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precision intensity scale and very high, known resolving
power), we find that the strong emission line involving
the valence band electrons probably does not in general
give much information about the normal unperturbed
valence band itself. This conclusion, contrary to the
most fundamental postulate in x-ray spectroscopy of

the solid state, is more or less tentative. If this con-
clusion is wrong, we seem obliged to believe that the
valence band in KCl is only 0.33 ev wide at the half-
maximum of the density-of-states curve. Resolution of
the question awaits a more precise theoretical treatment
than has yet been made.
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The nature of the spin coupling in MnO is discussed, the details of the discussion being based on a very
simplihed three-center system. The coupling between magnetic ions whose charge densities interact with an
intervening nonmagnetic ion but not directly with each other is described as the result of the polarization of
the nonmagnetic ion. The configuration interaction representation of this polarization is treated by non-
orthogonal orbitals, orthogonal orbitals, and by a method due to Kramers. These three approaches are
applied to a numerical example. It is concluded that a reliable description of the simple three-center problem
is more complicated than generally believed due to the importance of highly excited states of the system
which have been neglected in previous treatments of the problem.

INTRODUCTION

HE problem of the spin coupling of paramagnetic
atoms or ions whose outer charge densities overlap

an intervening nonmagnetic atom or ion, but do not
directly overlap each other, is of considerable interest in

understanding antiferromagnetism. Such a situation is
met in MnO, an antiferromagnetic oxide of simple cubic
structure. The magnetic ordering has been determined

by neutron diRraction. ' The (111)planes consist alter-
nately of Mn++ ions and 0= ions. The spins of the Mn++
ions on a given plane are coupled ferromagnetically but
the coupling between neighboring planes of Mn++ ions
is antiferromagnetic as shown in Fig. j.. The distance
between Mn++ ions on adjacent planes appears to be so
large that no important direct overlap, hence interac-
tion, exists. The antiferromagnetic spin coupling be-
tween planes seems to arise in part through an inter-
action involving the 0= ions. A detailed analysis of the
actual situation in the crystal would be very di6icult. It
seems reasonable, however, that an examination of an
Mn++ —0=—Mn++ unit lying on a straight line con-
necting three planes, as shown by the dotted lines in
Fig. 1, may explain the role of the oxygen ions in the
spin coupling of the Mn++ ions. The energies of various
spin orientations of the system must be found and
compared. As the energy diQerences involved will be
small, a meaningful result can be obtained only by a
fairly complete con6guration interaction investigation.
Even the Mn++ —0=—Mn++ problem is a very hard

*The research in this document was supported jointly by the
Army, Navy, and Air Force under contract with the Massachusetts
Institute of Technology.

' Shu11, Strauser, and Wo1lan, Phys. Rev. 83, 333 (1951).

model to treat, and to further simplify the situation we
will consider a three-center system containing four
electrons. Here we have two magnetic ions A and A'
separated by a nonmagnetic atom 8 as illustrated in
Fig. 2. This situation was first investigated by Kramers
and more recently by Anderson. ' It is the purpose of
this paper to re-examine the problem in detail and to
point out some of the requirements for an adequate
description of the spin coupling.

THREE-CENTER SYSTEM

The ground configuration of our three-center system
will be taken to be that in which there is one electron in
a localized orbital Ng or e~ about the magnetic ions A
and A', respectively, and two electrons with opposite
spin occupying a single orbital I& localized about the
nonmagnetic center 8. We speak of A and A' as being
magnetic centers since they have a net spin associated
with them in their lowest state. 8 is called a non-
magnetic center as it has a closed shell structure for its
ground state. Clearly the energy, of the ground con-
figuration of the system will be independent of the spin
orientation of the electrons about A and A' if the
localized orbitals about these centers do not directly
overlap since an undistorted closed shell ion does not
care how the spins of its neighbors are situated. In order
to get an energy separation for the states of diferent
spin we must break up the structure of the intervening
nonmagnetic ion. We wish, therefore, to find the
answers to the following questions: First, when we have
included the necessary configurations to describe this

' H. A. Kramers, Physica 1, 182 (1934).' P. W. Anderson, Phys. Rev. 79, 350 (1950).
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system, will the spins of the electrons about A and A'
tend to set themselves parallel or antiparallel? Secondly,
what are the excited configurations which must be
considered to answer the 6rst question?

