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time axis could be detected. Hence, one concludes that
if the deformation introduced changes in the elastic
constants C33 or C44 these changes must be less than
one or two percent for strains up to 10—' radian. Such
a result is to be expected since the appearance of slip
bands on the surface indicates that the deformation was
confined to numerous very narrow bands. Within these
bands one might expect very diGerent elastic modulii

but since their total thickness is small compared to the
total thickness of undisturbed crystal, the sound wave
spends most of its time traveling in an undeformed
lattice.

The author is particularly indebted to Professor E. P.
T. Tynda11 for his encouragement and valuable sug-
gestions throughout the development and performance
of this experiment.
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Motion of Electrons and Holes in Perturbed Periodic Fields
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A new method of developing an "eftective-mass" equation for electrons moving in a perturbed periodic
structure is discussed. This method is particularly adapted to such problems as arise in connection with
impurity states and cyclotron resonance in semiconductors such as Si and Ge. The resulting theory gener-
alizes the usual effective-mass treatment to the case where a band minimum is not at the center of the
Brillouin zone, and also to the case where the band is degenerate. The latter is particularly striking, the
usual Wannier equation being replaced by a set of coupled differential equations.

I. INTRODUCTION
' 'X recent years, there has been a renewed interest in
~ ~ the problem of motion of charge carriers in per-
turbed periodic 6elds. The principle tool has been the
so-called effective mass" theory, which replaces the
effect of the periodic Geld by a mass tensor, the elements
of which are determined by the unperturbed band.
structure. ' The rigorous theory has so far been limited
almost entirely to the case where the relevant band is
simple and has its lowest point at the center of the first
Brillouin zone. In this form it is not directly applicable
to the treatment of semiconductors such as Si and Ge.
For these substances, recent "cyclotron" resonance ex-
periments' indicate that both the conduction band and
the valence band are not of this simple form. The con-
duction band for Si does not have its minimum at k =0,
but has six equivalent minima along the (100) directions
of the first Brillouin zone. Similarly the conduction band
in Ge consists of eight equivalent minima along (111)
directions. In both these cases the principal curvatures—which determine the effective mass tensor —are
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known with some accuracy. For the valence band, the
situation is rather more complex. The top of the valence
band is at k=0, but this is also a degeneracy point, i.e.,
there are several eigenfunctions with the same energy
at this point. The theory of band structure in the neigh-
borhood of such a degeneracy is due to Shockley. ' There
is in addition the complication that for such degenerate
functions the spin-orbit coupling must be taken into
account. '

We have investigated the form of the eGective mass
theory for these more complicated situations. For clarity,
we begin with a new treatment of the case of a simple
band with its lowest point at k=0. This treatment, we

believe, expresses the results of the eGective mass theory
in particularly compact form, and also has the advan-
tage of being easily generalized to more complicated
cases. (An alternative derivation more closely related
to the work of Adams' is described in Appendix A. This
derivation is perhaps simpler for impurity states in non-
degenerate bands but is not as easily generalized for the
cases of cyclotron resonance and. degenerate bands. )
In Sec. II, this theory will be developed for the dis-
cussion of impurity centers and "cyclotron" resonance.
In Sec. III, the changes necessary for the "many-
valley" case (i.e., the conduction band of Si or Ge) will

be discussed. Section IV then extends the treatment to
degenerate bands without spin-orbit coupling, and
Gnally in Sec. V the modifications brought about by
spin-orbit coupling are introduced.

s W. Shockley, Phys. Rev. 78, 173 (1950).
4 R. J. Elliot, Phys. Rev. 96, 266, 280 (1954).
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II. SIMPLE BANDS

(A) Impurity Centers

We begin by considering an impurity center in a
substance with a simple band, the minimum of which
is at k=0. Let H p be the Hamiltonian of the electron in
the periodic potential, and let U be the additional
potential due to the impurity. We shall assume in what
follows that the fractional change of U over a unit cell
is small, since it is only in this case that an eRective
mass theory might be expected to hold. The eigenfunc-
tions of Hp (the Bloch functions) will be denoted by
P„k and the corresponding eigenvalues by p„(k), e
labelling the band and k wandering through the first
Brillouin zone of the crystal. Thus

The orthonormality is also easily established. For the
Bloch waves this means

(p k,f k)=
~

p k*p„kdr=b„„b(k k')—. (II.7)

entire
crystal

The corresponding quantity for the y„A,. is

(X k X,k,) t gi(k' —ki rii .
pAN

Since N„p u„p has the lattice periodicity, we may expand
it in a Fourier series, say

Hplp~k = p~(k)l//„k. nn'~ —ix~.r (II.9)

To find the impurity state wave function P we must
solve the Schrodinger equation

