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A calculation has been made of the effect of ionic overlap on
electrostatic lattice potentials. The calculation is based on a
model which assumes each ion to consist of a core represented by
a point charge, and a valence electron density represented by a
normalized Gaussian centered at the core site. The contribution
of any ion to the potential at a point in the crystal consists of the
sum of two terms. One represents the potential due to a neutral
configuration (core plus compensating Gaussian); the second the
potential due to the unbalanced Gaussian charge of the ion. Upon
taking appropriate lattice sums, the lattice potential is obtained
in a rapidly convergent form, involving only the usual Ewald

sums. The "self-potential" in NaCl and ZnS is evaluated as a
function of the half-width n of the assumed Gaussian valence
density of the ions. For a=0 the resu1t is the well-known "Madel-
ung Potential. "The effect of overlap on the potential at an inter-
stitial site in NaCl and ZnS structures is also examined. From the
results of the analysis it can be concluded that lattice potentials
are sensitive to ionic overlap, so that the eRect of overlap cannot
in general be neglected.

A table of the available Ewald sums for a cubic lattice is given
to aid in the calculation of lattice potentials in cubic crystals.

1. THEORY
'

j~OR many purposes, such as calculation of elec-
tronic energy levels at a vacancy, ' energy band

calculations in ionic crystals, ' calculation of activation
energy for impurity or vacancy di6usion, ' and calcula-
tions of the splitting of atomic energy levels of a phos-
phor activator, ' it is necessary to know accurately the
electrostatic potential fe(r) in an ionic crystal. The
conventional method of calculating lattice potentials'
proceeds by shrinking each ion down to a point singu-
larity whose charge equals the net charge of the ion.
Depending on the substance concerned, this may or
may not be a good approximation; for example there
may be less error introduced in assuming that the
ions do not overlap in' NaCl than in PbS with the
same structure where one expects a considerable over-
lap of the valence electrons. 7 The method which will

be described here may be considered as a 6rst step in
the direction of accurate determination of lattice po-
tentials in real crystals with overlapping ions, and
leads to the convenient evaluation of these lattice
potentials in terms of the familiar Ewald sums.

We begin by constructing a "Gaussian" ion, located
at the point rs+, ——r&,+r„where r&,

——kiai+ksas+ksas
is a basis vector, and r =niat+sssas+esas (n; are in-

tegers) is a lattice vector in the cubic crystal space
de6ned by the three orthogonal vectors al, a2, a3 with

I
a; I

=u. We divide the electrons of the ion into "inner"
(tightly bound) and "valence" electrons; the inner

*Presented at the Washington Meeting, American Physical
Society, May 1954 I Phys. Rev. 95, 618(A) (1954)j.' J. H. Simpson, Proc. Roy. Soc. (London) A197, 269 (1949);
L. Pincherele, Proc. Phys. Soc. (London) A64, 648 (1951);T. Inui
and Y. Uemura, Progr. Theoret. Phys. (Japan) 5, 252 (1950).' W. Shockley, Phys. Rev. 50, 754 (1936); D. Bell ef al., Proc.
Roy. Soc. (London) A217, 71 (1953).

.' G. J. Dienes, J. Chem. Phys. 16, 620 (1948).' P. Yuster and C. J. Delbecq, J. Chem. Phys. 21, 892 (1953).
s P. P. Ewald, Ann. Physik, 64, 253 (1921); M. Born and

M. G. Mayer, Hassdbach der Physe7e (Springer Verlag, Berlin,
1933), second edition, Vol. 24, Part 2, p. 710.' M. Renninger, Acta. Cryst. 5, 711 (1952).' See calculations of D. Bell et al. , reference 2.

electrons plus the nucleus will be called the core, with
net charge qi,

' and will be represented as a point density:

&j&s"(r—r&,+~) = (qs"/srfns') expI —(r—rs~ )'/&rs'). (2)

The net charge of the ions at rs+„ is qs'+qs' and the
"half width" of the valence electron density is O, l,.

