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Theory of the Fine Structure of the Molecular Oxygen Ground State*
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A rather complete solution for the fine-structure problem in the
oxygen molecule is given in the framework of the Born-Oppen-
heimer approximation. The reduction of the effect of the electronic
state on the 6ne structure to an eRective Hamiltonian, involving
only the resultant electronic spin in addition to rotational and
vibrational quantum numbers, is demonstrated. In this Hamil-
tonian the parameters ) and

tabb
measure the eRective coupling of

the spin to the 6gure axis and the rotational angular momentum,
respectively. The contributions to these parameters which are
diagonal in electronic quantum numbers, namely X' and p,', are
evaluated by using an expression for the electronic wave function
as a superposition of configurations. It turns out that X' gives
almost all of X, whereas p' gives only 4 percent of p, . The second-
order contributions of spin-orbit coupling and rotation-induced
electronic angular momentum to ) and p, and the electronic con-
tribution to the effective moment of inertia are related to each

other and to certain magnetic eRects to be given later. This inter-
relation enables them all to be essentially evaluated experi-
mentally.

The eRective Hamiltonian is diagonalized through terms in
(It/hcc)s and the eigenvalues compared with the experimental
spectra. The fitting establishes the constants: p 252.67&0.05
Mc/sec; ).=59 386+20 Mc/sec; 4=t Rdh/dR), =16896+150
Mc/sec; Xs——L(Rt/2) (de/dR')g, = (5&2)X10' Mc/sec; 'A ff(v=0)
=19501.57&0.15 Mc/sec. The transformation that diagonalizes
the Hamiltonian is given with respect to both Hund case (o) and
case (b) bases. These transformations are applied to matrix ele-
ments of Sz. The results are tabulated and applied to calculate
the exact intensity factors for spectral lines, This calculation shows
slight deviations from the usual case (b) results for allowed lines
and predicts quite sizeable intensities for the "forbidden" h,E=2
lines.

LTHOUGH the general principles are well estab-
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lished, there exist few cases in which the Born-
Oppenheimer' approximation has been carried through
to give a complete solution for the eigenfunctions and
eigenvalues of a molecule. The recent publication of a
reasonably good and analytically convenient solution
for the 'Z electronic ground state of 02 by Meckler'
and the existence of precise microwave' and infrared4
data on the energy levels make the oxygen molecule a
particularly attractive one for study. Interest was
increased by the presence of a spin-dependent fine
structure which showed some discrepancies from earlier
theoretical predictions. To develop certain internal
theoretical relations between parameters, and because
of the great diversity of existing treatments, we shall

give a unified systematic treatment that incorporates
the new results and indicates their connection with
previous work. It is hoped that this treatment will

serve as an example that shows the relation between
the wave mechanical electronic theory and the tradi-
tionally matrix mechanical fine structure theory. It
will also show how far the calculation can be carried
in an actual case.

The over-all problem can be stated as. that of deter-
mining the eigenvalues and eigenfuncrtions of the
Hamiltonian operator
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I. INTRODUCTION Meckler which includes the electronic kinetic energy,
mutual repulsion energy, and the attraction to the
nuclei; V„„, is the Coulomb repulsion of the nuclei,
and T„„,is the kinetic energy of the nuclei that can be
decomposed into vibration, rotation, and center-of-
mass motion; BC„ is the spin-orbit energy, and X„ is
the spin-spin energy resulting from the magnetic dipole
interaction between the electronic spins; Xhf, is the
interaction of nuclear magnetic dipole and electric
quadrupole moments with their environment.

The eigenfunctions will be functions of space and
spin coordinates of the electrons, separation and angles
of orientation of the nuclei, and center-of-mass co-
ordinates of the molecule. In general, we would also
have nuclear spin coordinates entering, but since 0"
has no spin these terms do not concern us here. Those
eigenfunctions must be antisymmetric on interchange
of electrons and symmetric on interchange of the 0"
nuclei. The essence of the Born-Oppenheimer approxi-
mation is that we can express the total state function
to a good approximation as

lbe14'vib4'rcgPnnc sp in''trsnsq (2)

and that this approximation can be improved by use of
perturbation theory between functions of this sort.
In determining these functions, we can approximately
compute each P; by considering the f, corresponding to
other energy terms and coordinates to be 6xed, or at

BC=K,i+U „,+T„„,+BC„+K„+5Cs„. (1) least reduced to parameters. Thus Meckler solved for

P,i by considering the nuclei fixed and neglecting the
In this Kei is the electronic energy operator used by

'
T and His result is an enerterms „„„„..., an

E,i(R) and an electronic wave function hei(r;, s, ~E),
with the internuclear distance E.entering as a parameter
and with no dependence at all on the other "lower-
energy" coordinates.

In solving the rest of the problem, we should take
this E,i(E) as the effective potential for vibration and
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use this 1t,i to evaluate such things as the spin-spin
coupling constants. In practice, we shall approximate
E,i(R) by a two-term power-series expansion about the
minimum. This is justi6ed, since we are only concerned
with the two lowest vibrational levels. (For study of the
higher vibrational levels, more terms would have to be
taken or else recourse be made to a Morse curve or
other analytic approximation. ') Thus our vibrational
Hamiltonian is taken to be

X b PgP/——2M+ rsMai, 'R-.'P+bP, (3)

where $= (R—R,)/R„R, is the equilibrium internuclear
distance, and M is the reduced mass. The rotational
Hamiltonian is

X„i= N'/2MR'= B.(1—2(+3P)N', (4)

where N is the angular momentum of nuclear rotation
and 8, is the reciprocal moment of inertia of the nuclei
at R,. The expansion in ( allows for the change in mo-
ment of inertia with centrifugal stretching and vibration.

The effect of X„+X„in determining the fine struc-
ture can be reduced (see Sec. II) to an effective
Hamiltonian,

X,~;„.) The matrix components of the Hamiltonian are
readily obtained (see Sec. III) in a Hund case (a)
basis' characterized by the quantum numbers v, J, M,
S, and Z, where J is the total angular momentum of all
kinds, and Z=S,. This matrix is then diagonalized to
high approximation, yielding E(v,E,J) and the corre-
sponding eigenvectors. These eigenvalues E fit the
microwave results satisfactorily to their limit of ac-
curacy (approximately 1 in 10), explaining the dis-
crepancy mentioned above. This fitting establishes the
constants A„X~, and X2 for comparison with the calcu-
lated values found in II. The eigenvectors are listed
with respect to Hund case (a) eigenfunctions and also
with respect to Hund case (b) eigenfunctions, in which
g rather than S, is diagonal.

With these eigenvectors, the intensities of both
allowed and "forbidden" transitions are calculated in
Sec. IU. This reveals small corrections to the usual
Hund case (b) values for the allowed transitions, and
quite appreciable intensities for DE=2 transitions.
The latter are made possible by the breakdown of the
rotational quantum number Q in the presence of the
spin-spin coupling energy.

s(), y), p+y p)(3gs Ss)+.@@.S (5) II. DEDUCTION OF THE EFFECTIVE HAMILTONIAN

(X;b+X,.i+X.p,
—Z)it;bit, .ig.n, =0, (6)

is by purely matrix methods. (Here, 1(,~;„d s reibces the
state of the resultant electronic spin that enters into

~ I"or details, see G. Herzberg, Spectra of Diatonsic Molecgles
(D. Van Nostrand Publishing Company, Inc. , New Vork, 1950),
Chap. III.

where S is the resultant electronic spin vector, and )~

and p, are spin coupling constants to be determined
from it, i(r;,s;~R). The term in ii will be seen to come
largely from the interaction of rotation-induced elec-
tronic angular momentum with the spin through the
spin-orbit coupling. We shall also see that the principal
part of the term in 'A comes from the diagonal spin-spin
energy in the electronic ground state. It is noteworthy
that if one tried to estimate X from the simple model of
two interacting spins with one concentrated at each
center the values obtained for )i, and ()ii/X, ) would
even have the wrong sign. Thus it is clear that our
more accurate calculation is necessary to explain the
observed behavior of X. In this calculation, exchange
eGects, inclusion of ionic states, and the rapid change of
con6guration mixing coefFicients with E.play the leading
roles.

In (Ois)s we have I=O, allowing only the one state,
, ,~; =1. Thus there can be no hyperfine effects.

The translational motion of the center-of-mass is of
no interest to us here, but ft...„, would be simply a
plane wave satisfying appropriate boundary conditions.
This motion will be neglected throughout the rest of
the paper.

Our solution of the fine structure problem,

The coupling of angular momenta in molecules and
the general methods of establishing an effective fine
structure Hamiltonian have recently been reviewed by
Van Vleck. ~ The calculations of this section are an
application of those general methods to a specific case
which can be carried particularly far. Our choice of
angular momentum notation generally follows that
given by Uan Vleck. One slight extension is the use of
N for the true instantaneous nuclear orbital angular
momentum. Q=N+L= J—S differs from N only by
"high-frequency" oG-diagonal elements of the elec-
tronic orbital angular momentum. We shall introduce
E in Sec. III as the conventional label for the final
eigenfunctions; it has the magnitude of 0 for the pure
Hund (b) state which is dominant in the eigenfunction.