(Hp+U)g = p)k

where the 8 ""' are just numerical coefficients, and the
K are the reciprocal lattice vectors. Inserting (II.9)

(II 2) in (II.S), we obtain

In order to proceed further, it is necessary to choose
some complete set of functions in which to expand f.
Rather than taking the Bloch functions or Wannier
functions corresponding to Hp, as has been done
previously, ' we choose a set as follows. Write the Sloch
functions as

(x„„,x..k) = (2n)' Q„B„""'8(k'—k—K ). (II.10)

(x-k, X k ) =b(k' —k)ap""'(2~)'. (II 11)

However, since k' and k are both in the first Brillouin
zone, k' —k= K is only possible if nz=0. Thus

—gt k 1'pi (II.3)

nn' — &ixpn rg p+I Ipdf
0 ~„ll

Using Fourier's theorem (with 0 the volume of the
where N„k is a function of r with the lattice periodicity. unit cell) the B»' are given by
The p„k form, of course, a complete set of functions, in
which any wave function may be expanded. Consider 1
now the set of functions

Xnk=&' 'Nnp. (»4)

f(r) =p dkg„(k)p„k ——g
~

dkg„(k)e'k'N„k. (II.5)

We assert that these form a complete orthonormal set
if the f„k do. Imagine any function f(r) expanded in

the ist k.

1
&p""'=—)I ii.p*N pdr=

cell

from (II.7). Finally, then,

(x„k,x„k ) =5(k' —k)8„, (II.12)

On the other hand, any periodic function can be ex-
pressed in terms of the Hloch functions at the bottom of
the band, which are complete with respect to periodic
functions. Therefore

n/

dk'A (k') x

which is the required orthonormality.
We now make in (II.2) the Ansatz

(II.13)

e„k——P„b.„(k)e.p, (II.6)

which yields, when substituted in (II.5), the result which gives the equation

with

f(r)=P
I

dkg (k)x
n

g. (k) =2 g" (k)b- -(k)

"dk'(Bk~Hp+ U~e'k')A (k') =pa (k). (II.14)

The notation (ek~ Hp+ U(e'k') means matrix elements
with respect to the p„&. These may be evaluated in the
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following manner. For Ho we have

(Nk
~
Ho (

u'k')

=~ e '"'u *Hoe'" 'u„.odr

( k p k')
e'&'—"&'u o*~ Ho+ -+ ~u„odr

4 m 2m)

Here e„=e (0), the energy at the bottom of the uth
band, and y is the momentum operator —iV.' Since
the entire factor multiplying e'&"' "' ' is periodic, the
same argument that lead from (II.8) to (II.12) yields

the Fourier transform of U. It is at this point that we
make the assumption that U is a "gentle" potential. If
this is so, only the terms with m =0 in (II.19) need be
kept. The reason for this is the following. As will be
seen later, the solution of our problem with this assump-
tion leads to values of k and k' much smaller than any
K with m/0. Therefore, the terms in (II.19) with
m/0 contain much higher Fourier components than
those with m=0, and are thus much smaller. For ex-
ample, for a Coulomb-like potential the error involved
is of the order of the square of the ratio of the lattice
spacing to the dimensions of the impurity state. Equa-
tion (II.19) then becomes

(ski Ui I'k') = (2~) Bo""'W(k—k')
=8...&(k—k'). (II.21)

From (II.16) and (II.21), (II.14) becomes

(uk
i
Ho

i
e'k')

(2m)' r (
5(k—k') u„o*~ e. +

0

k' p k")
+ iu„odr

nz 2m)

(II.16)

k' y k p„~
i e„+ iA„(k)+ Q A„.(k)

2m) ~. m

+ dk'W(k —k')A (k') = oA „(k). (II.22)

In (II.16), a summation over n=x, y, s is implied, and
the quan. tity p „ is defined by

u„o*) -V. ~u„.odr. (I1.17)
(1

n Jn Ii )
The p„'s are just the momentum matrix elements
at the bottom of the band. They have the following
properties:

p- =o p-"=p"- =(p-")* (II18).
The former follows from the fact that p (k)
=mBo„(k)/Bk, which is zero at the minimum of a band.
The latter follows if—as in Si and Ge—a center of
symmetry exists in the crystal. These results are of use
in what follows.

For the matrix elements of U we proceed similarly:

Equation (II.22) is not yet of the form we want, since
it still contains terms involving p„„. , which represent
a coupling between bands. These terms are proportional
to k, however, and since we can expect the effective
mass theory to hold only if the important k's are small,
it is natural to regard these coupling terms also as small
quantities of the first order in k. Now in the effective
mass theory one works correctly to terms in k', the
theory being no longer rigorously valid for higher powers
of k, and therefore we shall treat (II.22) accurately up
to and including quadratic terms in k, but no further.