The contribution to the potential at the 6eld point r
due to the ion at rl,+„ is

&as+ (r) = lPs (r r&s+ )+f&&s (r rs+.)}«'/I r—r'I,

or:
1 s+-(r) = &"+-"'(r)+& .+-"'(r),

where

1,+.&'&(r) = (q,"—q, )

r exp[—srsn&, sInI'+2srin (r—r&,+ )]
X) d», (3.1.)

s-InI'

~ ~+."&(r)

=q"&Ll—@(Ir—rs+. I/~s)1/Ir —r~+-I) (3 2)

where we use the well known transformation of the
potential due to a Gaussian, with n=gbi+rlbs+t'bs a
running vector in the Fourier space de6ned by the
vectors bi, bs, bs, reciprocal to a, , i.e., b; a;=5;;. C (f)
is defined as 2sr 'J&&' exp( —x')dx. The contribution to
the potential at x from'the unbalanced Gaussian charge
of the ion is ps+, &'&(r), and fes~ &'&(r) represents the
contribution to the potential at r from the core plus a

The use of Gaussian wave functions (and densities) for valence
electrons in atoms and molecules has been discussed by S.F. Boys,
Proc. Roy. Soc. (London) A200, 542 (1950); R. McWeeney,
Nature 166, 21 (1950); G. P. Neumark, thesis, Columbia Uni-
versity Chemistry Department, 1951 (unpublished).

ps'(r r~+—,)=qs'5(r rk+—,)
The valence electron density will be represented as a
Gaussian, ' normalized to gk'.
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Gaussian charge which compensates the core charge.
For simplicity, we call q&&')=pl, '—ql,

' and ql, ")=pl,'
so gl, &" is the net charge of the ion, ql, (') the core charge.

The total potential at r due to all ions in the crystal is

(4)

where the sums are over the translation lattice n, and
over the p points of the basis, k. Using (3), (3.1), and
(3.2) in (4), we find

f'(r '
&ri ' ' ' cr )=Z&a&l&Jx"'&&f'"'(r rx '

&r& )
+q&, &"P"&(r—rx, &r&,)}, (4.1)

with

and

where A=
I
ai)&as asI is the cell volume, and bn is a

lattice vector in Fourier space. The expression (4.1),
then, gives the potential at r when each diGerent type
of ion (labeled by k) has its own characteristic Gaussian
half-width nl, . In case the ion of the kth sort is con-
sidered as composed of a point core plus a sum of
Gaussian valence densities, an appropriate modi6ca-
tion of (4.1) can be given for the potential, although
this will not be discussed here.

The equation analogous to (4.1) for the case of a
lattice composed of point ions of net charge gl, ~') is'

CHARGE DENS1TY

AT

POTENTlAL AT

DUE TO

A LATTlCE SUM

metry, and is independent of o&. If P(r) has been found
for a particular value of r, either lf &'& (r; o&) or p &'& (r; &r)

but in general not both, needs to be evaluated from the
series (4.2), (4.3). I Depending on the value of &r, either
P&'&(r; &r) or P&'&(r; &r) will converge rapidly, so that
computational labor is considerably reduced. $ Further-
more, when nl, ~ 0, we have a lattice of point ions and
P&'&(r; &r&,) ~P(r), P&'&(r; &ra) -+0. Thus we see how

(4.1) goes into (4.11) in this limit of point ions. When
&r&, ~ ~, lt &'&(r; o«,) —+0 and/&'&(r;&r&, ) ~it (r), so that
(4.1) gives a finite value for p(r; &c). This is as it
should be, since the physical situation corresponds to
a "crystal" composed of the point cores immersed in a
uniform negative electric Quid.

The entire problem of evaluating lattice potentials in

a Gaussian ionic lattice is then, merely one of 6nding
the values of the appropriate Ewald sums, lt(r),
lf&'&(r; &r), it&'&(r; n). In the Appendix a table of the
calculated values of lt (r) for different r is given, to aid
in calculations based on (4.1) or (4.1').