The presence of the Mn++ ions in MnO will distort
the charge distribution of the 0= ions. A consequence of
this polarization will be a spin coupling of the Mn++
ions surrounding the oxygen. Hence we could approach
this problem by trying to find the best method of ex-
pressing the distortion of the 0= ion and then the spin
coupling would fall out automatically. In order to
translate these ideas to the three-center problem, we
must consider excited states in which electrons about the
nonmagnetic center 8 are either excited into higher-
lying orbitals about that center or are transferred from
the 8 center to the adjacent magnetic centers. Following
Anderson's' treatment of the three-center problem, we
will restrict ourselves to excited states where electrons
have been transferred to the magnetic centers; these can
be called the superexchange configurations. The problem
will be discussed in terms of nonorthogonal orbitals,
orthogonal orbitals, and by a method due to Kramers
for the purpose of bringing out some of the limitations of
each approach.

RA =2.5a.u. —

A

FIG. 2. Arrangement for the three-center system containing
four electrons. A and A' are magnetic ions separated by a non-
magnetic atom B.

NONORTHOGONAL ORBITALS

The configuration interaction which describes the
coupling of the magnetic ions in the three-center problem
is quite straightforward when carried out in terms of
nonorthogonal orbitals. The excited con6gurations in
which an electron has been removed from the non-
magnetic center 8 and placed on A or A' leaves an
unpaired spin in N~ and on one of the A centers leading
to a spin coupling due to the direct overlap of these
charge densities. The localized, nonorthogonal orbitals
will be denoted by I&, n&, I& and are assumed to have
the following overlap matrix:

Ng N~ Qgr

d 0

0 d

0

Mn I

where d is the overlap integral between N~ and ug or N~ .
The various electron assignments for the three con-
6gurations are shown in Table I. When singlet and
triplet states are set up for each con6guration, re6ection
symmetry being taken account of, we get a 2)&2 secular
equation for each multiplicity. The interaction of these
states results in an energy separation between the
lowest singlet and triplet. The method of nonorthogonal
orbitals is examined more closely in the following nu-
merical example.

0

ORTHOGONAL ORBITALS

The orthogonal orbitals will be taken to be

VA' NA'p

ve = (ue —d(up+up~) }/(1—Zd )t.
(z)

0++
n

Fxo. 1. Coupling of spins for Mno structure.

In terms of orthogonal orbitals our ground configuration
is that in which an electron occupies v~, one in v~., and
two in v~. The excited configurations are those in which
an electron is transferred from v~ to vg or v~ . These
con6gurations are indicated in Table II as well as an
additional excited state where both electrons are re-
moved from the 8 center and put on the A centers. We
now encounter a very interesting and an important
feature of the orthogonal orbital approach. It cue be
shown, regardless of the rtature of the orthogolal orbitals,
that there is ordy oue possible result that can be obtained if
we do uot include the last configuration of Table II. This
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YAsxz I. Electron assignments for three conFigurations of

nonorthogonal orbitals.

2
I

is that the lowest singlet caromot possibly lie below the

lowest triplet. To show this, we set up the Hami!tonian
matrix for the triplet states plus a difference matrix D:

where D22 is

Do, ——2{vg(1)vs(2) j H, o j vs(1)vg (2))
+2{»(1)»(2)j&»j»(1)»(2)) (9)

It is easily established that D22 is positive definite using
familiar inequalities and the fact that exchange inte-
grals are positive definite. If Cp is the eigenvector
corresponding to the lowest-lying energy Ep of Hg=p,
then from (3):

(C'o j JJs=o j C'o) = (C'o j &s=t j C'o)+ (+ o j D j C'o), (1o)
ol

&s=o=&s x+D.

