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energy surfaces. From (V.13), there are at once seen
to be

ei —is (2g+B)ks = i (3n —P)ks

es =Bk'= -'(3P—n) k' (C.15)

si s
——s(A+2B)k'& f Ls(A B—))'k4

+sLC' —(A —B)sjI}&, (C.14)
I=k.'k—„'+k„'k.s+k.sk,',

where each is doubly degenerate.
For our simple case, C'= (A —B)', and the expressions

(C.14) become

Using each of these are our Hamiltonian, we see at
once that the energy levels in an external fmld are
(again a factor of s is dropped)

ei(np) =-', (3n —P) (2ep+1)
tlo=0, 1, 2, , (C.16)

es(es) = s (3P n) (2es+ 1)

each level being doubly degenerate. Expanding the
roots in (C.13) in reciprocal powers of 2ms+1, we
immediately obtain (C.16) for high quantum numbers.
It is also clear from these formulas, however, that for
small mo the deviations from the classical results are of
the order of magnitude of the level spacings themselves.
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The hyper6ne splitting of donor states in Si has been theoretically estimated. The results agree with the
recent spin resonance experiments of Fletcher et al. within a factor of about 2, which is better than the
estimated uncertainty of the calculation.

1. INTRODUCTION

I.ECTRON spin resonances exhibiting hyperhne
~ =& structure in e-type Si have recently been observed

by Fletcher et c/. ' The number of hyper6ne lines of
these resonances corresponds exactly to the nuclear
spin of the added Group V atoms, so that it is clear
that the resonances are due to electrons localized near
such atoms. The purpose of the present study is to
examine whether the observed magnitude of the hyper-
fine splitting is consistent with the picture that the
electrons in question are in the well-known donor states
with ionization energies of about 0.04—0.05 ev. In
calculating this splitting there are two main difhculties.
The erst is that the band functions for Si are not
well known. The second is breakdown of the eGective
mass formulation in the neighborhood of the impurity
atom. We estimate that due to these difhculties our
final result has an uncertainty of about a factor of 6ve.
The experimental results fall well within these limits.
Thus our calculation supports the view that the ob-
served resonances are due to electrons in donor states.

2. FORMULATION OF THE PROBLEM

Let us consider an electron bound to a Group V
donor atom such as P, As, or Sb. We denote the normal-
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ized wave function of the electron by p(r), where the
origin of r is taken at the donor nucleus. Then the
magnetic interactions of the spin moment of the
electron p„ the nuclear moment of the donor p~, and
the external magnetic field I, are given by

JV= —p. H+(g~/3)P(0)p p~ (2 1)

Thus the donor nucleus produces an additional eGective
field

H'= —(g /3)P(0)(1; ), (2.2)

where ( ) indicates expectation value over the nuclear
wave function. Therefore the total hyperfine separation
(between the extreme lines of the multiplet) is given by

(hII)„„g= (16m/3)P(0) pi), (2.3)

where pD is the magnitude of the nuclear moment of
the donor. Table I lists experimental values of AH
(reference 1), experimental values of pii, s and ifs(0)
calculated from (2.3). The object of the following con-
siderations is to make theoretical estimates of its(0)
and to compare them to the values listed in Table I.

The function f(r) satisfies the Schrodinger equation

L
—(k'/2ns) V'+ V(r)+ U(r) —E)P(r) =0, (2.4)

where V(r) is the effective periodic potential for a
conduction electron in Si and U(r) is the additional
potential due to the replacement of one Si atom by a
donor ion. For r large compared to the interatomic

' J. E. Mack, Revs. Modern Phys. 22, 64 (1950).
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Donor

PSI
As"
Sb121

pD
(nuclear magnetons)

i.|3
1.5
3.40

d,H
(oersted)

42
228
345

Tai&Lz I. Experimental results for P(0).