In the illustrative calculations presented here n will

remain as a parameter; however, it might be assigned
to a given ion by 6tting the outer part of the appropri-
ate Hartree radial density to a Gaussian. ' From
another point of view, the O.l, of the different ions in the
crystal are related to their degree of overlap, which

can be evaluated exactly for Gaussian ions. Thus, if
the two Gaussians are located at rl, and rl,+, nor-

CONTEN
+ l

(l) (r™r~', a~)

In all ionic crystals, the basis is neutral, so that+ &s&
&Js&'&

=0
The sums (4.2) and (4.3) have been extensively dis-

cussed by Ewald, ' and their physical significance given

by him. Thus, &&1
&'&(r—r&„&r) is the potential at r due

to a lattice of normalized Gaussians centered at rl,
and equivalent points, each of content +1, half-width

o&, the whole immersed in a uniform (compensating)
density —1/h. &&f "&(r—r&„.&r) is the potential at r due
to a simple lattice of point charges of content +1 at
rl, and equivalent points, each point charge surrounded

by a Gaussian of content —1, and half-width o,. If we
define

(4.4)

then lf (r) represents the "neutralized" potentials' of a
lattice of positive point charges, has full cubic sym-

P. P. Emald, Nachr. Akad. Kiss. Gottingen, Math. physik.
Kl. 3, 55 (1938). (Independently) F. Bertaut, J. phys. radium
13, 499 (1952), which has some points in common with the present
paper. Also see C. Kittel, Introduction to Solid State I'hysics
(John Wiley and Sons, Inc. , New York, 1953), Appendix B.

CONTENT:+I ~

coNrsNr~
-l

(2) (r "Y~ ', e~)

CONTE NT:
+I

(r-r 'g )lf)
lf

'
lf

(2)

(r-v }

Fro. i. The physical signi6cance of Ewald's method based on
Eq. (4.11)and Ewald's discussion (reference 9). In (a) the charge
distribution at a site is a normalized Gaussian, giving rise to the
Ewald lattice sum &«&'& (r —rk,.n) for the neutralized potential at r;
in (b) the charge distribution is a positive point charge plus a
compensating Gaussian, resulting in &t&s&(r—rk, n); and finally,
line (c) is the sum of (a) and (b) both for charge density and
potential. Note that the Gaussians cancel, leaving the isolated
point charge and the neutralized potential due to a lattice of such
point charges.

'0 R. McWeeny, Acta. Cryst. 6, 632 (1953).
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malized to q), and g)„with half-widths a), and O,I„
respectively, we can evaluate their overlap integral:

@(rk' rk+ nk nk')= ~pk'(r rk')pk(r rk+ )dr

=q~q~ L~(n~'+n~')$ '

XexpL —(ra' —r~+ )'/(na'+n~') j (5)

CHARGE DENSITY
AT

Vk+ V

POTENTIAL AT V

DUE TO
A L ATT IG E SUN

tl
CONTENT-'+ ql,

(I) (I) '" "I 'k'

To calculate the total overlap between the ion at r), ,
and all other ions, (5) must be summed over n and lr.
At sma11 values of o.~, the overIap is due to the nearest
neighboring 'ions to the one under consideration, and
so the value of (5) may be compared with the overlap
integral calculated using Hartree or Thomas-Fermi
densities for the ions and considering only nearest
neighbor overlap. The nk can then be chosen to make
the Gaussian overlap integral (5) equal to that calcu-
lated from these densities.

As can be seen by comparing (4,1) and (4.1'), the
present method is intimately connected with Ewald's
method —indeed, it involves weighting the two Ewald
sums, and recognizing the physical significance of the
resulting expression. To iHustrate the latter remark,
Figs. 1 and 2 show the physical significance of the
calculations based on Eqs. (4.1') and (4.1), respec-
tively. In Fig. 1(a), (b), (c), we show the charge
density at the ion site r&+„, and the potential at r due
to a lattice sum of such densities. Thus Fig. 1(a) shows
the iso1ated Gaussian, and the "neutralized" potential
P&"(r—r&, n); Fig. 1(b) shows the neutral charge con-

TABjE I. Variation of P&'&(r; a) with n

a/c af(»(0,0,0;a) af(»(0,0,$;a) ag(1)(0,$,$;a) ag(1)($/))$)a) gf(1&($,$,&4;a)

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2S
0.30
0.40
0.45
0.50
0.75
1
2

-2.8373-2.8360—2.8323-2.8260—2.8172-2.8059-2.7921-2.7757—2.7569-2.7355-2.6410—2.5532
2.3373—2.2112-2.0818—1.4969—1.1285-0.5642
0

-0.0959—0.0946—0.0909-0.0846—0.0758-0.0645—0.0507-0.0343-0.0155
+0.0058
+0.0816
+0.1130
+0.0978
+0.0726
+0.0494
+0.0025