The singlet states are

(3) +0 hot+ Doo.

But Spy is surely &E&, the lowest-lying triplet energy;
hence,

~o++1+Do 0 ~

-»(P)»(~)»(P)» (~)) (4)
Knowing that D has no negative eigenvalues, we have
Dpp& 0; consequently,

~p&~i. (12)
A

{»(~)»(P)»(~)» (P)
2(4!)l

&a

+v~(rr) vs(P) v~ (rr) v~ (!3)

where A is the antisymmetrizing operator and the
singlets are even under reRection in a plane perpen-
dicular to the internuclear axis through the nonmagnetic
center J3. For the sake of simplicity, it will be assumed
that under this symmetry operation v~ goes into e~ in
the entire discussion of the three-center problem. The
triplet states made up of the erst three con6gurations of
Table II are

Xo=,{v~(~)vs(~)vs(P)» (~)),
(4!):

(6)

xt= {»(~)»(P)»(~)» (~)
(4!}4/2

+»(~)»(~)» (~)» (&)) (&)

0 D22

TAsz.E II. Electron assignments for three con6gurations of
orthogonal orbitals.

and these states are odd under reRection. Sy straight-
forward methods it can be shown that the form of the
difference matrix D is

0 0

Therefore, the lowest singlet cannot lie below the
lowest triplet if we do not include in our configuration
interaction the last configuration of Table II. By
omitting this higher excited state all the physical
meaning is lost. The vital character of the highly excited
states was first pointed out by Slater, 4 in his analysis of
the hydrogen molecule. In this case one finds that if we
do not mix in ionic states when using orthogonal orbitals,
the singlet state analogous to the Heitler-London ground
state does not even show binding. One is forced to the
conclusion that when using orthogonal orbitals, we will
almost certainly arrive at meaningless results unless
adequate configuration interaction is carried out. In the
three-center problem it is the highest-lying state which
completely determines how the spins prefer to be
aligned, para1lel or antiparallel.

KRAMERS' METHOD

Kramers' developed a unique method of handling
configuration interaction problems and first applied it to
the interaction between magnetic atoms in a paramag-
netic crystal. It has been the basis for several discussions
of superexchange interaction and, in particular, for
Anderson's treatment of the three-center problem. The
idea of this method will be indicated brieRy here, the
reader being referred to Kramers' excellent paper for
further details.

Suppose we have a system consisting of 2m A-type
centers and eB-type nonmagnetic centers. Let the
localized orbital associated with the ith 2 center be v~;
and that associated with the jth 8 center be v~;. We
consider here a 4e-electron problem and assume the
orbitals vg, ~ to be orthonormal. The ground configura-
tion is defined to be that in which each n», is doubly
occupied and each ~» singly occupied. With no loss of
generality we can limit ourselves to only those states

' J. C. Slater, J. Chem. Phys. 19, 220 (1951).
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8 =+ C A

We then get the equation

(17)

2- A-L((9 s*H9-)

+P. C..( 9,
* H~.)}—Er,„f=o. (18)

The matrix

Usta (Nk H9pm)+pa Cam(ps~H21a)

is defined as the effective Hamiltonian, allowing us to
express our problem as

g„f Us —E81„}A„=O. (19)

Lowdin' has given a very clear treatment of this general
proc'edure and shows that

Us =Hs +Q
~ E—II

+ . (20)
a&p (E H) (E Hpp)— —

We have now reduced our original configuration
interaction problem to a secular equation whose order is
only the number of states p; rather than this number
plus that of all of the excited states. Even though the
eGective energy operator U contains the unknown
energy E in it, very often approximations can be made
which will minimize this diQiculty. The excited states q
are treated as a perturbation of the states q;, the
perturbing Hamiltonian being

H H g @maIIapIIpA:
Z +Z- + . (21)
a E—H asap (E H)(E Hpp)— —

' P. 0. Lowdin, J. Chem. Phys. 19, 1396 (1951).