8'2 (0) jexp&
(1024 cm 3)

0.44
1.80
1.20

however, there are six equivalent minima k&'&, the ground
state wave function will actually be a linear combination
of solutions of the form (2.9) corresponding to each of
these points. If the phases of the P&f& are all chosen to
be the same at the origin, then the correct normalized
ground state function is

distance d,
U(r) = —e'/&&r, (2.5)

6
—p p((&

A2 h2

E=E(&+ (k, k&&)s+ (—k„s+k.'),
2~1 2m 2

(2.6)

where according to reference 3,

m1= 0.98m, m2= 0.19m,

m being the free electron mass.
It can be shown that in the limit where the orbit of

the donor state is large compared to the interatomic
spacing and U(r) is given by (2.5), the energy of a
donor state is the lowest eigenvalue of the equation:

( O' r}' &&&' ( &}' 8' i
I

— —
I +

21st Bs 2&&zs 4&}$ Bz )
+U(r) — IF&'&(r) =0. (2.S)

where x is the dielectric constant, equal to 12.0 in Si.
In this and the following two sections we shall use (2.5)
for aIl values of r (since the donor orbit is large com-
pared to d), and make rough corrections for the failure
of (2.5) when r is small in Sec. 5.

The donor state function P(r) is mostly made up of
SIoch waves from the bottom of the conduction band
of a perfect Si lattice. It is therefore essential to know
the nature of the conduction band energy surface near
its minimum point or points. Fortunately recent meas-
urements of "cyclotron" resonances' provide this infor-
mation. They show that the conduction band of Si has
6 minima on the (1,0,0) and equivalent axes in k-space.
If the minimum point k&» on the (1,0,0) axis is given
by (k(&,0,0), the energy near this point is given by

Therefore,

6
-- p F&'&(r)lt(k&'& r).

+6& i
(2 11)

3. ESTIMATION OF
i

it((it&'& 0) i
s

The conduction band wave functions of Si go over,
in the limit of large interatomic distance, into 3s and
3p orbitals. Only the former contribute to the square
of the wave function at the nucleus. It is therefore of
interest first to estimate Igs, (0) I' for atomic Si. For
brevity we shall denote this quantity by P(Si; 3s).

Unfortunately no self-consistent calculation for
neutral Si exists. However, a fairly good idea of P (Si; 3s)
can be indirectly obtained as follows. We list below
certain values of P obtained from solutions of Hartree-
Fock equations':

and'

I P (Ge; 4s) 7H i = 70)& 10"cm ',

I P(Ge~ 4s)7H s ——82&&10s4 cm ', (3.1)

I&(0) I'=6IF&»(O) I'Ill(k&», 0) I. (2.12)

The normalization of (2.11) follows from the fact that
the F"&(r) are slowly varying compared to a typical
lattice spacing, in which case the members of (2.11)
are orthonormal.

The problem of calculating Ilt(0) I' can be divided
into three parts: (a) The computation of IP(k&», 0) I',
(b) the computation of IF&'&(0) I', (c) an estimate of
the eBects of the simplifying assumptions leading to
(2.12). These questions will be taken up in the next
three sections.

If k&'& were the only minimum point, then in the same
approximation' the corresponding wave function would
be

I P(Si' ' '; 3s)7n.r.——39&&10'4 cm '. (3.2)

P(» —F(i& (r)P(k(» r)

From these values and the analogy of the electronic
(2.9) configurations of Si and Ge, we estimate

where f(k(», r) is the 31och function at k&'&, normalized

so that

4 unit cell

Iy(k&'&, r) I'dr=0, (2.10)

Q being the volume of the unit cell. If F(') is normal-
ized to unity over the whole crystal, then so is f. Since,

' Dexter, Lax, Kip, and Dresselhaus, Phys. Rev. 96, 222 (1954).' J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).

I P(Si; 3s)7n.s.= (31&3)&&10'4 cm—'. (3.3)

Direct comparison with experiment in the case of the
alkalies shows that the Hartree-Fock equation gives too
low a value for P. Hence (3.3) very probably represents
a low estimate for the true P.