0
0
0

-0.5825—0.5812-0.5775-0.5712—0.5624—0.5511-0.5373-0.5209—0.5021—0.4807-0.3866—0.3045-0.1503—0.0957-0.0585—0.0025
0
0
0

-0.8019—0.80Q6—0.7969-0.7906—0.7818-0.7705'—0.7567-0.7403—0.7215-0.7001-0.6056—0.5324-0.3199—0.2257-0.1488-0.0074
0
0
0

-0.2005—0.1993-0.1955-0.1892-0.1804-0.1691—0.1553-0.1389—0.1204-0.1002-0.0371—0.0136-0,0009-0.0002
0
0
0
0
0

figuration giving rise to lt &'&(r—rq, n); and the last
line, Fig. 1(c), is the sum of the two above it. In Fig.
2(a), (b), (c), we see the result of weighting the charge
densities before adding.

We emphasize again that the basic physical idea
behind the method presented here is that rapid con-
vergence of lattice potentials is obtained if the potential
due to any given ion is split into two terms: one repre-
senting the contribution due to a neutral configuration
(core plus a compensating Gaussian), the second the
potential due to the remaining Gaussian charge of the
ion.

2. ILLUSTRATIVE APPLICATIONS

To illustrate the calculations based on (4.1) we will

evaluate the Madelung potential and the potential at
an interstitial site in rocksa1t and zincblende structures
as a function of the Gaussian half-width of the ions. In
this treatment we will assume that each ion is de-
scribed by a single Gaussian, and we mill take the
half-widths of the different ions in the same structure
to be equal. The values of the KwaM sums needed are
given in Table I. Only P&'&(r; n) is listed there, as
4 "'(r; n) =4 "'(r; 0)-f"'(r; n)

CONTENT: + q
(2)
k

&2
CONTENT: —q

K

(2)
CONTENT: + q k—

(2) ~(2)

(I) (I) (T - 0'k ', ak)
k

(a) NaCl Structure

This structure consists of cations at (p,p,p) f.c.c. ;
anions at (p,p, s) f.c.c. We will treat NaCl by taking
the ions to have net charges &1lel, as is usual. We
lump together the point nucleus and inner electrons of
sodium to give a point core of charge +7l el; the sh
2p electrons form the Gaussian valence density. For
chlorine we take the core charge +5

l el and. the six Bp
electrons form the valence density. Thus

CONTENT:

(I) (2)
k k

+q„f (r-r; c )
(2) (2)

Fxo. 2. The physical signilcance of calculations based on
Ect. (4.1). 2(a), (b), (c) are analogous to 1(a), (b), (c). We note
that by weighting the charge densities and potentials before
@ddjng, the last ltne corresponds to a "G@ussjan" jog,

qNa + le I ~ qN& +7
1 el i qctul= —

l el,

qc&
' =+Slel, nN~=nct.

The potential at (0,0,0) is the self-potential or
"Madelung Potential" of the lattice, i.e., the potential
at (0,0,0) of the entire lattice except the ion at (0,0,0).
It is thus the effective potential at the center of a
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Fza. 3. Variation of lattice potentials and overlap integral with
Gaussian half width o., in NaCl. The curve labelled (a/~e~)
rp(I, 4,i; n) shows the variation with n of the potential at an inter-
stitial position, Eq. (7). The following curve gives the variation
with a of self-potential, Eq. (6); at a=0 this is the standard
Madelung potential for point ions. The last curve gives the overlap
integral, Eq. (8), in arbitrary units. The dotted line indicates n
equal to half the internuclear separation.

The latter is a measure of the total amount of valence
charge overlapping a sodium ions. Since +=0.25u is the
half-width equal to half the internuclear spacing
(dotted line), we can see that lattice potentials are
indeed sensitive to overlap.

(1) Zincblende Structure

This structure consists of cations at (0,0,0) f.c.c.,
anions at (4r, sr, s') f.c.c. We treat ZnS, and take the
ions to have net charges &O.5l el." The zinc core will
be taken as +2lel, with 1.5 valence electrons in the
Gaussian density. For sulfur the core is +6lel, with
6.5 valence electrons in the Gaussian. These net charges
may be considered to arise from chemical bonds of
mixed (ionic plus covalent) character formed from
hybrids of 4s, 4p; 3s, 3p orbitals on zinc and sulfur
respectively. Thus we have

gz~"' =+0.5
I
e I, &tz„&'&=+2

I
e I; &t s

"&= —0.5
I
e I,

g &'&=+6lel, nz = s.