with total m, =0. The ith state corresponding to the
ground con6guration is distinguished by the spin as-
signment made to the one-electron orbitals and is
represented by the antisymmetrized product:

91'—A {»1&sB1GsB1 p»2 p ' ' ' }~ (13)

There will be (222)!/(22!)2 states y; corresponding to the
ground configuration. The excited state q corresponds
to a configuration in which one or more electrons have
been transferred from the nonmagnetic atoms 8 to the
magnetic atoms A and q will be represented by an
antisymmetrized product of the v&, &'s with a particular
spin assignment. The lowest eigenstate of the system
will be of the form:

+=+,A,q;+Q 8 21 . (14)

The coefficients A and 8 satisfy the set of equations:

Q; A, (q s*H22,)+Q 8 (ys*Hq, ) =A t,E, (15)

Z;A, (.*H. )+Z.~.(~ H..)=~ E.
It is possible to eliminate the coeKcients 8 from (15)
by expressing them in terms of the A 's in the form

n1= (+) 'Af»(~)»(P)»(~)» (P) },
n2= (4!) 'Af»(~)»(P)»(P)» (~)}

~.=(4!)-»f»()~ (P)» ()» (P)},

5 = (4!) 'A f (P) ( ) ( ) (P)},

n = (4t) 'A f ( ) (P) ( ) (P)}

(24)

(25)

(26)

(27)

(28)

One of the essentia1 features of this approach is that the
secular equation is kept to a minimum order and in
many respects our insight into the problem is enhanced.

The spin coupling between the nonoverlapping mag-
netic atoms first appears in the third-order term in U,„„.
This is simply another statement of the fact that it is the
higher-order terms which completely determine the
nature of the energy dependence on the spin. The im-
portance of the third-order terms has been well known
for a long time, but they appear to have been incorrectly
treated. If U „for ns4e is negative, then Hund's rule
will apply and we have a ferromagnetic coupling. If
U „for nz/ns is positive, then the center of gravity of
the singlet energies lies lowest and the average energy
of the states of a given multiplicity increases with the
multiplicity. For a system containing a large number of
electrons these average energies will be very closely
spaced. Ke can never get an antiferromagnetic&oupling
out of this procedure in the sense that, if the system is
divided into two sublattices, all the spins on one
sublattice point in one direction and all those on the
other sublattice point in the opposite direction. Such a
state is not an eigelifunction of 5' and, unless the
Hamiltonian contains an interaction which destroys S'
as a good quantum number, all we can properly talk
about are magnetic or nonmagnetic states. The three-
center problem, however, is a special case as it is possible
to speak of parallel or antiparallel orientations with a
spin-independent Hamiltonian. Our approach to anti-
ferromagnetism is thus one of first finding the stationary
states of the system with S' regarded as a good quantum
number, and then to use these states to treat the spin-
dependent interactions by perturbation theory. In the
case of antiferromagnetism, presumably the solution to
the spin-independent problem will be that in which U „
is positive so that the spins prefer not to line up as in a
ferromagnetic. We would expect that the various non-
magnetic states would be very closely spaced in energy
so that a rather small spin-dependent interaction could
cause a relatively large splitting. Therefore, a knowledge
of the role of the nonmagnetic ions and the spin-
independent solution is of fundamental importance
although polarization e8ects as treated here cannot
produce the actual antiferromagnetic spin-ordering.

Let us apply the Kramers approach to the three-
center problem. The two unperturbed ground states are

9 =(4) '*Af ( ) ( ) (P) (P)} (22)

= (4!)—&A f sA(p) 2'B(12)2'B(p)»i (12)}. (23)

The excited states are
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The zero of energy is taken as Uig = U22 ——0, or
(~1*I&lv 1)= (~2*I&l ~2) =0. &» 1s given as

would be
(4 l) kA (»nvenvBP»IP).