An upper limit for P(Si;3s) can be obtained by

sHartree, Hartree, and Manning, Phys Rev. 59, 299 .(1941).
HartreeHartree, , and Manning, Phys Rev. 60, g5'/ .(1941}.
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evaluating P(Si' ' '; 3s) from the Goudsmit formular

1 ZZp' 1 Z (Zp& '
~o=

%rap sp ll ap Zp (sp)
(3.4)

where ao is the Bohr radius, Zo is the charge of the
entire ion core (4 in our case), and np is the effective
quantum number of the outside s-electron deGned by jF&'&(0) l'= (3.7&0.2) X10&P cm '. (4.2)

following results will indicate the reliability of this
function. For m& ——ms, (F&'&(0)/8&i&(0))'=1 for m/m

LF&'&(0)/F"&(0)j'—+1.15. Thus the error of

l
F&'&(0) l' is less than 15 percent for all mr/ms&1. At

the actual values of mi and res,
l
F&'&(0) j'=3.8X10+"

cm '. Allowing for the fact that for large mi/mp,

j
F&"(0) l' is a slight overestimate, we arrive at

W= (Zp/Np)' Ry, (3.5) Combining this, Eq. (3.12), and Eq. (2.12) gives

where TV is the ionization energy. For Si' ' ',
5'=3.32 Ry, (3.6)

j P(Si' ' '; 3s)fo=46X10'4 cm s. (3.7)

This value should represent the true Pj Si' ' '; 3sj to
within 5-10 percent. It agrees rather well with (3.2),
and as expected is somewhat higher. Combining (3.2),
(3.3), and (3.7) gives finall:

P(Si,3s) = (37&5)X 10'4 cm '.

In the absence of better crystal wave-functions, we

must now use this value to estimate jf(k&i&,0) l'. We
note that in the tight-binding approximation the con-
duction band wave functions are made up of atomic 3s
and 3p functions; thus, in the vicinity of each Si atom,

V( "', ) =(~/2)'L&. ()+W .()»

jf(0) j'= (2 j&r j') X0.082X10"cm ',

(2 jul')-1. (43)

%e are now in a position to make a preliminary
comparison with experiment. The case to which our
model of a perfect Si lattice plus a e'/&&—r potential
applies best is that of a phosphorus donor, which
diGers from the neutral Si atom just by one extra
nuclear charge. Comparison with Table I shows that
our present estimate is too low by a factor of 5. Even
if (2l &r

l ) = 2, which is its maximum value in the tight-
binding approximation and very likely an overestimate,
there still remains a discrepancy of a factor of 2.5. It
is therefore necessary to examine the validity of the
simplified approach, which led to Eq. (2.11), and to
make rough allowance for eGects neglected by it. This
will be done in the following section.

0/2 being the volume per atom, and

j
~ j'+ j&j'=1 (3.10)

5. CORRECTIONS TO THE EFFECTIVE MASS
FORMALISM

We have not been able to estimate &r and P reliably.
However, the values

Qf 2 ~ 2 (3.11)

4. ESTIMATION OF j E&»(0) j
P

This is the most straightforward and reliable part of
the problem. It requires the solution of Eq. (2.8) with
the values (2.7) for mt and ms. An exact solution has
not been found, but the function'

F&'& = (a'b/7r) 1 exp( —La'(y'+s')+b'x']1) (4.1)

is, with suitable u and b, a good approximate wave
function for all values of m~&m2. Details will be
described elsewhere. For our present purposes the

r S. Goudsmit, Phys. Rev. 43, 636 (1933).
8 Dr. C. Herring has kindly informed us of an independent

estimate of (3.12) giving the value 200, which he expects to be
too low rather than too high. This value would improve the
agreement with experiment t see Eq. (6.1) if'.

9 This function was independently introduced by M. Lampert
of the Radio Corporation of America.

are probably not in error by more than a factor of 2.
Combining (3.9) and (3.8), and introducing the value

0=40.0)(10 "cm', we find anally:

jP(k'" 0) l'=(2j&rj')X370, (2jnj)' 1. (3.12)

This Gnal estimate is probably also good to within a
factor of 2.'