The self potential &o(0,0,0; n), and the potential at
an interstitial site, y(s', rs, 's; o&) will be evaluated.

&e(0,0,0; &r) = lelL0. 5$&t&(0,0,0; n)+2/&'&(0, 0,0; a)j
+3I ll:o.slf &'&(-'„-,',o; )+2' &'&(0,—,',-'„)3

y4l eIL —o.slf &'&(-,',—;,-'„~)y61I&s&(-,',—;,-'„. n) j, (9)

positive ion vacancy. The expression for the self-
potential is obtained from (4.1) by the usual limiting
process. ' From (4.1), we have

y(0,0,0; n) = lelQ&'&(0, 0,0; &r)+g&'&(0,0,0; n)j
+3

I
e

I 8 &'&(-'„-,',O; n)+ Vy&» (-' -' O. rr)g

+ Iel! —0 "&(s s 5' ~)+54 "&(s s s' ~)3
+3 I.IL—lI &'&(0,0,—,', )+sit &'&(o,o,—,'; )3. (6)

The functions lt &'&(0,0,0; o&) and lf &s&(0,0,0; o&) are the
limiting forms of (4.2) and (4.3) (see reference 5).

The position (»,—'„st) is an interstitial position in the
structure, where, for point ions, the potential is by
symmetry, zero.

& (-.')s,—.', ~) =4leILlt"'(s sa' ~)+~it"'(s s s' ~)j
+4leIL —4"'(l,-' l )+54"'(l,-', l )j

=4glel4' (s s s i rr) (&)

-I.89 I 5

-I 2

-I 6
S.

I/2, I/2, I/2; a )

I
I

$ &00,0 la&

.o sa)

In Fig. 3 the potentials (6) and (7) are plotted as
functions of &s (upper 2 curves). At n=o, &o(0,0,0; 0)
= —3.4951lel/a (which is the well-known Madelung
constant of NaCl for point ions), and q (st, —,', s'; 0) =0.
As 0, increases, both of these potentials fall, rejecting
the increase in valence charge density accompanying
increasing overlap. Figure 3 also shows the variation
with 0, of the total overlap integral

(~) u

g (0,0,0; n) = 8 P g (rs+, n).
g. R=l

0.2 o 0.4o 0.6o 0.8o I,Oo

a ~
FIG. 4. Variation of lattice potentials and overlap integral vrith

Gaussian half width n, in ZnS. The iona have net charges &0.5
~
s ~.

The top curve gives the potential at an interstitial position, Eq.
(10). The following curve gives the self-potential, Eq. (9); at
n=0 this is the Madelung potential for point ions. The last curve
gives the overlap integral, Eq. (8), in arbitrary units. The dotted
line indicates a equal to half the internuclear separation.

"M. Born and E. Bormann, Deutsch. Phys. Gesell. 21, 733
(1919),and B. D. Sakseria, Phys. Rev. 81, 1012 (1951),more or
less agree on an effective charge of about this range. H. D. VasileB
(private communication), of this laboratory, has calculated effect-
ive charges of +0.51 I el.



ELECTROSTATIC LATTI CE POTENTIALS 90'

0,
0,
0,
0,
0,

aP (0,0,0) = -2.8373
r = {v,y,z)

0,
1
'K)
1
3
Sr
1
27

—0.09593
+2.8825*
+0.23941—0.43387*—0.58252

and

~(s, s,s; ~) = I&ILo 54"'(s, l,-'; ~)+V"'(s,s,s; ~)7
+3

~
e

~
[0.5$"'(0,0,-', ; n)+2' "'(0,0,—', ; rr)]

+4I el [—o 5W"'(l, l,-'; u)+64"'(l, l, l ' ~)7 (~0)

The potentials (9) and. (10) are plotted in Fig. 4,
as the two upper curves. Again, n=0 corresponds to
the case of point ions, where the Madelung potential
for ions of net charge &0.5

~

e
~

in zincblende is p (0,0,0; 0)
= —1.8915 ~e~/a, and p(-,',—,',—,'; 0) =0. We also plot
8(0,0,0; n) [see (8)7 as a measure of the total valence
charge overlapping a zinc ion. The dotted line indicates
the half-width equal to half the internuclear spacing
where n=v3a/8.