~ =(~ *I& «I2 )=—

where

2d'(J+g)

(E—E1)'
4hdg

(29)
(g—g1) (g—g2)

d= (»I~, I2B)+(»1BIN»l»»)
+ (&B&BI+12 I 2'B&A)+ (»»' I +12 I »»')y (30)

+—(&B» I +12 I 21A eB)

g= (2B»j&»l» 2B),

~=(»l&l»)+2(»»l&»l»» )
+ (»» I &» I»»)

(31)

(32)

(~+gi (&

2g ) EE E1j—(34)

Anderson's' treatment of the three-center, four-
electron problem is an application of Kramers' method.
Excitations of two difFerent types are considered, that in
which an electron is taken from the nonmagnetic center
and put in'an occupied orbital on one of the magnetic
ions, and that in which the transferred electron goes into
an unoccupied orbital about one of the magnetic ions.
These two types of excitation were considered sepa-
rately. In the first case, where the excited electron goes
into an occupied orbital, it has been proved above that
we must include the excited configuration in which both
electrons are removed from the nonmagnetic ion. Since
Anderson has not included this doubly excited state, his
results for this type of excitation cannot properly
describe the nature of the spin coupling.

In the case where the excited electron goes into an
unoccupied orbital about a magnetic ion, the proof of
the necessity of doubly excited configurations no longer
holds. The two ground states are as in (22) and (23).
Let the excited electron go into an orbital vg or vg about
one or the other magnetic ion. A typical excited state

Here E1 and E2 in (29) are the energies required to
transfer one and two electrons, respectively, to a mag-
netic center from the nonmagnetic ion B.

If U~~ is less than zero, then the triplet lies below the
singlet. The first term of U», which involves only the
excited states e~ through e4, is negative definite. This
is in accord with the fact that the exclusion of the doubly
excited state es precludes the singlet lying below the
triplet. The second term of U~2 must, therefore, be large
enough to reverse the sign of the matrix element if a
third-order theory is to be adequate to show a non-
magnetic coupling. This condition leads to the in-

equality:

There will be twelve such excited states all with four
electrons in four different orthogonal orbitals and each
state with total 3E,=O. If we were to diagonalize the
spin and the symmetry operation, we would find two
singlets, three triplets, and one quintet each of which
can be either even or odd under reAection. If we apply
Kramers' method to this problem and restrict ourselves
to a third-order theory, it turns out that there is a good
deal of cancellation and only four of the twelve excited
states enter. Apparently the third-order theory will not
give a very complete description of the eRect of these
excited states in the configuration interaction unless the
series expression for the effective Hannltonian (20) is
very rapidly convergent.

The nonorthogonal orbitals are

uA = (2/2r) l expL —(r+EA)2],

uB ——(2/2r) i exp( —r'),

uA = (2/2r) l expL —(r—RA)'].
(35)

The ground con6guration has a singlet and a triplet
associated with it, as do the two excited configurations
in which an electron is transferred from e~ to N~ or N~ .
The ground singlet is

go=
(4t)k

uA(n)uB(n)uB(p)uA (p)
(P) ( ) (P) ( ) (36)

(2—4d'+4d4) '*

The ground triplet is

A
I
uA(n)uB(n)uB(p)uA (n)

I

(4!)'*l (1—2d')~
(37)

NUMERICAL EXAMPLE

The use of nonorthogonal orbitals, orthogonal orbitals,
and Kramers' method has been discussed. It is of
interest to illustrate the remarks made concerning these
various approaches by a numerical example. In the case
of nonorthogonal orbitals it is possible to give a satis-
factory description of the spin coupling by using only
those configurations listed in Table I. Let us examine
the three-center problem by this method. To this end
we take the following model. The magnetic ions A and

will be He+-like ions and the nonmagnetic ion 8 of
Fig. 2 will be a neutral He-like atom. Let the AB dis-
tance be 2.5 a.u. (1 a.u. =h2/222e2) and all the orbitals be
s-like Gaussians with a half-width factor of unity. The
separation of centers has been chosen such that
uA(x)uA (x) will be taken as zero for all x. The only
overlap integral appearing is d~~=d~. ~, and for this
case it is

dye =0.0439.
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The singlet corresponding to the excited state of the
same inversion symmetry as $0 is

TAM.z III. Results of the configuration interaction.