The basis functions in terms of which we shall de-
scribe the state of the molecule are products of the
form (2). In this form the f,i(r;, s; ~R) are solutions to
X,i for the case in which the nuclei are not rotating
and are "clamped" a distance 2 apart. When the mole-

cule rotates, the coordinates r; are referred to the axes
Gxed in the molecule, but the wave function still de-

scribes the system with respect to a 6xed frame. The
p;b are harmonic oscillator eigenfunctions of the inter-

nuclear distance R for the angular frequency of oscilla-

tion ai. ; the P,.t, are symmetrical top eigenfunctions
for a linear rotor with internal spin angular momentum. '

s F. Hund, Z. Physik 36, 657 (1926). These coup1ing cases are
also discussed in reference 5, Chap. V.

~ J. H. Van Vleck, Revs. Modern Phys. 23, 213 (1951).
8 J. H. Van Vleck, Phys. Rev. M, 467 (1929); F. Reiche and

H. Radernacher, Z. Physik 39, 444 (1926); 41, 453 (1927).
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As stated above, P„„,„;„is trivial for I=O, and iP„,„,is
suppressed.

In the lowest order Born-Oppenheimer approxima-
tion, one takes a single product of these eigenfunctions
as the total eigenfunction and takes the diagonal value
of the complete Hamiltonian over it as the energy eigen-
value. This would give the sum of the unperturbed
electronic energy 8„', reasonable approximations to the
vibrational and rotational energy, the diagonal spin-
spin energy in X, and the small diagonal contribution
to p, coming from the magnetic coupling of the elec-
tronic spins in the fieM of the rotating nuclei. However,
it fails to include any electronic spin-orbit eRects
because the 'Z ground electronic state has no net orbital
angular momentum, ' and it fails to account for the
coupling between electronic, vibrational, and rotational
motions such as centrifugal distortion. These latter
eRects are found by going to a second order
approximation.

A. First-Order Contributions

These terms are to be evaluated by finding the
diagonal values of the perturbative term over the elec-
tronic wave function. We start with the spin-spin con-
tribution to the parameter X, defined in (5), which
measures the eRective coupling of the spin to the z

(internuclear) axis.

Spin Spin Con-tribution jo ).

Since Van Vleck gives no formulas for the coefficient
), and since Kramers" treatment is in terms of per-
mutation group theory rather than in the framework
of the usual determinantal method, we must develop
our result from the basic Hamiltonian, "
3c„=g'P'P [(sj"s&)rjw' —3(s,"rj&)(s& r,„)]r;, (7)

where rj&——rj—rA, . By simply expanding into com-
ponents and regrouping, this can be written

The symmetry of the molecule causes all except the
last term to vanish when integrated over the electronic
state. All of these spin functions are of the forms which,
as Van Vleck points out, have matrix components pro-
portional to corresponding elements of S. (This can be
proved by direct multiplication of the matrix elements
of a vector of the type T.") Thus all elements of
(3$j.sw, —s,"sw) are proportional to those of (3S,s
—S'), and the proper dependence of the interaction on
S is shown. To evaluate X, it is convenient to compute
the diagonal element of K„ for the state S,=Z = 1, and
to note that the diagonal part of ) is given by

The f dependence enters because f,i depends para-
metrically on R (or $).

The electronic wave function given by Meckler' is
expressed as a superposition of con6gurations,

uzi =Q,„C„p„, (10)

where each p„ is a determinant or linear combination
of determinants which is a spin eigenfunction with
5=1 and Z=O. The corresponding eigenfunctions for
2=1, obtained by applying S~/W2 to Meckler's eigen-
functions, have been given by Kleiner. " They are
more convenient here because the dominant con6gura-
tion is then a single determinant. The coefficients C„
are given for several values of R. Near the equilibrium
distance R„one configuration (p, =c) is dominant,

~

C,
~

being of the order 0.97. The next largest has C„
of the order 0.1. Since the C's are real, the diagonal
energy is simply

Z„=p„zC„C„H„„. (11)

It is clear that we make an error of the order of only
one percent if we neglect terms that do not involve the
dominant con6guration. Since other sources of error
are larger, we shall make some simpli6cations of this
kind. Our problem then is to compute the matrix
components of

3&jIVjl
jz P 2 (S Si w+S jwS& )

r ))' y;J,
5

3CSS

g2P2 3s,&2 y .&2

2$jzSkz—2»j r I,
'

Sj+Sk +Sj Ss+
(12)

2

3' Ic~j Ic 3SjIcXj'fg

+ (SjwSsz+SjzSww)+ (SjzSkz+Sj*Skz)
yk'

3&r QI 38jjc —yjp
+ (SjzSjcz SjwSkw)+

)( (3$jz$1cz sj' sj'c)

(where s;~ s;,&is;w——) between these configurations.
These matrix components are reduced to sums of

2-electron integrals in terms of single electron orbitals
by the usual methods developed by Slater. "The spin
part of (12) gives a factor of & s depending on whether
the two spins involved are parallel or antiparallel.
Thus, in summing to get the diagonal elements, all
integrals involving paired spins cancel out. For the
diagonal element over the dominant con6guration, for

9 Of course, one could start with electronic eigenfunctions. for
the problem including spin-orbit interaction. These, however,
could not have h., Z as good quantum numbers. As usual, all
magnetic-spin-coupling effects are neglected in Meckler s solution.

'0 H. A. Kramers, Z. Physik 53, 422 and 429 (1929).
"W. Heisenberg, Z. Physik 39, 514 (1926).

"E.U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, I,ondon, 1951),p. 59 A.

"W. H. Kieiner, Quarterly Progress Report No. 9, Solid-State
and Molecular Theory Group, Massachusetts Institute of Tech-
nology, July 15, 1953 (unpublished).

"Reierenee 12, p. 171;J. C. Slater, Phys. Rev. 34, 1293 (1929).
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example, this leaves just

g
—t3 t' t' t' 3s12 —r12

(3C..)..=H..=-
~

'

J
x+*(1)x-*(2)—

4 E~~ r12

Xx+(1)x (2)dr1dr2 —,' x+*(1)x *(2)

l3~12 r12
X X (1)X+(2)dr1dr2 l~ (13)

rl2'

where x~ is Meckler's notation for the 2p2r, + symmetry
orbitals. The subtracted term is, of course, the exchange
integral. To evaluate the integrals, we insert Meckler's
LCAO molecular orbital functions using Gaussian
atomic orbitals. As we shall see, these Gaussians make
it possible to evaluate the integral exactly. After some
reduction, (13) becomes

The integral then becomes

g2—P2K4b' exp( —bR2)
H„=

, (3&'-t'&
X exp( —bp')

I I
(8'—t 2t)'

J 0 p2 j
Xexp (—bp") [coshbRf' —coshbRf72drdr'. (16)

If one replaces these Cartesian coordinates by cylin-
drical primed coordinates and spherical relative co-
ordinates, the integration can be carried out analyti-
cally. Power-series expansion is required for the last
integration. The result is'~

1 exp( —bR2)
H.,=g2p2bl2K42r & —+ +2 exp( ,'bR—'—)

30 15

64g2P—2b'K4
t t.

+Cd [r1 sin81 exp( br1') s—inhbRs17'
~ J

where

XS1(bR')—
exp( —bR')

S1(4bR'), (17)

x [r2 sintt2 exp( —br2') sinhbRs27'

Xsin'(222 —
g 1) (3s12'—r12')/r12'dr1dr2. (14) and

222-1 t'2:) "
S1(x)=P—

n=o1 3 5 (222+5) (2)

This resembles the classical average of the interaction
between two identical electron clouds, each of which is
concentrated in two toroids of charge encircling the
axis of the molecule at the two nuclei. The axis is a
nodal line and the perpendicularly bisecting plane is a
nodal plane because of the p2r, nature of these x~
orbitals in which the unpaired spins are most apt to be
found. However, the factor sin2(p2 —

221) gives a corre-
lation in position tending to concentrate the two inter-
acting electrons in perpendicular planes through the
axis. This correlation is a direct result of the exchange
integral and hence of the antisymmetry of the wave
function. Also noteworthy is the fact that there is a
large chance of both electrons being near the same
center. This is the result of having ionic states given
equal weight with nonionic states in a simple molecular
orbital treatment. The principal contribution to the
integral then comes when the two electrons are on the
same center [because (3s122—r122)/r122 is large then7
and in perpendicular planes. Also, viewed in this way,
the seemingly anomalous sign of X is explained. Thus
the characteristic distance of separation for the inter-
action is the atomic radius, not the internuclear
distance.

Evaluation of (14) is made possible by changing
variables to

K'= [1—exp( —bR'/2)7 '

%e note that. this is the product of a characteristic
energy g2P2b'*depending on the atomic scale factor b

times a dimensionless factor which is a function only
of bE2, that is, of the degree of overlap of the two atomic
orbitals. The latter is true, since exp( —bR') is the
amplitude of one Gaussian orbital at the center of the
other. Computation shows that the dependence on bE2

is very weak. The total range E varying between zero
and infinity, is only 30 percent; and since the region of
interest is near a minimum, it is very nearly constant
there. Thus the principal dependence of Il„on the
molecular wave function is on the degree of concentra-
tion of the atomic orbitals as measured by b& (1/r').
This result should be independent of the detailed
choice of wave function.