The same characteristic features are apparent in
Figs. 3 and 4. Thus, lattice potentials change appreci-
ably when the Gaussian densities begin to overlap,
which occurs roughly at a half-width equal to one-fourth
of the internuclear separation. However, even at very
small overlap the potential is affected by the 6nite
size of the ions. Kith increasing half-width the po-
tentials rapidly approach their ultimate values, mirror-
ing the rapid approach of the total valence density to
its ultimate constant value at n = ~ .

3. CONCLUSIONS AND SUMMARY

A method has been presented for calculating electro-
static lattice potentials in ionic crystals composed of
"Gaussian" ions. Numerically, the method involves

TABLE II. Calculated Ewald sums for a cubic lattice. '

only a slight change in the usual EwaM formulas, and
therefore preserves the ease of calculation characteristic
of the latter.

The effect of increasing ionic overlap (increasing the
Gaussian half-width) upon Madelung and interstitial
lattice potentials in NaCl and ZnS was investigated.

The results of the calculation indicate that lattice
potentials are sensitive to overlap, contrary to the
usual assumption made in treating as equal the lattice
potentials of all substances with the same crystal
structure and effective ionic charge. Indeed, the calcu-
tion shows us that even at very small overlap there
may be a signi6cant diGerence between lattice poten-
tials computed for point ions and the true potential
for the given crystal. Since the present paper is in-
tended more to illustrate this point by means of a
straightforward calculation based on a simple model
rather than to obtain any exact results for a particular
substance, no attempt will be made here to 6t known
densities to Gaussians. As our knowledge of electron
densities improves, from x-ray di8raction Fourier
analysis and/or accurate quantum mechanical calcu-
lations, one expects that more attention must be paid,
in evaluating lattice potentials and the quantities which
'depend upon them, to the actual spatial extent of
valence electron densities. The present calculation,
therefore, represents a first step in this direction.
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1
X7
1
Sp
1
Y7

1
Sy
3
8p
3
8&

1/24, 1/24, 1/24
1/24, 11/24, 11/24

1/12, 1/12, 1/12
1/12, 5/12, 5/12

+11.0249*—0.5714*

+4.1431*—0.5389

+1.875—0.480—0.5576~

S. APPENDIX

(a) Ewald Sums for a Cubic Lattice

The available Ewald sums f(r) for a cubic lattice
are listed in Table II. Those followed by an asterisk (*)
are newly computed by the author; the others are
given by Hund. "

1
6)
1
6r

1
6s
1
37

+0.7885~—0.4027

5/24, 5/24, 5/24
5/24, 7/24, 7/24

+0.1741*—0.3077*

1
1
47

4p1
4p
1
gp

1
37

27

1fl
1
Ss
1
47
3
8)
1
47

1
37

1
2)

+0.6178*—0.2790*—0.2005—0.5912*—0.5307

—0.5946*

—0.8019

a The values followed by an asterisk are newly computed by the author;
the others are given by Hund (reference 12).

(b) The Hund Identities

Hund" has pointed out that various identities exist
among the Ewald sums which serve both as a check on
numerical work, and as a means of obtaining some un-
known values from these already available. Since these
identities are of considerable value, we take the liberty
of including Hund's justi6cation of them" in the present
paper. Now f(x,y, s) represents the neutralized potential
ar r= (x,y, s) due to a simple cubic lattice of point ions
of side 1 unit. If we redefine the cell so that it has side
2 units, introducing thereby an arti6cial basis, then,

~ F. Hund, Z. Physik 94, 11 (1935)."F. Hund (private communication, August 27, 1951).
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for the potential at the same point in crystal space we
now have

le(s*,b, ss)+0(s*,e, ss —s)+0(s*, sX—s, ss)

However, changing the de6nition of the cell edge
changes no physical quantity (e.g. , the potential) in
the lattice, so that the above expression must equal
Il (x,y,s). By picking particular values of r and making
use of the full cubic symmetry of ilr(r), the equations
simplify to those of Hund. Clearly, the same type of
argument also holds if the new cell side is any integer.
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The thermal conductivity of a series of homogeneous, solid
solution indium-thallium alloys containing up to 50 atomic
percent of thallium has been measured as a function of tempera-
ture at liquid helium temperatures and as a function of both
longitudinal and transverse magnetic fields below T„ the super-
conducting transition temperature in zero 6eld. The normal-state
results agree quite well with the quasi-free electron theory of
metals. The superconducting-state results agree with the hy-
potheses that electrons in the "superconducting phase" neither
transport heat nor scatter phonons.