{ug(n)ug(p)ug (n)ug (p)
(4')'L4(&+2d') j'

Singlets

Hpp=0. 0o0
Ppi = 1.182
Hpi ——0.163

Triplets

Hpp= 0.000
IIpj = —1.181
Hip —— 0.197

u—g(p)ug(n)u~ (n)ug (p)

+up(n)ug(p)us(n)ug (p)

u—g (n)ug(P)us(P)ug (n) } (38)

The triplet corresponding to the excited state of the
same inversion symmetry as Xo is

X& {ug(n)ug(p)ug(n)ug (n)
(4t)'L2(~ —2d') 3'*

+up(n)u~(n)u~ (n)ug (P)}. (39)

The results of the configuration interaction are given in
Table III.The overlap integral between the ground and
excited singlets was the same as that between the ground
and excited triplets

(A,4'1) = (xo,x~) = —o p&2.

The lowest roots of the two secular equations were

Ea=o = —0.139,

Eg g= —0.129.

Clearly in this example the superexchange interaction
does lead to a description of the system in which the
spins of the electrons about the magnetic atoms A and
3' prefer to set themselves antiparallel. The calculation
has been carried out with no overlap integrals or three-
center integrals neglected.

Since the point of interest here is the energy difference
between two spin orientations in a weakly coupled
system, some of the approximation methods often used
with nonorthogonal orbitals may not be valid. For
example one often neglects the square or higher powers
of the overlap integral and also three-center integrals.
Such an approximation is thought to be reliable in those
situations where the overlap integrals are small as is
true in this problem. If this is done here, the energy
separation turns out to be

Es-o—Es=i = —0.0j.4

as compared to the accurate value of —0.010.Although
we are led to the same qualitative result, the percentage
difkrence in the answers is rather large. Another ap-
proximation is to treat the nonorthogonal orbitals as
though they were orthogonal and to find the matrix
elements of the Hamiltonian on that basis. However, in
order to account for the fact that the orbitals are not
actually orthogonal, whenever an exchange integral
appears in the formalism, it is set equal to a Heisenberg
exchange integral J'. The energy difference between the

two spin orientations will be a function of J'. When one
follows this procedure and uses the exchange integral J'
which is

I = {ug(xg)ug(sg) ~IIg+II2+II»~uB(sf)u/($)2}
= —0.0243,

the energy difference is

&s=o—&s=i= —0 0&&

In all of the numerical work a sufFicient number of
digits was retained so that the results could be expressed
with three significant figures. Iri this problem where the
overlap integral is quite small, which means that our
orbitals are very nearly orthogonal, an error of ap-
proximately 50 percent in the final energy separation is
incurred by the effective exchange integral treatment.

The use of nonorthogonal orbitals introduces many
complications in an actual calculation, as is well known.
Furthermore, the results of these calculations appear to
be rather sensitive to any approximations made which
would. simplify the nonorthogonality problem. There-
fore, it seems that an approach based on orthogonal
orbitals is more suitable. If we take the results obtained
from the calculation by using the nonorthogonal m's and
expand them in terms of the orthogonal v's, we find that
all of the configurations listed in Table II are necessary.
The result of such an expansion is to determine the
coefficients with which the orthogonal configurations
enter. However, if we were to do the problem entirely
over starting with the v's and find the lowest singlet and
triplet states, we would find a singlet with an energy at
least as low as that found in terms of the nonorthogonal
orbitals and that the lowest triplet energy would be
unaGected for this case. Therefore, the energy separation
of the two spin orientations would be at least'as great as
that found by the calculation using nonorthogonal
orbitals.