We proceed as follows. Since the interband matrix
elements p„„. are causing the trouble, we remove them
to the 6rst order by a canonical transformation T. That
is, we put

A „(k)=p dk'(Nki Ti n'k')B„(k'), (II.23)
~ J

(ukI Ule'k') = e'&"' ~&'Uu„o*u„.odr

&i(k'—k) rg nn'e —sero r Ug~ 7mJ HA=&A, (II.24)

and try to find T such that the equations for the B (k)
contain no interband elements to the Grst order. It is
convenient to regard this somewhat more abstractly,
and write (II.22) as

by (II.9). This may be written
and (II.23) as

A = TB—=esca (II.25)

(nk
~

U
~

u'k') = (2~)' Q„B„"""tt(k—k'+K„), (II.19)

(II.20)

' We choose units such that A=1.

Substitution of (II.25) in (II.24) yields

(e eHee)B= eB=HB. —
Clearly,

8=8+ (H,S)+-',((8,5),S)+.. . .

(II.26)

(II.27)
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Let us write H=H& &+H'»+U, where

( kjH&'&je'k')=j ..+ jS„„.S(k—I'),
km'

2ng)

kp
(~k j H &»

j
e'k') = S(k—k'),

(Nkj Uje'k') =e(k—k')B..
(II.28)

the error committed in dropping these terms is of the
order of the square of the ratio of the lattice spacing a
to the extent of the impurity state u;. Similarly, the next
term -,'((U,S),S) is again reduced over (U,S) by a
factor S, which is of the order of a typical k describing
the impurity state, times a. Since k~1/a, , this again
gives a factor of a/a, , so that the error is again of the
order of this ratio squared. Thus in the limit of very
extended impurity states (II.22) becomes

Then

H =H&"+U+H&" + (H"' S)+(H"',S)
+-', ((H"'S),S)+(U,S)+-',((U,S),S)+ . , (II.29)

the omitted terms being of order 5' or more. By choosing
S such that

k' k.kp P..-"P.-.P q-+ +, 2 I B-(k)
2m es' I" co„„-8"Ws

+ W(k —k')B„(k')dk= eB„(k').
H&"+(H'S)=0 (II.30)

we succeed in eliminating the interband transitions to
first order in k. Going back to the y„~ representation,
we see at once that

k.p..-s(k —k')
(~kjSj~'k') =—

(II.31)

where cv —= e —e . Consequently, the second order
terms from II(o) and II&" are

(H&i& S)+i2((H&0& S) S) i2(Ho) S)

which becomes
k kp

—,'(ekj(H~», S) jl'1')= g p„„„-p„„„,p

2m'
tg" Hn s'

In this equation we have neglected terms of the order
k' and interband elements of order k', since they would
lead to higher order terms when eliminated. The coef-
ficient of B„(k)on the left-hand side is just exactly the
expansion of e (k) to second order. This must be so,
since if U==O this is exactly the equation for deter-
mining e (k) to second order. This may also be verified
directly by using the f-sum rule,

2 P„„"(k)P„-„P(k) 8'e„(k)
-=8

p
—m, (II.34)

m n"~~ e„-(k) —e„(k) Bk.Bkp

for k=0. Therefore, we may write

e„(k)B„(k)+ t 'LL(k —k')B (k')dk'= eB„(k), (II.35)

( 1 1
X j + —

i 5(k—k') (II.32)

i'll

M

in the y„~ representation. The correction terms to U
are also easily found. Consider first (ekj (U,S) je'k').
Using (II.31) and (II.28), we obtain at once

(ek
i (U,S) j

e'k')
= (k —k ')'LL(k —k') p ~ /mo„„, N~n', (II.33)
=0,

(II.33) has only interband matrix elements, and they
are of first order in k. At first sight, it would seem
therefore that we have made little progress over (II.22).
The difference is, however, in the order of magnitude
of these new interband elements. These are reduced by
a factor of the order of LL(k)/ao, where 'LL(k) is a typical
Fourier component of U and co a typical interband
separation. This ratio is quite small, a typical value
being perhaps 1/25, say, for a donor electron in Si.
Since this must come in squared —there being no
diagonal elements —we see that the contribution to the
Hamiltonian is really quite negligible. Another way-
easily seen from (II.33)—of stating the result is that

F.(r) —= e'"'B„(k)dk, (II.36)

the integration, as always, being over the 6rst Brillouin
zone. Inverting (II.36), we obtain

