 ( Cii+c13+2c44)+/2 ( C12+C13+2C44—2c66)

+/3'( —ci3+C33—2C44) ) =0, (44)

/1/2(/1 l2 ) (C11 C12 2C66) =0. (45)

"W. G. Cady, reference 1, p. 158. The difterence between c;/,
and c;gP can be assumed small enough to be neglected.

Cil, —118.4, c»=32.0, C33——107.0, c44 ——35.8. (41)

With these values, Eq. (40) gives tang=0. 479, or
8=25.6', as the angle about the s-axis of the direction
of propagation.

l2=0
/1 C13—C33+2C44

and
l3 —Ci1+C13+2C44

(49)

Cll —C33—C13+2C44 —C12+2c66. (51)

If the elastic constants were mutually related in this
way, Eqs. (43) to (45) would be satisfied for any values
of l&, l&, l3 and purely compressional waves therefore
could be propagated in any direction in a medium of
this tetragonal group.

9. GROUP OF CUBIC SYMMETRY

The matrix of the elastic constants c;A, for a medium
of cubic symmetry is obtained from the matrix (42) by
setting c~3= c~~, c3~= c~~, and c«= c44. Unless c&~—c~2—2c44 ——0, it follows from Eqs. (43) to (45) that again
the x-, y-, and s-axes are compressiona1 directions.
Another set of such directions is

~/1= &/2 ——&/3 ——a 1/v3. (52)

All the compressional directions in the cubic system are
independent of the special values of the elastic con-
stants.

If c»—c»—2C44= 0, the cubic system passes into an
isotropic system and compressional waves can be
propagated in every direction.

Equations (47) to (49) show again the tetragonal
symmetry about the s-axis, since l& and l2 can be
exchanged.

In the special case where c»—c»—2c«=0, Eqs.
(47) to (49) reduce themselves to

(/1+/2')//3'= (cii—c33+2c44)/( —cii+ci3+2c44). (50)

The compressional direction given by Eq. (50)
therefore possesses rotational symmetry about the
s-axis.

The specialized Green conditions for the tetragonal
group under consideration follow from Eqs. (43) to
(45) as