The effective mass formalism on which the work. in
the preceding sections was based is least reliable in the
vicinity of the singularity of the perturbing potential
U(r) (see reference 4). Furthermore, the form —e'/«r
for U which we have assumed up to now, is certainly
incorrect for small r. Actually

where
Ii'(r) = f(r)e'/r, —

limf(r) = (Z» —Zs;),
r-+0

limf(r) = 1/&&,

(5.1)

(5.2)

(5.3)

Z~ and Zg; being the atomic numbers of the donor
atom and of Si respectively. For both of these reasons,
the following procedure should represent a distinct
improvement:

(a) Solve the eGective mass equation (2.8) with
the asymptotic potential, e'/&&r, in an exterior reg—ion
Q„which excludes a small volume 0; surrounding the
donor atom, and obtain a wave function of the form
(2.11) in this region.

(b) Solve the original Schrodinger equation (2.4)
with the correct U(r), (5.1) and (5.2), in the interior
region 0;.

(c) Join these solutions smoothly. This will of course
determine the energy.
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To carry out this program in detail is at present
impossible since both U(r) for small r and f(k&",r) are
unknown. We shall therefore have to be content with
very rough estimates, using as an important guide the
measured ionization energy of donor electrons.

For the time being we shall concentrate on phos-
phorus donors, which introduce the least violent pertur-
bation into the Si lattice. A few remarks about the
other donors will be made in Sec. 6.

In this case all the F(@ become identical, say F, and
satisfy the simple hydrogenic equation

(5.5)

At this point it should be noted that the measured
ionization energy of phosphorus donor states is"

sexpot= 0 044 eve (5.6)

substantially larger than the —0.029 ev calculated in
the eGective mass formalism with the measured m~ and
est. Thus we require the s-like solution of (5.5) for a
value of e which lies substantially below the lowest
eigenvalue. This solution, if it were continued to the
origin would diverge there.

To study this function let us first introduce the
"Bohr radius" of (5.5) as unit of length:

a"=O'Ir/csee'= 21X10 s cm, r/a*= @) (5.7)

(a) Exterior Region, Q,

Here we are forced at the outset to make a simplifi-
cation, namely to replace the two masses m& and m2 by
a mean mass m~, which we choose to give the same
binding energy as that calculated with m~ and m2

using (2.8).

es ——e'es*/(2h'a') = —0.029 ev, me =0.31es. (5.4)

F(x)=de I"(2z/e)" —'.

When F(g) is normalized over all space, one finds
As=0. 7.

The choice of the bounding surface between 0; and
0, is determined by the following considerations: It
must not be too close to the origin, since the effective
mass formalism with the asymptotic potential —e'/ar
would then break down in 0,. On the other hand it
cannot be too far from the origin since then the inte-
gration problem would be insuperable in 0;. A reason-
able compromise is to take 0; as the Wigner-Seitz
sphere enclosing the impurity atom. This has a radius

a= (3Q/8m)1=1. 68X10 ' cm

=0.08@*.
(5.12)

In the previous sections we had assumed that F(x)
was the normalized solution of the effective mass
equation, regular at the origin. With our average mass
ms* this corresponds to

F„,(x) = e
—*/ger. (5.13)

The present normalized F(x), Eq. (5.10), is much larger
than F„,(x) at the bounding surface. In fact from
(5.10) and (5.13) one 6nds

LF(a)/F...(a)]' 10, (5.14)

a result which we shall use later in our revised estimate
« le(0) I'"

For purposes of joining, it is also of interest to
evaluate the logarithmic derivative of F(z) at a. We
find

F'(a)/F (a) = —8.0a* '= —0.37X 10' cm—'. (5.15)

the following limiting behavior:

x—+0:
(1-ey

F(x)=As *l"
( [

—(1—e) log2x+1,
(5.11)

S~ ClO:

and es, the "Rydberg" of (5.5), as unit of energy:

es=e =1/e .

In the present case,

It may be noted that while the logarithmic derivative
is very large on a scale appropriate to the donor orbit

(5 8) (a*), it is quite moderate on an atomic scale (10 cm).

(b) Interior Region, Q;
e= (0.029/0. 044) &=0.81.

The solution of (5.5) is then given by

F(x) =A (e/2x) 8'„,f (2x/e).