B„(k)= Q e '" R"F„(R„),
(2~)~ m

(II.37)

since B„(k) is periodic in k, R being the vector to the
lattice point m. Upon using this definition, (II.35)
becomes simply

e„( iV)F„(r)+~—t dr''A(r r') U(r')F„(r—') =eF„(r),

where

A(r —r') =— — dke'" &' "&

(2n)'

where it is understood that e„(k) is to be expanded to
second order in k. Equation (II.35) is the well-known
effective-mass equation, written, however, in "mo-
mentum" space. To get the more usual formulation, we
introduce a function
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and the expression e„(—iV) meaning that k is to be where K is the magnitude of the external Geld. With
replaced by —iV in the expression for e„(k). Clearly this gauge, the Hamiltonian becomes

all space

d (r)dr=1,

where

$ $2

H=Hp+ yp—,+ y',
m 2m

(II.42)

and A(r) drops off as
~
r ~' at large distances. Since the

only length in A(r) is the lattice spacing, it is clear that
h(r) is a S-like function of extension ~a. Therefore, in
any integrals such as the above, where 6 is multiplied
by functions which do not vary appreciably over a
unit cell 5 behaves as a 8 function, and we have

f..(—iV)+ U(r)]p. (r) =.~„(r). (I1.38)

One may easily see—by taking for U(r) a Coulomb
potential cutoff gently at the origin, say—that the
error involved in replacing 5 by 8 is of the order of
(a/a~)s again.

Since A (k) =B„(k)+0(a/a,), the leading term in
the wave function becomes, from (II.13):

S—:8X t.
In order to find the matrix elements of II in the X„l,
representation, we need those of yp, and y'. Thus

(ek ) yp. (
e'k')

r ( 1
e'&"' "''e s*y~ k,+—V, ~u„edr

1 a I' ( 1
—, e'&"' '&'u. s*~ k,+—q. ~u„.sdr

i ak„~

t9

I (k,s.„.+p„. )s(k'-k)$
z cjky

1as I'—k( )
dkB„(k)e'"'N„s(r)

= (k,s.„.+p„„.*)-

as in the discussion of Eq. (II.15). Similarly,
'r4 n

(II.43)

Equation (II.38) contains no interband coupling, so
that if we are interested in, say, electrons in the con-
duction band we get only one term

4=~(r)k (r), (II.40)

where F(r) is a solution of (II.38) for e (k) appropriate
to the conduction band, and P, is the Bloch function at
the bottom of the conduction band.

If there is a place where the potential changes con-
siderably within a cell—as for example in the cell con-
taining the impurity atom itself —then of course (II.38)
is no longer valid. One may easily see, however, by
considering the eGect of an added short-range potential
of the form

ce '~~/r,

where n~a, that (II.38) is still valid in regions of space
suKciently distant from the region of violent change.

(B) External Magnetic Field

We now consider the case where an electron in such
a simple band is subjected to an homogeneous magnetic
Geld. We shall take this field in the s direction and
assume that the crystal is arbitrarily oriented with
respect to it. To avoid complications of many indices,
and also for convenience in later work, we shall choose
a specihc gauge for the vector potential. We shall choose

A,= —BCy, A„=O, A, =O, (II.41)
~ Functions of the form of a slowly varying function times the

Sloch function at the bottom of the band have been used pre-
viously by J. A. Krutnhansl, Phys. Rev. 93, 245 (1954). See also
D. L. Dexter, Phys. Rev. 93, 244 (1954).

(Nk
~

y'
~

e'k') = t y'e'&~' "& 'N„sel„edr

(1 a
e'ts' ~&'u e*u„sdr

&i au„') ~

a's(k' —k)
(II.44)

$ 1 as(k' —k) s' a's(k —k')
+ (isxsnn'+ pnn' )

m Bk„'

"( k' ) sk, 1 as(k' —k)
~s(k-k)+ '-

2m& m i ae„'

ss ass(k' —k)-
s„„.+—u.p..-s(k —1 ')

2m Bk„"

1 as(k' —k)-
+ sp„„.*— — . (11.45)

i Bk~'

In ordinary units we may define s=e$Q/kc, s then having
units of a reciprocal length squared. This length L= L(Ac)/(e 5(',)]+&
~10 ~ cm, under typical experimental circumstances for "cyclo-
tron" resonance. It is therefore much larger than the lattice
spacing.