Kleiner13 has noted that the Gaussians used by
Meckler give a very poor value for (1/r') because of
their failure to rise rapidly near r=0. In view of these
remarks, it seemed best to fit the b in the Gaussian to
give (1/r') for the atomic orbital equal to that com-

puted from the Hartree-I'"ock wave function of the
oxygen atom. "This gave b=1.696, as opposed to the
value b=0.8 (atomic units) chosen by Meckler from
consideration of overlap. Numerical results are given

+12 +1 2 2r

'9= y12= yl y2

S12 Sl S2)

t12 —@+2t2+i 2 —r 2

$'= X1+X2,

rt'= y1+y2,
|'=&1+&2.

(15)

"Following Meckler's notation we use J, E', I, and 3E to
denote normalization constants in electronic wave functions. No
confusion with the usual angular momentum quantum numbers
should result.

"Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London)
A238, 229 (1939). A very useful analytic fitting as the sum of
three exponentials is given by P. 0. Lowdin, Phys. Rev. 90, 120
(1953l.
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with this higher value of b used in the b& factors, but in
the overlap factors, bR' has Meckler's value.

Other matrix elements computed in a similar way are
given in Appendix A. Using these results, the numerical
values of the matrix components were evaluated for
8=2.236 and R= 2.372 atomic units, corresponding to
MP=4.0 and 4.5. These values bracket the equilibrium
distance E,=2.28. The coefficients C„were determined
for these same values of E. by interpolating between
Meckler's given values. The nonvanishing results are
given in Table I, with energies expressed in kMc/sec.
From these energies, the spin-spin contribution to X

was computed, and the results are compared with the
experimental values (obtained in Sec. III) in Table II.

In view of the crudeness of the Gaussian approxima-
tion, these calculated results must be considered un-
reliable despite the adjustment made in b. This is
illustrated by the fact that even for the Hartree-Pock
function (1/r') is 29 percent less than the "experi-
mental value" obtained from the magnetic hyperhne
structure in 0"0' by Miller, Townes, and Kotani. "
Although the uncertainty of interpretation of the latter
makes it unwise to make a further adjustment of b, it
does indicate that our calculation is apt to under-

estimate the true magnitude.
We thus conclude that the spin-spin interaction pro-

vides the major part of the coupling constant X. This
conclusion is supported by the estimation of the con-
tribution of second-order spin-orbit effects given later
in the paper.

Inspection of Table I reveals that the R dependence
of t, which determines ) 1, comes almost entirely from
the change in the configuration mixing coefFicients C„,
the values of the matrix components being relatively
constant. Presumably this behavior would also hold if
a wave function constructed from better atomic orbitals
were used. This presumption is strengthened by the
fact that Ishiguro has obtained similar configuration
mixing coe%cients in a treatment now in progress
using better orbitals. "This mechanism for the change
in ) again shows that a rather detailed examination of
the electronic wave function is necessary for explaining
the observed values of X.

TABLE I. Contributions to the spin-spin energy
as given in Eq. (11).

TABLE II. Comparison of calculated and experimental
values of X (kMc/sec).

Xi——(Ch/dP),

Calc.

35.0
19.6

Exp.

59.386
16.90

—gp Zxe
LrzXvz] s;. (19)

The velocities and coordinates are measured in a fixed
frame but referred to gyrating axes. As Van Vleck
points out, it is permissible to replace v~ by ~)&r~ or
(Q/MR')Xrx, since the difference between the true
nuclear angular momentum N and Q is only the oscilla-
tory electronic orbital angular momentum which aver-
ages to zero in this sort of an interaction. We assume a
rigid nuclear frame, so the r~ are constant vectors of
+-,Rk, where k is a unit vector in the s-direction.
Also R,= 0, since we have a diatomic molecule. Finally,
symmetry causes terms which are odd in x; or y; to
vanish. By using these facts, expansion of II& in com-
ponents reduces to

—4Z gPPiv z;—R/2
R.

rj+
K]

A
(20)

Here, Z is the atomic number, A is the atomic weight,
p~ is the nuclear magneton, and r;x is

l r;—sRkl.
Matrix components of the bracketed operator are

reduced to sing1e electron integrals by the method of
Slater. "Since Q, =O, we have only terms in s, and s„,
which are both nondiagonal in Z. Thus we seek ele-
ments that are diagonal in orbital quantum numbers
but off-diagonal in Z. Using Meckler's' dominant
configuration c, namely, (I+I,)/W2, for X=0, and
Kleiner's" derived configuration P, for 2=1, applica-
tion of the general methods yields

nuclear Contribution to p

Van Vleck's' Eq. (37) gives the magnetic interaction
energy of an assembly of electron spins with each other
and with the electronic and nuclear orbital motions.
The only terms giving diagonal contributions in a Z
state are the spin-spin energy evaluated above and the
terms having nuclear rather than electronic velocities
as factors. Separating out the latter, we have"

H
40 45

Combined
coeKcient

4.0 4.5

Contribution to
energy kMc/sec

4.0 4.5
(cz=olx, , l

ex= 1)
1=—L(x-p l ail x-~)+(x+0 I ~il x+~)3.

Hcc =Hee 27.656 27.286
Hdd =Hff 20.370 20.148
Hery, =Hej 39.434 38.998
Hcg = —Hch = —Hcs 186.22 191~ 10

0.9620 0.9526 26.606 25.992
0.0165 0.0210 0.335 0.423-0.2494 -0.2788 —9.820 —10.866
0.0321 0.0436 5.974 8.324

23.095 23.873

The single electron spin operators s; and s;„in 3'.1 yield
contributions which are just 1/V2 times the matrix

'~ Miller, Townes, and Kotani, Phys. Rev. 90, 542 (1953)."E. Ishiguro (unpublished).

"Correcting the trivial omission of r;~ ' in his more general
Eq. (39).

"Refereg, ce 12, p. 169,
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elements of S, and S„.Also, I x I
'=

I x+ I
', so that the

two orbital integrals can be combined. This reduces the
element to

(cZ =013(',
I
c~= 1)

—4Z gPPrr s—R/2

A E (x+ x+ Ig. s=&'e s. (21)
rxs )

This effective Hamiltonian form shows that this term
gives a cosine-like coupling of the spin in the magnetic
6e1d of the rotating nuclei.

The 6nal problem is to actually evaluate the co-
eScient p' by integration over the electronic x+ orbi-
tals. To carry this out, we transform to spherical
coordinates about the nucleus at s=R/2. The integra-
tion then proceeds just as in' the evaluation of the spin-
spin energy and leads to

—4ZgPP~ ( 2
E'I

I exp( —bR')
A R' &abR')

where

)&LSs(2bR') —s exp( —bR')Ss(8bR')$, (22)

(8rt+1) t'x) "
Ss(x)=P—

e=r 1.3 5 (2m+1) (2)
(23)

Noting that this depends on b only through the overlap
parameter bE' and not on the atomic scale factor b

separately, this should be evaluated by using Meckler's
b=0.8 atomic unit, not the value obtained above by
fitting (1/r'). If this is done, the result is p,'=+10.0
Mc/sec, compared to a total experimental value of
p= —252.7 Mc/sec. This shows that the magnitude of
the 6rst-order contribution is only 4 percent of the
total value, the rest being from the second-order eGects
of spin-orbit coupling discussed in the next section.

To make the physical nature of this 6rst-order term
clear, we note that simply calculating the energy of the
electron spin in the magnetic 6eld at one nucleus due

to the rotation of the other about it would give a
coupling constant of 2(Z/A)(gPP~/R') or about +8
Mc/sec. The increase in magnitude from 8 to 10 Mc/sec
is the result of distributing the electron over a region
of radius R/2, giving an increase in ((e R/2)/r, xs). —
From this picture, we see that the dependence of p,

' on
the detailed electronic wave function is of secondary

importance. Further, p' makes only a small contribution
to p. Finally, there are no o6-diagonal elements of 3C&

between the dominant P, configuration and the others
in Meckler's wave function. Thus any contributions
from the other configurations would be second-order
effects of the order of one percent of p' or 0.1 percent
of p. In view of the other more serious sources of error,
it was not considered worth carrying this calculation

further in order to evaluate these corrections.