(5.9)

(5.10)

In the case of phosphorus the effect of the additional
potential U(r) on the wave function in 0; can be treated
by perturbation methods. To zeroth order the wave
function with the correct symmetry properties is

where 8' is the Whittaker function" and A is a normal-
ization constant. When ~1—e~&&1 this function has

No= Bp p(«o, r), (5.16)

IMorin, Maita, Shulman, and Hannay, Phys. Rev. 96, 833(A)
(1954)."E.T. Whittaker and G. N. Watson, Moderl Aealysfs (Cam-
bridge University Press, New York, 1945), p. 337.

n The result (5.14) depends of course on the choice of the
joining point a, but this dependence is not overly critical. An,
increase (decrease) of a by 20 percent would decrease (increase)
(5.14) by about 25 percent.
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where 8 is a constant Lsee (2.11)].Because of its high
symmetry, . Pp is predominantly s-like in 0;. The pertur-
bation due to the donor atom is also nearly spherical,
so that no serious error is incurred by treating the
entire problem as having rotational symmetry.

Let us call the radial functions with and without
perturbation

The difference between R and Rp are of the order of
magnitude of R(r), since Rp(r) vanishes. Therefore
(5.20) is an estimate of the quantity I f(a) —go(a) j/
fo(a). Further transformations give

~" f(r)
Rp'dr

P(a) —fo(a) 2meo "p r

A(a)

R(r) =n—P(r), Rp(r) = rfp(r), (5.17)

V Ro(a) (dRo/dr)respectively. It is convenient to choose f(0)=fo(0).
Since the difference between the energy parameters of
R and Ro is quite negligible compared to U(r), it
foHows directly from the Schrodinger equation for R
and Rp that

"f(r)
Rp'dr

2nse' ~ p r

O' R,(a) (dRp/dr)
dR(r) dRp(r) 2nz r

'
R,(r) R-(r) = U(r')RR, dr'

dr dr 5 ~p
Ro(a) -1 dR 1 dRp-

(dRp/dr) „R dr R-p dr
28$ f

U (r')Roodr' Ro(a)
(0.37X10P cm ')

(dRp/dr)
(5.21)

2me' t."f(r')
from (5.19) and (5.15).Using the same function as was
used to estimate (5.19), we find

where f(r) is defined in (5.1). At r=a we may write
this as

(1 dR 1 dRpp

ER dr Rp dr J „. or

4 (a) -A(a)
&0.15,

A(a)

0 (a)/A(a) = 1~0.15. (5.22)

I gp2 We see that the deviation from 1 is not large. Since we

f ——— dr' Rpo(a), (5.19) have chosen f(0) =fp(0), we therefore have
. A'~p r'

0(0)/4 (a) =6(0)/A(a).

which may be written

R(r) 2me' p "f(r)
R02dr

Rp(a) 5' ~p r

pdRo(r) )
Rp(a)i

i
. (5.2O)

dr ) -„

where f is an average value of f We have .estimated the
square bracket with an s-like Si function giving a value
of 2.5 X 10' cm '. Since f= 1/» at a and increases inward
a choice of f=2/» is not unreasonable. This gives for
the right hand side of (5.19) a value of —0.4X10' cm '

The agreement of this very rough estimate with
(5.15) is surely fortuitous. But it does at least show
that the change of logarithmic derivative (5.15), calcu-
lated from the outside, agrees in order of magnitude
with that obtained by integrating the Schrodinger
equation from the donor atom outwards.

To find ~f(0) ~' it is also necessary to have an esti-
mated P(a)/fp(a) )see Eq. (6.1)j. Unfortunately there
is considerable uncertainty in estimating this quantity.
However, a reasonable bound may be obtained as
follows. Let r be the last node of Rp before a. Then
(5.18) becomes

dRp(r) 2me'
I
"f(r)—R(r) = —

~

—Rpodr,

p

where "reg" indicates the function obtained with the
regular solution of the effective mass equation (Secs.
2—4). Hence, finally,

tt (0)/lt (a) =P-.(0)/g-. (a)

(c) Joining the Solutions

(5.25)

In principle we should have calculated R'(a)/R(a)
from the inside and then have adjusted the energy to
get the same logarithmic derivative from the outside.
Here we have actually side-stepped the joining problem
by using the observed energy for our outside wave
function, and therefore had to be content to verify
that this could well join smoothly with the interior
solution.