The Hamiltonian in the x„k representation is therefore

(Nk
~
a

)
Nk')

k.p„„"=
~

e.+ ~s„„.+ s(k-k')
2~)

""
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s' fl'8(k' —k)
(ek~H, ~ek') =—

2~ au, '2

1
(el

~

H'~ e'k') =—k.p„„,-&(1

1 BS(k'-k)-

(II.46)

g g
nn

Then H=H"'+H, +Hq+H', and the transformed
Hamiltonian H is

H=e sIIe+s'
=H+ (H S )+p ((H S ) S )+ ' ' '

H(o)+H +H +(H o S )+Ho+ (H„S')
+ (H', S')+ ', ((H', S'),S-')+ . (II.47)

The interband elements are removed to first order by
choosing

H'+ (Hto&,S') =0, (II.48)

after which (II.47) simpli6es to

H =H &P&+H,+H p+ (H„S')+,'(H', S')+ . -(II.49)

We shall drop the higher order terms which have been
indicated by the dots. These terms will actually con-
tribute very little under normal conditions. This may
be seen easily as follows. The matrix elements of 5' are
essentially of the order

k ps+'/terpene' ~

Now, typically

k gs, p„„. 1/a, cp ~ 1/ma',

so that S' ags=a/I. The terms w.hich are of third
order in S' (those we have retained being of second
order) vanish on the average, since S' is odd in k and
the wave functions are even or odd. The fourth order
terms contribute an amount of order (u/I. )' compared
to those we keep, since there are two extra factors of 8'.
Further, the interband matrix elements of the terms
indicated in (II.49) contribute an amount of order
s/mco ~ (a/I-)'. Thus the entire error made by con-

This follows because the spread of the wave function is ac-
tually ~1/gs, so that a mean k will be of the order of Qs. The
derivative of 8 will then give, when applied to the wave function,
a factor of order 1/gs so that both Grat and second terms are of
the same order.

The 6rst line gives the intraband elements, and the
second the interband ones. Now the interband elements
are "small" in the same sense that they were in the
discussion of (II.22): those proportional to k are
identical with the old ones, and those proportional to s
are of the same order. ' We therefore once again make a
canonical transformation, say T'=e ', such that these
interband elements are removed to the first order.
De6ne

sk. 1 ac(I '—1)
(ek( H.

~

e'k') =
m i Bky'

fining ourselves to the intraband elements of the terms
indicated in (II.49) is of the order (a/I. )'.

Under usual conditions, ' these corrections are in fact
extremely small.

Writing (II.48) in the x ~ representation, we obtain

(ek [S'[e'k') = —(nk
~

H'~ e'k')/cp„„, e~e',
(II.50)=0, e=e'.

We shall only be interested in the intraband matrix
elements of H. Thus,

(el
~
(H„S') (ek') =0,

-,'(eke(H', S) iel )

k.kpp.. p. .sb(k —k')
&fan n'gn ~~~i

1 M(k' —k)
+s(k +k ')p„„."p„.„*—

i Bky'

cl'5(k' —k)
$2p pp

Bky

f cl'e„(k) )
k.kp B.s

esca

—
i B(k—k')

EBk Bkp ) p.

(cl'e„(k) ) 1
+s (k,+k.') —m(k +k ')

i

BkBk, )pi
rib(k' —k)

— (ci'e. (k) ) - ci%(k' —k)

) o

(II.51)

by means of the f-sum rule (II.34). Inserting these
results in (II.49), we see at once that H may be written
in the form

(ek i
II

i
ek')

(8'e„(k)) 1 Bb(k—k')
= e.(k)&(k-k')+sk.

(

&re Bk, ) oi Bko'

is (cl'e„(k))+—
~

2 &ak,ak„&.

1 (cl'e (k) ) fl'h (k—k')——s'i
i

. (II.52)
2 L. Bk,' )p Bk„"

In deriving this, we have used the identities

(k. k.') Bf(k k')/Bk„'=—0—
(k„—k„')M(k —k')/Bk„'=+8(k —k').

As in (II.35), e„(k) is understood as expanded to the
second order in k.
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Using (II.36), we get

1 ) 1 (B'e„(k)) t' 1 1
e-I —.& I+-sl I I x-~-+-~-&

I) 2 &BP.B&,), E i i )
s' (B'e„(k))+—I, I

~' F-(r)=eF-(r)
2 & Bk.'

(II.54)

This corresponds exactly to the following prescription.
In the presence of an external Geld, the function P„
satisGes the differential equation which is obtained by
using the expansion of e„(k) to quadratic terms as the
Hamiltonian, and replacing k by the operator
(1/i)V —(e/c)A . In the expansion of e„(k) to the
second order, any product of noncommuting factors
which arises is to be interpreted as the symmetrized
product. The leading term in the wave function is once
again given by (II.40).