B. Second-Order Contributions

Perturbation of the Etectroeic State

As our 6rst step in improving the zeroth-order eigen-
function and first-order energy, we find the modification
of the 'Z ground state by spin-orbit and rotational
e8ects. We assume the conventional approximate form
AL S for the spin-orbit coupling energy rather than
try to handle the rigorous microscopic Hamiltonian in
terms of coordinates, velocities, and spins of the in-
dividual electrons. 2' The rotation-electronic coupling is
through the term —2BL R in the rotational energy s'

X...=BN'= B(Q —L)'
=BR'—2BQ L+B(I..'+I. '). (24)

This cross term is precisely the effective perturbing
term that appears in the electronic problem if the time-
dependent problem of motion with respect to a classi-
cally rotating set of force centers is reduced to 6nding
a wave function that is stationary with respect to the
rotating frame. " If we assume that electronic excited
states lie reasonably high, we can take account of these
eGects by 6rst-order perturbation theory with the
result that

(I I
A L S—2BL R

I 0)
go=it o'—2 g, 0

The indicated matrix elements are quadratures over
orbital functions. Since the operators S and Q are
independent of the orbital wave functions, they may be
simply taken out and treated as numbers at this stage.
We note that elements of L, are diagonal in A. and pro-
portional to A and thus vanish for the Z state with
which we are dealing. Further, in a held of axial sym-
metry, we have the relation'4

all other elements vanishing. Thus the perturbed 'Z

wave function has only x states mixed in, and the
mixing is proportional to the matrix elements of elec-

«' This rather phenomenological replacement is supported by
the considerable success it has had in application to molecular
spectra by Van Vleck LPhys. Rev. 33, 467 (1929)g and others. It
is theoretically insecure in that even for the one electron case the
form 1 s is rigorous only in a central 6eld. For the case of many
electrons, it is necessary to consider a form at least as general as
Z;u;1;- s; to get the possibility of matrix elements between states

of di&erent multiplicity (R. Schlapp, Phys. Rev. 39, 806 (1932)7.
Despite these objections, we adopt the assumption as the most
reasonable one-parameter form, since more rigorous calculation
with the exact interaction is precluded by computational difhculty
and the lack of reliable wave functions for excited states.

~ The B in this expression is the half reciprocal moment B~
of the bare nuclei, the electronic contribution to the rotational
energy being given explicitly by the cross terms. To simplify no-
tation, we simply write 8 here. Xt is included in the quadrature
because it is still an operator. We would only neglect the higher
order effects of vibration on the electronic motion through the
rotation by replacing J3 by the constant 8, without any

&dep-

endencee.
~ G. C. Wick, Z. Physik 85, 25 (1933);Phys. Rev. 73, 51 (1948).
'4 See reference 7, p. 219,
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tronic orbital angular momentum perpendicular to the axis.

(» I «, IO)S,- (nl2BI., IO)I,
4'=4~' —Z (27)

Specs on Energy

Next we And the contribution of these perturbation terms to the energy. This is

I:(nl ~L.I0)s.—(nl 2BL g I0)&.X(nl ~I-'10)*sg *—(nl 2BL' I0)*@'*3

n gg' & —~o
(28)

Using the property (26) of the matrix elements of I.,
we see that xy terms drop out, and this reduces to the
form

Z"=-'~"
I 3S '—S(S+1)$

+p"Q S—B"Q'+const, (29)

where

l(nl~L. I0) I' „ l(nlBL I0) I'

+n ~0 n gn —Pp

(0

I'LL.

ln) (nlBL, I0)
p,"=4Re Q—

These results are the same as those found by Hebb"
except for a factor of two stemming from the fact that
he counts each x state once whereas each appears twice
(as h.=&1) in our expression. The term in )," is the
second-order effect of the spin-orbit energy and turns
out to be small. The term in p,

" gives the spin-orbit
coupling energy to the electronic angular momentum
of the x states admixed by the rotation. 8" lowers the
effective reciprocal moment of inertia from the nuclear
value, 8&, essentially by the addition of electronic
mass to the rotating frame. "

Since the actual matrix elements required cannot be
calculated in the absence of wave functions for the m

states, these sums cannot be evaluated from first
principles. However, to a reasonably good approxima-
tion these may be simpli6ed by treating A and 8 as
constants rather than as functions of the configuration.
In particular, 8 can be considered to have the value
observed in the electronic ground state and the order
of magnitude of A can be estimated from the multiplet
separation of the m states. With A and 8 removed, a11

the sums become the same, namely,

(31)

"M. H. Hebb, Phys. Rev. 49, 610 (1936).
26 It is interesting to note that the diagonal value of H, I itself

is raised by precisely 8"Q due to the increased momentum of the
electrons with respect to the 6xed frame. The nuclear' energy is
lowered by 28"Q~ because the added mass reduces its share of the
quantized total angular momentum. The net eBect is the lowering
of energy quoted above.

The right member is merely symbolic, but if we use
Van Vleck's "hypothesis of pure precession'"' it could
be used to infer the characteristic energy separation
hv. This sum then becomes a single disposable pa-
rameter, and theoretical relations between the various
quantities become possible. This feature is greatly en-
hanced by the fact that the theory of the interaction
of the molecule with a magnetic field (to be given in a
subsequent paper) reveals two other experimentally
accessible quantities of this same form. By combining
all of these, a remarkably complete separation of effects,
with some internal checks, becomes possible.

C. Analysis of Results

If we now collect the terms that depend on other
than electronic coordinates, we have the effective
Hamiltonian for vibration, rotation, and spin orienta-
tion. It is

+ ii —P~&/2~+ i~(g &g &P+$P
+BR'+-'X(3S '—S')+p,g S (32)

where
B=B —B", X=X'+X", p=y'+p". (33)

Because they enter in exactly the same form, )', )";
p', p,",and 8, 8"will be indistinguishable in the eigen-
values of this operator. They can be separated, however,
if one uses the results of the theoretical calculations and
of the Zeeman-eGect experiments.

With the known experimental value of p=p, '+p"
(see Sec. III), and the value of y' calculated in the
previous section, we can determine p,

" to be —262.7
Mc/sec. Taking B=43.1 kMc/sec, this implies that
AI. (1+1)/hv is —1.52X10-' which is consistent with
reasonable values of A, 1.(1+1),and hv. In particular,
the minus sign checks with the plus sign for A in the
m states of 02+ according to Van Vleck's general theory. "
Using the value A = —21 cm ' indicated by the Zeeman-
effect studies, we find X" to be 465 Mc/sec, leaving
58 920 Mc/sec of the experimental value to the first-
order spin-spin mechanism. This establishes the previ-
ous statement that the spin-spin contribution domi-
nates. In fact, the second-order contribution is so small
that errors in its estimation will not introduce much

~7 See reference 8, p. 488.
~' See reference 8, p. 499,
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uncertainty in the correct value for the spin-spin part.
Therefore X serves as a reliable check on the quanity
of the wave function. The facts are that the calculated
value was 40 percent low even after adjusting b to
give a better approximation to the Hartree-rock atomic
orbital near the nucleus, and it was 80 percent low
with Meckler's choice of b. We must conclude that
wave functions chosen to minimize the electronic
energy cannot be expected to give good results for a
quantity which has a dependence on coordinates that
di8ers from that of the electronic energy. On the other
hand, if a wave function did give a good result for P as
well as for the electronic energy, there would be grounds
for believing that it is a superior approximation to the
true eigenfunction.

Vsing the same values for 8 and L(L+1)/hy, we

compute 8"= 17.3 Mc/sec, which is a correction of 400
ppm (parts per million). The usual procedure of using
atomic rather than nuclear masses reduces this correc-
tion by 270 ppm, leaving 130 ppm. Since the experi-
mentally quoted values for 8 from infrared data are
presumed to be accurate to 10 ppm (being quoted to
1 ppm'), it is clear that this rather sizable correction
should be applied in inferring the internuclear dis-
tance from B,g~ and the atomic masses. This correction
decreases the computed E. by 65 ppm. Recalculation, "
using Herzberg's value for (8,«), and the newly ad-
justed atomic constants, yields E,=1.207415 A.

8=8,(1—2$+3P)

X=X,+Xip+XsP.
(35)

The expansion of 8 to allow for the nonrigidity of the
molecule is well known. The erst two coe%cients in the
expansion of X have been estimated theoretically in
Sec. II but all three are treated as parameters to be
evaluated by fitting the experimental data. No $ de-

~'It is significant to note that the recommended lease-squares
fitted value of (lA/c)&, which enters in the conversion, has in-
creased by 76 ppm between 1947 and 1952 D. W. M. Dumond
and E. R. Cohen, Revs. Modern Phys. 20, 82 {1948)and 25, 691
(1953)g. By chance, this almost exactly cancels this new theo-
retical correction for the electrons. Thus it is clear that the last
decimal places of quoted values for 8, are significant only when a
precise allowance can be made for the electronic contribution and
even then only to the limit of our knowledge of the fundamental
constants.

III. SOLUTION OF THE FINE-STRUCTURE PROBLEM

A. Energy Levels and Spectrum

As outlined in Sec. I, our problem is to 6nd eigen-
values and eigenvectors for the Hamiltonian operator
X=X;b+X„t,+X,a;,. Since we will solve this in a
Hund case (a) representation with v, t, M, 5, and 2
diagonal, we eliminate Q from (32) by noting that
Q= J—S. This leads to

X=8 '/2M+ 'Moi 'R 'P+bP-+8J'+2)5 '
+ (lj, 28)J S+ (8——P—-,')I,)S', (34)

where

pendence has been given p, because the same value
suKced for both ~=0 and v=1 states as observed in
the infrared spectra" whereas a change in t was
required.