We may mention here one more correction. The
orthogonality of the six functions F&"(r)p(h&o, r), which

Similarly, in the efkctive mass formalism, we And

F"p(0)
y...(o)/p. ..(a) = g, (0)/A(a))

"'
F...(a)

=A(0)/0 ( ), (5 24)



W. KOHN AND J. M. LUTTI N GER

TAaLE II. Atomic wave functions at the origin, and ionization
energy of the donor state.

Element

P
As
Sb
I,i

/atomic (0)
(1024 em 8)

~110
~110

1.7

Ionization energy
of donor

(ev)

0.044
0.049
0.039
0.033

was used in establishing (2.12), depended on having
slowly varying functions F&"(r). This is no longer the
case (particularly near r=0) and hence the orthogo-
nality no longer holds so well. However, the main
Fourier components of J (r) still correspond to rather
long wavelengths so that the violation of orthogonality
should not be too serious.

6. FINAL ESTIMATES FOR ttts(0)

Phosyhorus

Combining our results we obtain

P(0) =
I I I (0-'(0) I

P(0)/P(&) ( 4'(&) i
-0'- '(0)/0'- '( )- ~4'- '( ) ~

= ~ X~0X0.0»X ~024 em-

=0.82X$0'4 cm ' (6.1)

Lsee (5.25), (5.14), and (4.3)g. This is to be compared
to the experimental value of 0.44X10'4 cm '. It will be
clear from the crudeness of the estimates in previous
sections, that our results can only claim to be valid to
within perhaps a factor of five. In view of this, we feel
confident that the hyperfine splitting in phosphorus-
doped Si can be interpreted as being due to electrons
in the usual donor states.

Other Donors

For As and Sb it is considerably more difIicult to
calculate the wave function in the vicinity of the donor,

since the perturbation is much more violent. However
important factors are certainly the ionization energy of
the donor state, and the values of the atomic wave
functions at the origin. These are listed in Table II."
For As both the atomic function and the binding are
greater than in phosphorus so that we would definitely
expect a larger ~its(0) ~, as is observed (about a factor
of 4, see Table I). In Sb, the atomic function is larger,
but the binding is less, so that it is hard to say whether
the ($(0) ~s is greater or less than with phosphorus.
However, the fact that the binding is smaller for Sb
than for As may account for the fact that the observed
~lf (0) ~' is smaller in Sb than in As.

Finally for Li both the atomic ~g(0) ~' and the
ionization energy are quite low. Very roughly, we would
therefore expect a ~P(0) ~

s for lithium smaller than that
for phosphorus by a factor of the order of magnitude of

[trratomic(0) ) r, i
X—=0.004.

) ti('atomic (0) ( p 10

The 1/10 arises because for Li the ratio (5.13) will be
of the order unity. This factor is small enough to ac-
count for the fact that Honig and Kip" have observed a
line without hfs with Li-doped Si.

It is a great pleasure to thank Dr. R. C. Fletcher
for many stimulating discussions, and the Bell Tele-
phone Laboratories for their hospitality and cooper-
ation.

Note added in Proof Honig and K.—ip'4 and Honig LPhys. Rev
96, 234 (1954)j have reported widths of resonance lines associated
with Li and As donors in Si. A theoretical study of these widths,
which will shortly be published, indicates that very probably

~

p(k&'» 0)
~

s= 200+50 1 see. Eq. (3.12)),corresponding to 2 [ n ~

'
This reduces our theoretical estimate (6.1) by a factor of 200/370
giving (iP(0)ga„»=0.4X10~' cm ', in the case of P donors.
The agreement with the experimental value Ltts(0)g, „o=0.44X10"
cm 3, is thereby improved.

"The values of it,t, ;,s(0) have been estimated by methods
similar to those leading to (3.8). Those of the ionization energies
are taken from reference 9.

'4 A. Honig and A, F. Kip, Phys. Rev. 95, 1686 (1954).