III. BAND WITH MINIMUM NOT AT CENTER

Let us assume that there is a minimum at k=kp.
Instead of expanding in the functions p & given by
(II.4), it proves convenient to use the set of functions

k
—&r'k r(&r'kP. rg ) —e'r'k rrir.(III.1)

This set of functions is also complete, since if we can
expand any function in x„&-like functions, we can cer-
tainly expand any function times e'~o'. Further, the
orthonormality,

(&„„&.., ) =B„„.B(k—k'), (III.2)

follows just as in II from that of the p k. The only
other thing we need is the analog of the properties
(II.18) of the momentum matrix elements. The rela-
tionship

p. (ko) =o (III.3)

follows again since kp is by definition a minimum point,
and therefore p „(kp), which is proportional to the
derivative of e (k), at that point vanishes. The syrn-

Equation (II.52) is essentially the effective mass
theory Hamiltonian written in momentum space. To
get the usual result in coordinate space we again
introduce the functions F (r) via (II.36). Writing the
Schrodinger equation corresponding to (II.52) we
obtain

(B'e„(k)) BB„(k)
„,(k)B„( )+s u. l

&Bk Bk, p Bk„

i B'e„(k)
+-I

l B-(k)
2 &Bk.Bk„) p

1 (B'e (k) ) B'B„(k)
+-s'I

I
i' = eB„(k). (II.53)

2 ( Bk' ) p Bk„'

metry of the matrix elements,

p-"(ko) =p"- (ko), (III.4)

also follows at once from the existence of a center of
inversion. Noting these results, we see that every step
of IIA and IIB may be carried through. The only diGer-
ence is that the quantities which enter are evaluated
at k=kp instead of k=0.

For the impurity problem the result will again be that

y= F (ry„,.(r), (III.S)

where F is a solution of the effective mass equation

1
ko+-v I+V F=eF.

i ) (IIL6)

As always, it is meant that the e be expanded around
kp to second order terms in (1/i)V.

Similarly, the result for an external magnetic Geld is
that the wave function is of the form (III.S), where F
satisGes the equation

( 1 e
e

I
ko+-v —-A IF=eF, (IIL7)

again an expansion to second order in (1/i)V —(e/c)A
being meant, with any noncommuting factors being
written as symmetrized products.

In the case that there are minima at several diferent
kp within the band (which is always so when kp/0),
one obtains equations like (III.S), (III.6), and (III.7)
corresponding to each of these. For the most general U,
or direction of the magnetic field, the solutions corre-
sponding to the different kp will have different energies,
and wil1. clearly represent independent solutions of the
Schrodinger equation. These solutions will be incidently,
approximately orthogonal because of the fact F varies
very little within a cell. On the other hand if U is
spherically symmetric or has the symmetry of the
crystal point group, as is usually the case, then solutions
corresponding to diferent minima will have the same
energy. The same is of course true when the magnetic
field points in crystallographically simple directions.
Under these conditions the correct wave function will
clearly be a linear combination of those from the dif-
ferent "valleys" which lead to the same energy. It is
impossible within the framework of the eGective mass
theory to decide which the correct zero order linear
combinations are. This can only be decided by con-
sidering the Grst correction to the effective mass theory
and seeing what their matrix elements are between the
degenerate states. In any case if the effective mass
theory is really a good approximation, then the splitting
will be small, and the many valley situation will lead
to a Gne multiplet instead of a single level as in the case
of a simple band.
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Hog; = cot|;. (IV.1)

Iv. DEGENERATE BANDS

(A) Impurity States

We shall now consider the case of a degenerate band,
neglecting spin-orbit coupling. For simplicity we shall
limit ourselves to the case where the degeneracy occurs
at the point k=0, though this is no essential limitation.
Let us call the degenerate functions at this point Pi,

, P„, a typical one being denoted by p;. The de-
generacy implies that they all have the same energy:

(II.25) and (II.31).This is

(nk IS I I'R') =—kapnn'
s(I —k'),

neo ~ (IV./)

=0, n or m'= j.

( k' k kp p;; p~p~)
IB;.(1)

P E 25$5$ & 60—6~ )

This yields, to second order terms in k, the result:

Let us further make the convention that the wave
functions at k=0 for the other bands be denoted by P, ,
i never equalling 1, 2, , r. For brevity we denote this
by i~j.