The required matrix components are (suppressing
quantum numbers in which the element is diagonal and
which have no effect on its value, and suppressing h):

(Ji J'i J)=J(7+1),
(»is, i») =z,
(J»l J S l~»') = lL~(~+1)—&(~~1)j'

XLS(5+1)—Z(2&1)$'5z, zpi+Z'hz, x,

(tt
i ]I

n') = elL(v+1) l5„,„~i+z-*b„,„ ij,

(n I P I
z') = eL(z+ 1)'(a+2) '5"..+s+ (»+1)5",,

+t **(v—1)*5„,„,),
(zII'I")= '*L(a+1)'( +n2)'( +n3)'~".+ s,

+3(e+1)'8„,,+t+3t *8„,„ i

+zl (z-1)l(n —2)l5„„s]

(36)

where e =B,Pioi, =h/2MB. soi, and 5, „ is the Kronecker
symbol. The elements of J.S are obtained by noting
that J satis6es the "reversed" commutation relation~
in the gyrating frame and that J,=Z since E,=O.
Since S obeys ordinary commutation relations, we have
the result given above. The elements of P and P are
obtained by matrix multiplication of the familiar
matrix elements of f for the harmonic oscillator.

Using these elements, the Hamiltonian matrix is
readily written explicitly. Since all elements are di-
agonal in J, M, and S, we can write the elements
simply as (vZ

~
X

~

z'Z'). Since the vibrational level
separation is so large, compared to rotational and spin
energies, we can apply the Van Vleck transformation
to reduce this matrix to an eBective Hamiltonian
matrix for the structure within each vibrational level. "
Using

(tZ
i Xi z'Z") (n'Z" iX i'')

(vZ
i
II.ii [

nZ') = —P (37)
X"v'

we obtain a 3X3 matrix between the 2=&1,0 states
for a given vibrational (and total angular momentum)
state. Including terms of order e',32 these reduced ele-

"In some excited states, such as the 'Z„state, p, is an order of
magnitude larger than it is in the ground state, and its g de-
pendence can no longer be overlooked (P. Brix and G. Herzberg,
Can. J. Phys. 32, 110 (1954)g. Inclusion of this 5 dependence
would involve no difBculty. However, for the high vibrational
states observed in the 'Z„state our simple approximation to the
vibrational potential would have to be greatly extended. We
avoid these accumulating complications by confining our treat-
ment to the ground state."E.C. Kemble, The Fundamental Principles of Quantum Me-
chanics (McGraw-Hill Book Company, Inc. , ¹wYork, 1937).

"Detailed consideration shows that a somewhat more accurate
treatment in this case of the anharmonic oscillator is obtained by
replacing e =B,/Aced, by e' =Bus~/hcoo&, where Aero& Eo (s=1)——
—Eo(s= 0). This has been done in the numerical evaluations,
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ments are

w= (vJ1la.ft~ vJ1) =B„J(Jy1)
—c'[(88—SXi)J(J+1)+48J'(J+1)]

x= (vJO~ Heff
~
vJO) =—(2)t„+p)+8 (J'+1+2)

—e'[48 (Js+J+2)'+168J(J+1)

+16yt(J'+ J+2)/3+4yP/38]

y= (vJO(H, ff(vJ1) =[J(J+1)/2]'*
X {Ia—28„+e'[168(J'+J+1)+SXt/3]},

s= (vJ1I,IIen~v J 1)= ——e'88J(J+1),

where
8„=8,[1+(2v+1) (3e+12be'8—')],
X„=X,+ (2v+1) (ebs —6be'8 9,r).

(38)

(39)

60

50—
O
hJ
cA

O
Z

o 40-

I

&0-
I

~+
+

20—
I

IO-

We note that large vibration-dependent terms can be
taken out by dehning v-dependent constants X, and 8,.
This is the first-order Born-Oppenheimer approxima-
tion. However, there are higher-order centrifugal dis-
tortion terms that cannot be eliminated in this way.
In these terms the distinction between 8, and 8„ is
unnecessary and the subscripts are dropped. (Numerical
evaluation was actually made with the use of 8„.) The
diagonal elements given here are such that the zero of
energy is

Eo(v) = (v+-', )&~.
—30b'e'(k(o, ) '(v'+v+11/30)+ P,„—y. (4())

Application of the Wang" symmetrizing transforrna-
tion to the Hamiltonian matrix with the elements (38)
yields a factored secular equation by separating sym-
metric and antisymmetric states. This allows an exact
solution, the eigenvalues being

E—E.(v) =w —s,
-', (w+x+s) W {[(w—x+s)/2]'+2y'}. (41)

The results can be stated concisely as

E(J=E)—Ee(v) =w s-
= (8„+Se'X /3)K(E+1) —48e'E'(E+1)s, (42)

v (K)=E(J=K) E(J=K 1)=X—„+ic/2+8—„(2E—1)
+4es[8 ( 4K'+6K' 6E+—2)—
+ (Xr/3) (3E'+K+4+)I.r/28)]

3—[PA„E"(E—1)-]-'*, (43)
n=o

v+(E) =E(J=E) E(J=K+1)=—X„+p/2 B„(2K+3)—
+4c'[8(4K'+18K'+30E+18)
+ (Xt/3) (3E'+SE+6+Xr/28)]

3

+[/ A (E+1)"(E+2)"]&, (44)
n=O

"S.C. Wang, Phys. Rev. 34, 249 (1929); King, Hainer, and
Cross, J. Chem. Phys. 11, 27 (1943).

0
I $ 5 7 9 II I 5 I5 17 l9 21

K

FIG. 1. Comparison of theoretical and experimental depend-
ence of the sum v (E)+v+(X 2) on the—rotational quantum
number E.

where

A s ——[(P,„+fc/2 —8„)+e'(88+ 16Kr/3+ 2KP/38) ]'
A t——[jc—28„+e'(168+8)I.&/3) ]'+e'(168+8)t r)

&& [X+ic/2 —8+e'(88+ 16Xt/3+ 2KP/38],

As= e'{328[(p—28)1e'(168+2Xr/3)]

+e'(88+ 4Ãr)'}
A 3= e'2568' (45)

J=O is a special case in which the secular equation
reduces to a linear one. The results are

E(J=O, E=1)—Es(v) = —(2X.+p)
+28, 4es(48+SR,/3—+),P/38)

and
v (1)= 2)j,„+p+ 16e'[)tt+XP/128]. (43')

These results are labeled using E as the rotational
quantum number to conform to the usual practice.
Because of the spin coupling, R' is not a rigorous con-
stant of the motion, but E describes the dominant
value of 0 when the eigenfunctions are expanded in a
Hund case (b) representation. The fact that the state
function of (0")s must be totally symmetric on inter-
change of nuclei requires that only states with odd E
exist. This restriction does not exist with O"0' or
P16Q18

In 6tting the spectrum it is useful to note that

v (E)+v+(E—2)
=2) .+a+8") r (E'—K+2+)i,/68). (46)

The precision with which this parabolic form 6ts the
experimental data is shown in Fig. 1. By considering
sums of this sort, one readily determines (2X,+p) and
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TAr&LE HI. Experimental spin coupling constants (Mc/sec).

X,=59 386+20
XI ——16 896~150
Xs——(5+2))(104

) (p) =59 501.57+0.15
&&I) =59 730.00+40

p, = 252.67+0.05

) &. With these constraints, p, and )„are separately fixed
by considering individual frequencies, using (43) and
(44). Because the results are so insensitive to B, b, and
or„ the precise infrared values were used rather than
attempting a 6tting from the microwave data. In
making the conversions, the velocity of light was taken
to be 2.99790&&10&s cm/sec. Some of the derived con-
stants are B&s&

——43.1029 kMc/sec, f&= —32.012 kMc/
sec, and e=B&o&/Ito&oi=0 92384X10 '.

To determine X~ it is necessary to use data from an
excited vibrational state. For this purpose, the infrared
data of Babcock and Herzberg' for the t&=1 state of
(0")s were fitted with (46) to determine X&„=i&. This
fitting gave a result agreeing within its precision with
the value obtained by Babcock and Herzberg by fitting
the less accurate Schlapp'4 formula.

The results of all the fittings are tabulated in Table
III. The indicated errors in X are the statistically ex-
pected standard errors in the quoted mean values.

Table IV lists all of the microwave experimental
data"' '7 and the theoretical frequencies computed by
the use of these constants and formulas (43) and (44).
The quoted 6tting was made using the data of Burk-
halter et al.' and of Gokhale and Strandberg, "neglecting
the apparently erroneous v (25) and the wave-meter
measurements. Since then the data of Mizushima and
Hill" has become available. It improves the previous
values of v (1) and v (25) and fills in some gaps in the
spectrum previously known only to wave-meter ac-
curacy. If 'A(0~ and X& are determined by fitting this new
data with (46), the means agree with the above results
well within the standard error, but the standard errors
in the new data are twice as large as the old (which are
quoted above).