Let us now apply the method of Kramers to this
system. We have to evaluate V» as given in (29). To
determine whether the "third-order approximation is
adequate, the behavior of the inequality (34) must be
examined. For this numerical example the values turn
out to be

and
)7 ~

=O.&7l7. (4&)

The inequality (34) is not satisfied and, therefore, for
this problem the third-order theory is not sufhcient to

t I+gq )E E,q )E —E,y-
(4p)

2g ) EE—E~) EE—Eq)
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describe the true state of aGairs. The convergence
properties of Kramers' method are not well known and
they may turn out to be a serious limitation to the
usefulness of this approach.

CONCLUSION

Two problems have been discussed here. First, the
role of the oxygen ion in MnO in determining the spin
coupling of the surrounding Mn++ ions. The polarization
of the 0= ion by the Mn++ ions breaks up the closed
shell structure of the 0= ion and an energy dependence
on the spin orientation of the Mn++ ions appears. This
idea, originally due to Kramers, has been examined by
considering a drastically simpli6ed three-center model
by configuration interaction where the excited states are
those in which electrons are transferred from the non-
magnetic ion to the adjacent magnetic ions. A numerical
example has been worked out giving the singlet or non-
magnetic state as of lowest energy.

The second problem considered has been the examina-
tion of various methods of carrying out the con6guration
interaction. The approaches of nonorthogonal orbitals,
orthogonal orbitals, and Kramers have all been applied
to the three-center problem. The use of oonorthogonal
orbitals as opposed to orthogonal orbitals has the
advantage that generally fewer configurations have to
be considered and the choice of these con6gurations has
a more direct physical motivation. However, in dealing
with nonorthogonal orbitals the very serious problems
created by nonorthogonality make the use of these
orbitals impractical. In the type of problem discussed in
this paper involving the energy separation of states in a
weakly coupled system, the usual approximations made
using nonorthogonal orbitals can introduce large errors.

It has been emphasized that when using orthogonal
orbitals, it will almost always be essential to use
configurations which would appear entirely unnecessary
when thought of in terms of nonorthogonal orbitals.
Thus one suGers the disadvantage of larger order secular
equations but enjoys the enormous simpli6cations intro-
duced by orthogonality. The advantages of selecting
con6gurations using nonorthogonal orbitals can be
combined with the advantages of orthogonal orbitals in
a rather obvious way. Suppose our nonorthogonal
orbitals are N~, u2, u„. Let the orthogonal orbitals be

~& with S&e. Usually the v's are related to the
I's so that NI, corresponds most closely to vI, . Or, if we

write
up= p;(mg„v;)vg,

then (ez,vz) is nearly unity and the other coefficients are
nearly zero. Let us assume the v's have been chosen in
this way and that the number X of orthogonal orbitals
is chosen such that (e;,v~+~) is negligible for all i H. we
have an m electron problem, m&e, then a state corre-
spondiiig to a given configuration will be a linear
combination of

mmmm

determinants. Each determinant

can be expressed in terms of the ~'s as

The leading term in the summation is for q=i, r= j,
~ s=), the other terms becoming smaller the greater
the deviation from these values of q, r, s. Knowing
how the factors (e„vq) fall o8 for gWh one can estimate
the number of terms in the summation which must be
carried. Each term retained corresponds to a different
con6guration in terms of the v's. Therefore, by ex-

. amining all of the configurations written in terms of the
nonorthogonal orbitals in this manner one can arrive at
the number and type of orthogonal con6gurations
necessary.

Kramers' method is a simplification of con6guration
interaction using orthogonal orbitals where the order of
the secular equation is reduced by using an eGective
Harniltonian. It has generally been assumed that the
third order theory is adequate to describe spin coupling
of nonoverlapping paramagnetic ions. Since the third-
order term,

II II pHp„

~&p (E H) (E Hp—p)—
can at best take into account con6gurations diGering by
two orbitals from the ground con6guration, and because
the third-order term will usually not completely account
for the eGect of configurations diGering from the ground
con6guration by only one orbital, one can conclude that
higher-order terms will be necessary in most problems.
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