Now if the crystal has a center of symmetry the
matrix elements of the momentum between different g;
will vanish. It is clear that unless there is an accidental
degeneracy the different @; will belong to some irre-
ducible representation of the crystal point group. How-
ever, all the functions in such an irreducible representa-
tion will be even or odd' under an inversion, since the
operation of inversion commutes with all the elements
of the point group. The matrix elements of y vanish
however between states of the same parity, so t
may write

+)"'It(k—k')B;(it')dk'= B;(Ir). (IV.8 )

If there were no potential U present, the second term
would vanish, and the 8; would be determined by a
certain r&r secular equation, the matrix elements of
which depend only on the unperturbed values of the
momentum matrix elements at the degeneracy point.
These are numbers, presumably known as soon as the
unperturbed band structure is known. If we set the
energy zero at eo, then we may write

hat we

P (D;; &k kp)Bp(k)+ foal(k —k')B;(lr')dk'
(IV.2) = eB,(k), (IV.Sb)

p 'p"D' &= 8'8 +—~—
N yg ap

28$ m ~ ~o—4
(IV.3) (IV.9)

the index e running over both j and i. We then make
the Ansatz This set of numbers D;p play the same role in the

theory of degenerate bands that the eBective masses do
for a simple band. "Once they have been determined by,
say, cyclotron resonance experiments (see below), the
impurity problem can be handled in as straightforward
a manner as in the simple band case. In fact, if we
again introduce functions F;(r) as in (II.36),

de�„(1)y„,. (IV.4)

For the impurity problem this leads to the Schrodinger
equation:

We shall now introduce a complete set of functions ~here
p„p defined by

dk'(ek
I Hp+ U

I
ek')A „(lt')= eA „(k'). (IV.5)

n'

The analysis leading from (II.14) to (II.22) is again
valid due to the orthonormality of the P„~, and we
obtain Lon specializing e to j in (IV.5)$

k' q k.p;;

Fg(r) =
)"e'"'B,(r)dk, (IV.10)

and the leading term in the wave function is
(IV.11)

This is the equation which replaces (II.22) for the
degenerate case. We again transform away the inter-
band elements p, p by a transformation analogous to

' For the valence band of Si or Ge they will actually be even.

y= P Z;(r)@;(r). (IV.12)

"The form of the matrix Dg. &, for the simple case where the
coordinate axes coincide with the cubic axes, and where there is
no spin-orbit coupling, is given in V.
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The set of coupled second order differential equations
(IV.11) for the functions F; is the analog for degenerate
bands of the effective mass equation (11.38).f.

(3) External Magnetic Field

For the case where an external homogeneous magnetic
field is present, very similar results obtain. If we use as
our basis the functions p ~, then the matrix elements of
the Hamiltonian are the same as those in (II.45), except
that none connect diferent j with each other. Making a
canonical transformation S', which differs from (II.50)
only that S' contains no elements connecting different j,
we find to second order that the B;(k) satisfy

For the case of a nondegenerate band the eGects of
spin-orbit coupling are not very profound. Since V
is periodic and p invariant under translations, the total
unperturbed Hamiltonian,

fIp =IIp+II, ., (V.2)
will still possess Bloch waves as solutions. Call these
g ~= e'"'u„i„with the energy e„(k).The u„x are spin-
dependent periodic functions. We may again introduce
a set of functions analogous to the y k, say x ~, defined
by

(V.3)
Then the Ansatz,

P D;; Pk.kpB;(k)
j'

it=+ I dkA„(k)X g, (V.4)

BB,'(k)
jis~ 2k D„' * +D;,""B;.(k) )

$2D, zsH' = eB,(k), (IV.13)

II, , = (sXVV). y;
4m'c'

(V 1)

here e is the Pauli spin matrix vector, and V the
potential energy of the electron. In our case, V is just
the periodic potential energy arising from the crystal.

$37ote added irl, proof.—Since this manuscript was completed a
paper has appeared by C. Kittel and A. H. Mitchell )Phys. Rev.
96, 1488 (1954)j dealing with the effective mass equation for the
impurity problem, in the case of degenerate bands. Their equa-
tion (46) is identical with our (IV.11).The problem of an external
magnetic 6eld is not dealt with by them."See for example, L. Schiff, Qscantsim Mechaascs (McGraw-Hill
gook Company, New Pork, I949), p. 33I,

where we have made use of the definition (IV.9). Going
over again to coordinate space via the definition (IV.10),
we find that the F, satisfy the differential equations

t'1
D '

]
-V +syB . [] -Vp+syBp. [ P'(r)

a=i li ) Ei

= eF;(r), (IV.14)

where any products of noncommuting factors on the
left hand side are to be interpreted as a symmetrized
product. This equation is exactly what one would
obtain if one took as unperturbed Hamiltonian the
matrix D,;. pk kp, andmade the replacement )'e —+(1/i)V'
—(ejc)A . It is therefore the natural generalization of
the effective-mass equation (II.54). As in the case of
impurity levels we have a system of coupled differential
equations instead of a single differential equation.