For pure indium, it was found that K„/E, =2P/(3+I'),
where IC„and E, are the electronic thermal conductivities at a
given temperature when the specimen is superconducting and
when it is nonsuperconducting, respectively, and t = T/T, .

For all the alloy specimens the ratio of the lattice thermal

conductivities comprised a family of curves such that E &Eg;/
Eg~&t 6.

A thermal resistivity maximum was found to accompany the
isothermal destruction of superconductivity by either a longi-
tudinal or a transverse magnetic Geld in specimens containing
15 percent Tl or more. When the applied field was reduced to
zero, the final thermal resistivity of most of these specimens was
greater than would be expected for a simple mixture of super-
conducting and "frozen-in" normal regions, the concentration
of the latter being estimated from magnetic induction measure-
ments. Both this effect and the maxima themselves are thought
to be manifestations of an increased lattice thermal resistivity
due to alteration of the mean free path of phonons when they
approach the boundary between a superconducting and a normal
region.

I. INTRODUCTION

HE mechanism of heat conduction in super-
conductors, like the phenomenon of super-

conductivity itself, is still very incompletely understood
from a quantitative theoretical point of view. However,
some progress has been made towards a qualitative
understanding of the various physical processes invo1ved

particu1arly in the case of pure metals. ' In order to
indicate the nature of the diS.culties involved, it is
necessary to discuss briefly the mechanisms of heat
transport in nonsuperconductors at low temperatures.

Heat is conducted through nonsuperconducting
metals by the motion of conduction electrons and by
the direct interactions between atoms. Since these
processes can be regarded as heat paths in parallel, it is
usual to assume that the separate conductivities are
directly additive. For pure metals at low temperatures
the electronic thermal conductivity is usually so large
that the lattice thermal conductivity is negligible in

~Based on a thesis submitted in partial ful6llment of the
requirements for the degree of Doctor of Philosophy in the Physics
Department of the University of Chicago.

t U. S. Atomic Energy Commission FeHow, 1951—53; now at
Westinghouse Research Laboratories, East Pittsburgh, Penn-
sylvania.

D. Shoenberg, SuPercomducti city (Cambridge University
Press, London, 1952), second edition, pp. 78-86.

comparison with it. In this case, Wilson, ' Makinson, '
and Sondheimer' have shown theoretically that at
temperatures below about 0.1e, where 8 is the Debye
temperature, the electronic thermal resistivity may be
expressed in the form

where E,„ is the electronic thermal conductivity and
n and P are constants for a given specimen. The first
and second terms on the right represent thermal
resistivities due to the scattering of electrons by
phonons, and by impurities, respectively; the existence
of both types of thermal resistivity is now well estab-
lished by experiment, ' ' and there is little doubt that
the temperature dependence is close to that predicted
theoretically. The experimental values of the coeKcient

' A. H. Wilson, Proc. Cambridge Phil. Soc. 33, 371 (1937);also
Theory of Metals (Cambridge University Press, Cambridge, Eng-
land, 1953), second edition.

e R. E. B.Makinson, Proc, Cambridge Phil. Soc. 34, 474 (1938).
. e E. H. Sondheimer, Proc. Roy. Soc. (London) A203, 74 (1950).' J.K. Hulm, Proc. Roy. Soc. (London) A204, 98 (1950).

R. Herman and D. K. C. MacDonald, Proc. Roy. Soc.
(London) A209, 368 (1951); A211, 122 (1952).' Andrews, Webber, and Spohr, Phys. Rev. 84, 994 (1951).

K. Mendelssohn and H. M. Rosenberg, Proc. Phys. Soc.
(London) A65, 385 (1952).' G. K. White, Proc. Phys Soc. (London. ) A66, 559 and 844
(1953).