At this point, let us relate this solution with previous
ones. In the works of Kramers, " of Hebb, " and of
Schlapp" the nonrigidity of the nuclear framework is
neglected. Thus e=B/ko&=0. Further, all their results
are in error in that B must be replaced by (B—-',p).
Kramers and Hebb both quote their results only to
first order in )&,/B, but Hebb indicates the manner in
which the more exact solution using the radical is
obtained from the work of Hill and Van Vleck."
Schlapp gives the form with the radical. His solution
gave satisfactory agreement with the infrared data,
provided that different values of 8 and X were chosen
for excited vibrational states.

'4 R. Schlapp, Phys. Rev. SI, 342 (1937).
'5B. V. Gokhale and M. W. P. Strandberg, Phys. Rev. 84,

844 (1951).
~ M. Mizushima and R. M. Hill, Phys. Rev. 9B, 745 (1954).
3~ Anderson, Johnson, and Gordy, Phys. Rev. 88, 1061 (1951)."E.L. Hill and I, H. Van Vleck, Phys. Rev. 32, 250 (1928).

Burkhalter
et al.a

Experimental
Gokhale and
Strandbergb

Mizushima and
H1llo Calculated

56 265.1
3 58 446.2
5 59 610~
7 60 436~
9 61 120~

v+ (E)
56 265.2~0.5 56 265.6&0.6
58 446.3&0.4 58 446.2+0.2

59 591.4~0.2
60 433.4~0.2
61 149.6~0.2

56 264.7
56 446.9
59 591.5
60 435.5
61 151.3

11
13
15
17
19

61 800.2
62 411.7 62 412.9~0.8
62 9708
63 568.3
64 127.6

61 799.8+0.4
62 413.8~0.4
62 996.6~0.2
63 567.2~0.2
64 128.0~0.8

61 800.9
62 411.9
62 998.5
63 568.7
64 127.6

21 64 678.9 64 678.2~0.2 64 678.2
23 65 220~ 65 224.2~0.8 65 222.7
25 65 770~ 65 762.6

118745.5'
3 62 486.1 62 486.2~0.4
5 60 306.4
7 59 163.4 59 164.2~0.2
9 58 324.0 58 324.9~0.3

118750.5&0.5
62 487.2~0.4
60 308.0~0.2
59 163.4~0.2
58 323.2~0.1

118 750.7
62 486.7
60 306.1
59 164.0
58 323.6

11
13
15
17
19

57 612.0
56 968.7
56 362.8
55 784.1
55 220.8

57 612.3~0.4

56 364.2 &0.5

57 611.4a0.2
56 970.8~0.4
56 364.0~0.4
55 784.6~0.4
55 221.6~0.4

57 612.1
56 967.8
56 363.1
55 783.6
55 221.5

21 54 672.5
23 54 130.0
25 53 592.2

54 129.4~0.4
53 599.4&0.8

54 671.6
54 130.9
53 597.3

See reference 3.
b See reference 35.
6 See reference 36.
& Wave-meter reading.
& See reference 37.
~ B.V. Gokhale, Ph. D. thesis, Massachusetts Institute of Tech-

nology, 1951 (unpublished).
4s S. L. Miller and C. H. Townes, Phys. Rev. 90, 537 (1953).

The precise microwave measurements of Burkhalter
et al.' revealed substantial deviations from the Schlapp
formulas. In particular, the sum v (E)+v+(E 2) w—as
not constant as predicted by the Schlapp formula (our
(46) with c=0), but increased with E. Burkhalter
obtained a reasonable 6t by empirically adding 8E
++K(E+1) r' to Schlapp's v (E), leaving v+(K) un-
changed. Gokhale" considered the effect of centrifugal
distortion on 8, but assumed A, and p independent of E.
Thus he failed to obtain a theoretical explanation for the
deviations. He did, however, correct the confusion be-
tween 8 and 8—-',p, as did all succeeding workers.

Miller and Townes" reviewed the problem, and fitted
the spectrum satisfactorily by making both 8 and ) in
their formulas depend on E; through centrifugal distor-
tion correction terms proportional to E(K+1). Their
formulas are

v (K) =h+pK+ (2E—1) (B ,'lJ,)—-
—[Xs—2)&, (B—-',p)+ (2E—1)'(B—-'p)'ji

v+ (K) =X IJ, (K+1)—(2K+3)—(B—-,'&u)
(47)

+P. —2) (B—-',&)y(2K+3) (B—-'i) ):.
TABLE IV. Comparison of experimental and calculated frequencies

in Mc/sec for (0")2 fine-structure transitions.
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Since these formulas are derived from a secular equa-
tion connecting several E states, the values of 8 and
) are not well defined and this procedure is not rigorous.
Further, it fails to give a value for dX/dR, and it fails
to provide the single Hamiltonian (for all IC) needed
in deriving diagonalizing transformations preparatory
to introducing other perturbations. Finally, while this
work was being completed, Mizushima and HilP' have
published a treatment that takes account of centrifugal
distortion under the adiabatic approximation but as-
sumes a harmonic vibrational potential. This treatment
fails to provide a value for P, or ) 2,

"and does not give
the diagonalizing transformation. Thus the present
treatment verifies Mizushima and Hill's general results
and gives somewhat more information about the mole-
cule. The closeness of fit to the experimental data is
about equal to that of the methods of Miller and
Townes and of Mizushima and Hill.

B. State Functions

We now obtain the 3&(3 diagonalizing matrix which
expresses the eigenvectors of the matrix (38) in the
Hund case (a) representation. Our eigenvalues as given

by (41) are inserted into the matrix equation

TABLE V. Transformation coefficients of eigenvectors. az and
cq give Os eigenvectors with respect to Hund (o) basis, and og'
and cJ' give Hund (b) eigenvectors with respect to Hund (a)
basis, by use of Eq. (49). bz and d z express 0& eigenfunctions with
respect to Hund (b) basis by Eq. (54).

J aJ

2 0.480462
4 0.489369
6 0.492680
8 0.494413

10 0.495480
12 0.496202
14 0.496723
16 0.497117
18 0.497424
20 0.497671
22 0.497873
24 0.498042
26 0.498185

0.518803
0,510410
0.507214
0.505525
0.504480
0.503769
0.503256
0.502867
0.502562
0.502318
0.502117
0,501950
0,501808

aJ'

0.547723
0.527046
0.518874
0.514496
0.511766
0.509902
0.508548
0.507519
0.506712
0.506061
0.505525
0.505076
0.504695

CJ

0.447214
0.471404
0.480384
0.485071
0.487950
0.489898
0.491304
0.492366
0.493197
0.493865
0.494413
0.494872
0.495261

bJ

0.990351
0.997059
0.998594
0.999178
0.999462
0.999620
0.999717
0.999782
0.999825
0.999858
0.999881
0.999900
0.999914

0.138582
0.076638
0.053009
0.040530
0.032813
0.027569
0.023776
0.020902
0.018652
0.016842
0.015355
0.014112
0.013057

Using this latter transformation, we may transform
(48) to a Hund case (b) basis. The result is

2=J—1'n 0 5

B,it= J' '0 P 0
J+1 .5 0

where

J
n=B„J(J 1)—2X„—— +pJ—e' 4BJ'(J 1)s-

2J+1

where
{H,tt —[8+Zs(e)j}/=0,

ZO

II~gg = p g

8 J(J 1)' 4 Xts—J
+-)ti +-—

3 2J+1 3 B 2J+1
P= B„J(J+1) e'J(J+ 1)[—4BJ(J+1) (8/3))tri, —

The quantities m, x, y, and s are matrix elements de-
fined in (38). The result of solving this equation is the
transformation matrix:

2 J (4K=J 1) fK Jg QK=J+-r)

y =B„(J+1)(J+2)—2X„—p(J+1)
2J+1

8 (J+1)(J+2)'—e' 4B(J+1)'(J+2)'+—Xi
3 2J+1

ag
0 %2cg
1 .Gg

—1/v2 cJ
0 —v2ag, (49)
1/v2 cJ

4)its (J+1)
3 B (2J+1)

where

cg=2 'raq 2'r(2+r )——
r=[E ~.(.) ~ z3x 'I, K+, . ——-

These coeKcients are listed in Table V for the states
occurring in (0")s.

For comparison, we note that if oxygen were a rigor-
ous example of Hund's case (b), in which E=R is a
good quantum number, the transformation could be
obtained by simply diagonalizing the operator Q'
= J'+S'—2J S. If this is done, the result is of the
same form but with

1(J+1)-: 1t J )&

2 &J+-', ) 2 EJ+-', )
4'Note that his XI is related to ours by p&)~=4&'(X1)z. Also

note that he has apparently omitted a numerical factor of 2x in
going from his Eq. (17b) to (18). As a result, his value for (d'A/

dR), is inconsistent with ours.

LJ(J+1)3'
{2X„+e'8&r[(J'+J+1)+)ir/6B]}. (33)

2J+1

This matrix is of course identical to that which would
have been obtained if the entire problem had been set
up in terms of Hund's case (b) instead of (a).4'

The transformation which gives the oxygen eigen-
vector, characterized by E, with respect to the Hund (b)
basis, characterized by 0, is found to be

E=J 1J J+1-
Q=J—1 bg 0 dq

2'z~'& = (Tg') 'T g J0 -1 ——0
J+1 .—dg 0 bg.

~This has been verified with the use of the case (b) matrix
elements given by J. H. Van Vleck LRevs. Modern Phys. 23, 213
(1951), p. 222]. The effective Hamiitonian matrix in Mizushima
and Hill's manuscript (reference 36) gives somewhat diferent
coeKcients for XI. His error seems to have arisen in subtracting
a ~3'A, treated as independent of g, from the diagonal elements.
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TABLE VI. Matrix elements of the direction cosines. '

(J fc'I J')
(JD f4J, f

J'»»)

(J»» fC». f
J'»»~l) = ~z(J»» fe»„ f

J'anal)

(JM/Czg f
J'M)

(JM fCx2 f
J'M+1) = %2(JM fCr2f J'M&1)'

[J(4J'—1)»] '

[J2—02]»

a-', [(JW»») (JW»» —1)]»

[J2 M2]»—

+-,'[(J+M) (J+M—1)]»

LJ(J+1)] '

2[J(J+1)—»» (0&1)]»
3f

-,'[J(J+1)—M(M ~1)]»

((J+1)[(2J+1)(2J+3)]') '

[(J+1)'—»»2]»

~-', [(J+0+1)(J~»»+2)]»
[(J+1)'—M']»

+2'[(JAM+1) (JAM+2)]»

a In wave mechanical language, these elements are simply integrals of the cosine of the angle between the space-fixed F axis and the gyrating g axis, over
the symmetric top eigenfunctions specified by (JQM )

J'&'M'). Since these angular eigenfunctions are completely determined by the angular momenta,
these rather obscure integrals can be replaced by a matri~ algebraic deduction from the commutation relations. In this deduction one finds that the ele-
ments of Cz& may be factored in the form

(JnMffeJ", J
J'a'M') =(J/C ( J')(JO)y&,.(J'g)(JM~y~, , ~

J M )
where Q is Jz and M is Jz. With our phase choice [which follows that of Condon and Shortley rather than that of Cross, Hainer, and King, J. Chem.
Phys. 12, 210 (1944), for example j, the factors are as tabulated.

where
bg 2(agag——'+cycle') =1,

d, =2(c,a,' a,c,') =—[3(J+-,")3
(55)

4xco2E e Ei'/ IcT

where X is the number of molecules per unit volume,

These coeKcients are also given in Table V. From these,
it is clear that oxygen eigenvectors approach Hund
case (b) eigenvectors as J becomes very large. This
was to be expected since the rotational splittings in-
crease as J, whereas the spin-spin energy which breaks
down the case (b) coupling is constant.

IV. LINE INTENSITIES

Because of its homonuclear symmetry, no electric
dipole transitions are possible in oxygen. The existence
of a magnetic dipole moment of two Bohr magnetons
makes magnetic dipole transitions allowed, and in fact
quite intense. The perturbative Hamiltonian inducing
transitions in an absorption experiment is

I1 = —g, 'PS H,2= —P H, i.

A well-known analysis4' shows that for well-separated
lines the absorption coefficient n is given by

p;, is the matrix element of the magnetic dipole mo-
ment, T '=27t-hv, 5, is the energy of the jth state, and
the sum over n is the usual partition sum. Since n is
proportional to I»»;, I', it is proportional to

I (Sz);;I' if
the magnetic vector of the incident rf radiation is
polarized along Z. By the isotropy of field-free space we
know that when summed over the orientational de-
generacy quantum number 3I,

K~I(s ),, [2=P [(sr);,[2=g~[(s,)' I'.

Thus all of the necessary information for the general
case is obtained by evaluating the simplest of these,
namely,

Z l(s,),,[.
In this, of course, i, j indicate the final and initial
states, each characterized by quantum numbers J, IC.

To compute the matrix elements of Sz (where Z is
a space-6xed coordinate) from the known elements of
S in the gyrating (g) axes we use the known direction
cosine matrix elements in the equation

Sz=2gc'zgSg

These direction cosine matrix elements are given in
Table VI with the phase conventions we have used.
Noting that Q=Z for our A=o state, we find the follow-
ing elements for Sz in a Hund case (a) representation.

(JASON [Sz[J3ESZ) =
J(J+1)

(JMSZ[szl JMSZa1) =M[J(J+1)—z(zw1)1-:[s(s+ 1)—z(mal)]-:

2J(J+1)

g(J2—+2)» (J2—~2}»
(J~sz[s, [J-1,cvsz) =

J(4J'—1)'*

(58)

+[(J'—~') (J~Z) (JWZ —1)]'*[S(S+1)—g(&~1))»(J~»[sz[J—1, ~Seal) =
2J(4J'—1)'

'3I. H. Van Vleck and V. F. Ãeisskopf, Revs. Modern Phys. 11, 227 ('4945).
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The (Ji J'+1) elements of Sz are found by using the
Hermiticity of the matrix. These elements must now
be transformed to the basis which diagonalizes the
unperturbed (field-free) Hamiltonian. Then the off-

diagonal elements will give the transition probabilities
between the actual eigenfunctions. Since these matrix
elements are not diagonal in J, our transformation Tg
must be extended as follows:

T 1
0 0 Spp Sp1. 0 0

Tp

T 'SzT=

Slp S11 S12

S21 S22 S23

0 0 S32 S33

T2

T3

~0 Sppr0 ~0 S01~1 0

T1 S10~0 T1 S1171 T1 S12T2

2 2 S212 i 2 2 S2P2 ' '
~ (59)

T3 'S32T2

(K,K,M iS.i K,K,M) =
J(J+1)

g(K, J=K)
M,

(K, K+1, M i Sz i K, K+1, M) =
[J(J'+1))&

Gg
X 2cz+

LJ(J+1))'-
g (E, J=E+1)'

M
7

—2cgM
(K, K 1, M i Szi K, K——1, M) =

LJ(J+1))'

In these expressions, Tg and SJg are 3X3 matrices.
Carrying out the indicated matrix multiplication,

we find the following matrix elements of the form

(K,J,M i
S,

i
K',J',M):

(J—1, J 1, MIS, I
J —1, J,M)—

cg

(J, J 1, MiS, i J,—J, M)

CJ—1=f(J M) + =Cg (J'—M')~
- (J)'* (J—1)'-

CJ=f(J,M) =Dg(J' —M') &

-(J)' (J+1)'-
where

2(J'—1)(J'—M') &

f(J,M) =
J(4J'—1)

CJ
X 2uJ—

i:J(J+1))'-
g(E, J=E 1)—

M,
g

e

with the special case

(1,0,0iSzi1,1,0) = —
i g(1—M'))~=CO(1 —M')i. (60')

(J—1, J, M
i Szi J+1,J, M)

Cg 1=f(J,M)
-(J)'* (J—1)'-

=Ay i(J'—M')&,

cJ —cz
=2M + =hgM, (60)

J(J+1) i J(J+ 1))&

(J—2, J—1, M
i Szi J, J, M)

If we insert the tabulated values of ag and CJ., we
obtain the proper transformed matrix elements, whereas
if we insert aJ' and cg' we get the matrix elements for
Sz in a pure Hund case (b) system. In the latter case,
inspection of u' and c' shows that all (Ei K') elements
of Sz vanish if K'QK. This is not true using u and c.
Thus our precise calculation has revealed the possi-
bility of 6K=2 transitions. Also, the formulas for
6K=0 transitions differ from Hund (b), especially for
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TABLE vII. Line intensities: 1(E',7'I x",J")=3 zsr I
(E'JM I ~el E."I"KI'.

r(K, K+1)K, K)
Exact Case (b)

I(K, K-1 )K, K)
Exact Case (b)

I(K, K)X+2, K+1) I(K, K+1IK+2, K+1) I(K K+1IK+2, K+2)
Exact Exact Exact

1
3
5
7
9

11
13
15

2.452
6.710

10.80
14.85
18.88
22.90
26.91
30.92

2.500
6.750

10.833
14.875
18.90
22.92
26.93
30.94

2.000
6.539

10.736
14.82
18.86
22.88
26.90
30.92

2.000
6.667

10.800
14.86
18.89
22.91
26.92
30.93

0.006110
0.005045
0.003874
0.003109
0.002589
0.002216
0.001937
0.001720

0.3924
0.2128
0.1466
0.1119
0.09043
0.07607
0.06561
0.05770

0.1280
0.06343
0.04175
0.03103
0.02466
0.02046
0.01749
0.01527

low J. For precise work, as in inferring line breadths
from calculated intensity and observed signal strength.
these corrections should be made.

The diagonal elements give the weak Geld g factors
for the Zeeman eGect. These also diGer appreciably
from the vector model results calculated with the
assumption of pure case (b) coupling. '4 The numerical
values are given in Table VII, but further discussion
will be deferred to a subsequent paper giving a complete
treatment of the interaction with a magnetic 6eld.

To calculate the total intensity, we sum the squared
matrix elements over the degenerate M states and
multiply by 3 to include the 3 equivalent spacial
directions. This results in an intensity factor I defined by

(E"J"IIE'J') =3 K~I (E"J"ALIIS.IIE'J'~) II' (6»

The sum is readily evaluated explicitly using the fact
that

J(J+1)(2J+1)
&2=

The results have been tabulated in Table VIII for
J&16, and the Hund (b) result" has been given for
comparison when it is not zero. Evidently the diGer-

TABLE VIII. Matrix elements of Sz with respect to the basis in
which the field-free problem is 'diagonal. '

K g(K, K —1)/gee g(K9K)/g&' g(K2 K+1)/g.

and the frequencies of the 5-mm lines as follows:

Vj; J~1.J—K= VK, K+2 V—(E+2) .

VJ, J;J=K+1 VK, K+2 V—(E+ )+V+(E)

VJ' J4-l. J'—Kql= VK, K+2+ V+(E).

(62)

Making an analytic approximation to the I(E"J"
~

E'J')
and using Eq. (56), one finds the following approximate
resul. ts at 300 K, assuming the same line breadth
parameter as in the millimeter spectrum:

() 046(J+1)
—iv210—10e—0.0069K(K+11

4 2J—lp210—10~—0.0069K(K+1)

1 4J—1&210—10~—0.0069K (K+I)

(63)

ences are at most a few percent for the transitions
allowed in Hund case (b). However, the predicted
intensities for the 'forbidden" DE=2 lines is a com-
pletely new result, which can be checked when radiation
of suKciently high frequency is available. The skirts
of these lines will give some eBects at lower frequencies
if the transmission is through oxygen (or air) at
atmosphere pressure.

We can write the frequency of a El —+ El+2 transi-
tion in terms of the frequency diGerence

v(E1, E'1+2) =E(J=E=K1+2) E(J=K—=El)

3
5
7
9

11
13
15
17

J
2
4
6
8

10
12
14
16

—0.317330—0.197357—0.141987—0.110723—0.0907038—0.0768013-0.0665888—0.0587707

hg

0.1 14371
0.0343857
0.0163845
0.0095616
0.0062568
0.0044164
0.0032823
0.0025354

0.5000000
0.0833333
0,0333333
0.0178571
0.0111111
0.00757576
0.00549451
0.00416666

Ag
-0.0349195—0.0113202—0.00553032—O.Q0326702—0.00215461—0.00152705—0.00113872—0.00088177

0.483997
0.247357
0.165797
0.124612
0.0997945
0.0832115
0.0713505
0.0624471

Bg
0.285889
0,163182
0.112209
0.0853207
0.0687875
0.0576082
0.0495493
0.0434660

Cz
0.249546
0.147276
0.1041814
0.0805423
0.0656293
0.0553697
0.0478813
0.0421754

DJ
0.04000515
0.01254283
O.OQ595644
0.00346085
0.00225829
0.00158879
0.00117839
0.00090875

In these, n is the value when a=u;, and v is expressed
in kMc/sec. As particular examples, the three lowest
frequency lines are X=1—+ 3 lines predicted to lie at
368 522 Mc/sec, 424 787 Mc/sec, and 487 274 Mc/sec.
The absorption coe%cients are calculated to be 0.44
)&10 ' 38)&10 ' and 17)&10 ' cm—' respectively.

APPENDIX A. MATRIX ELEMENTS GI' SPIN-SPIN
HAMILTONIAN

By the same methods used in™Sec.II, the following
matrix elements between configurations may be com-
puted. We let bR2= 6, for simplicity.

a These elements are given in Eq. (60) as the product of a J-dependent
factor and a simple factor depending on both J and M. The J-dependent
factors are tabulated here. In these, gee is the algebraic electronic spin g
factor, —2,00229, and g(K,J) is the algebraic g factor of the K,J energy
level.

"R.M. Hill and W. Gordy, Phys. Rev. 93, 1019 (1954)."J.H. Van Vleck, Phys. Rev. 71, 413 (1947).

JI„=H„=gspsbl2K42r='

X(1/30+e A/15+2e 6A~'Sl(h) —2e AS1(46)l,

Hee =Hyf =g2P2b*'2L42r='*

X(1/30+e A/15 —2e 6A'451(h) —-', e Sl(4&)),
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H a H ——I g——'P'b'L'K'sr '=(1/15+e aSi(46)),
H, =H,b=II„=B,f=0,
+ad Irbd +ae IIbe IIaf IIbf +de IIdf

H« —H——,s —— H„—=2 . 'ReH. a ——g'p'O'JKLM(2ir) 'e a

X ((ea/15) [6+BE' BE—+; Se-—a/14—$
—(B+6'*)(E+6')S,(4'.)

4/+—/'*(2B E)]"—«S, (/) ',S,(4—/)-
+eA &(3h&+2B+E)Ss(46)
+46 &(6'+2B E)eat'—Ss(h)+ '/h 'Se(-46)).

In these,
1 rrx~t "

Ss(x) = P—
-i 1 3 5 . (2m+3) i2)

(xq (2rt) (2rt —1) )xi "
S,(x) =

I

—
I
Z—

L2) ~=i 1 3 5 . . (2rt+5) L2j
~x~ 2rt(2rt —1)'

E2) ~i 1 3 5 (2rt+5) (2)

and the constants 8, E, J, I., and M are as defined by
Meckler. ' In evaluating H„, the terms in go and ye
giving orthogonality to the 1s orbitals have' been
dropped as negligible to allow integration by our artifice
(which requires a common Gaussian factor for all
orbitals). We note that all of the elements have the
same sort of dependence on b' and bR'=6, the 6 de-
pendence turning out to be rather slight.
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Interaction of Molecular Oxygen with a Magnetic Field*
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The dominant interaction of 02 with a magnetic 6eld is through
the electronic spin magnetic moment. However, a precise com-
parison with experiment of the results of calculating the micro-
wave paramagnetic spectrum, assuming only this interaction,
shows a systematic discrepancy. This discrepancy is removed by
introducing two corrections. The larger (approximately 0.1
percent, or 7 gauss) is a correction for the second-order electronic
orbital moment coupled in by the spin-orbit energy. Its magnitude
is proportional to the second-order term p" in the spin-rotation
coupling constant. The smaller (approximately 1 gauss) is a
correction for the rotation-induced magnetic moment of the
molecule. Since the dependence of this contribution on quantum
numbers is quite unique, this coefIIcient can also be determined
by 6tting the magnetic spectrum. A total of 1.20 X-band and 78
S-band lines were observed. The complete corrections have been
made on 26 lines with a mean residual error of roughly 0.5 Mc/sec.
This excellent agreement con6rms the anomalous electronic
moment to 60 parts per million (ppm) and also confirms the
validity of the Zeeman-effect theory.

A new result is the rotational magnetic moment of —0.25&0.05
nuclear magnetons per quantum of rotation. Knowledge of this
moment allows the electronic contribution to the effective moment
of inertia to be determined. Making this correction of 65 ppm,
and using the latest 6tting of the universal atomic constants,
the equilibrium internuclear distance is recomputed to be R,
=1.20741&0.00002 A. We can also deduce that the magnitude
of )", the second-order spin-orbit contribution to the coupling of
the spin to the figure axis, is 465+50 Mc/sec, or less than one
percent of the total coupling constant 'A.

Theoretical intensities of a number of the microwave transitions
are calculated and successfully compared with experiment over a
range of 100 to 1 in magnitude. It turns out that AM =0 transitions
are over a hundred times weaker than the 6%=&1 transitions
and thus are too weak to observe. Also, J breaks down as a
quantum number in the presence of a magnetic 6eld. This allows
AJ = &2 transitions to comprise roughly half of all lines observed.

)
'N a previous paper' (referred to as TSI), we gave a

rather complete and precise treatment of the
eigenvalues, eigenvectors„and transition intensities of
the oxygen molecule in field-free space. Using this work.

as a foundation, we now give a similarly complete and
precise treatment of the perturbations produced by a
magnetic field. The dominant interaction will, of course,
be that between the electronic spin magnetic moment
and the external field; namely,

x,= —g, 'pS H.

~ This work. was supported in part by the Signal Corps, the
Air Materiel Command, and the OfIIce of Naval Research.

1' National Science Foundation Predoctoral Fellow.
'M. Tinkham and M. W. P. Strandberg, preceding paper

t Phys. Rev. 97, 957 (1955)g.

Accordingly, the efFects of this perturbation on the
eigenvalues and eigenvectors is 6rst determined to high
accuracy. It is then found necessary to introduce the
small efFects of spin-orbit coupling and rotation-induced
moments as additional perturbations to 6t the precise
experimental data. The fitting evaluates certain sums
of matrix elements which are important in interpreting
the fMld-free parameters ) and p. Incidentally, the fit
may also be considered to confirm the theoretical
anomalous moment of the electron to &60 parts per
million (ppm). Selection rules and intensities will also
be discussed and compared with experiment. It turns
out that AM=&1, 0 transitions are allowed, but the
AM=0 lines are at least 100 times weaker than the
23f=~ j.