V. SPIN-ORBIT COUPLING

In the preceeding discussion, we have not included
any e6ects of spin-orbit coupling. As is well known, "
this leads to an extra term in the Hamiltonian (II, , ),
given by

leads to the same Schrodinger equation for A„(k) as
we had without spin-orbit coupling in both the impurity
and magnetic cases, except that the matrix elements

p ~ are replaced by sr„„. defined by

7rnn™=
(2sr)' t t'1 1

p
~

V + (O'XVV) ~u pdr.
0 ~ „ii Ei 4mc'

(V.5)

r'Be. (k) y
7rnn =m

Bk. )p
(V.6)

Therefore if we are at the bottom or top of a band the
energy is stationary, and we have x„=0.Finally, in
the spin-orbit case the correct f-sum rule must be
written in terms of the m ~, i.e.,

2 sr " (k)sr -„P(k) B'e„(k)
=5 p

—trs . (V.7)
sts "~ e„"(k)—e„(k) Bk.Bkp

(See Appendix B.) These results mean that the entire
theory goes through just as without spin-orbit coupling,
it only being necessary to use the correct energy e„(k)
instead of e„(k). The experimentally determined effec-
tive masses —from cyclotron resonance, say—will of
course refer to e„(k).

When there is a degenerate band in the absence of
spin-orbit coupling, its introduction can lead to more
radical changes by partially lifting the degeneracy. In
a' case such as Si or Ge, the originally six-fold" degener-
ate state at k=O is split into a four-fold and a two-fold

~This has been proven recently by R. Karplus and J. M.
Luttinger, Phys. Rev. 95, 1154 (1954).

"Thjs includes the spin degeneracy.

This extra term arises from the fact that the spin-orbit
coupling contains the differential operation y. Actually
the m„„have the essential properties in the spin-orbit
case that the p„have in the case without spin-orbit
coupling. These properties were (II.18) and the f-sum
rule (II.34). The second of the relations (II.18) is
established at once from the existence of a center of
symmetry, just as it was for (II.18). Further, one may
show that"
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degeneracy. Thus degenerate bands are split in general
into several bands by the spin-orbit coupling. If we fix
our attention on one of these "spin-orbit bands" then
formally the entire theory goes through without a hitch,
and equations identical with (IV.11) and (IV.14) are
obtained. The only difference is that the D;,' t' are now
defined in terms of the m„„~ and c (0) instead of the
of the p „and e„(0).Since these quantities are in any
case determined by experiment this makes little prac-
tical difference. It is important to note the fact that the
spin-orbit coupling is in general not large, and will lead
to small splittings between the spin-orbit bands. Now
the entire validity of our effective mass like theory
rests ultimately on the assumption that the interband
separations are large compared with the energies in-
volved in the solution of the effective mass equation.
A very rough estimate of the splitting between the
spin-orbit bands is perhaps 0.2 ev in Ge and 0.05 ev in
Si. There is no doubt that in cyclotron resonance experi-
ments the energies involved are much smaller than this,
and the effective mass theory will be extremely good.
For impurity states the situation is not as favorable.
In Ge, acceptor levels are found at roughly 0.01 ev, so

D;; =k AD;; &. (V.S)

Then the symmetry of the diamond lattice requires that
D have the form

that the approximation is not too bad in all likelihood.
In Si, however, typical acceptor levels are at roughly
0.05 ev, so that the impurity will produce an appreciable
mixing of bands. In this case, the eGective mass theory
in its simple form (where only the properties of the
neighborhood of one point of a single band play a role)
cannot be valid.

Perhaps it is instructive to illustrate these remarks in
more detail by the specific situation in crystals such as
Si and Ge. For simplicity we shall assume that the
cubic axes of the crystal are oriented along the coor-
dinate axes. At k=O in the absence of spin-orbit
coupling there are three degenerate space functions
belonging to F»', and which transform like x, y, and s
respectively under the operations of the tetrahedral
point group. We shall denote these functions by X, Y,
Z, respectively. Of course each has an additional double
degeneracy due to spin. I et us define a matrix D by
its elements,

Ak, '+B(k„'+k,2) Ck,k„Ck,k,
Ck,ky Ak„'+B(k,'+k, ') Ck„k,
Ck,k, Ck„k, Ak.2+B(ky'+k, ')

(V.9)

for each spin, where A, 8, C are three real constants
defined by

px, 'p, x*
A= +—P

i 6p 6i

pI't" = [(X—iF)p—+Zn),

z

(X —i F)n+—ZP],

(V.12)

pxpp'x"
B= +—P

28$ PE i qp 6i

Pxi P~Y +PXi P~Y

m2 i

(V.10)

[(X+iF)P 2Zn], —
Q6

1
y; «& = [(X i—F)n+2Z—P),

(V.11)

z

P **=—(X—iF)P,
v2

as may be seen from (IV.9).
The introduction of spin-orbit coupling splits some

of the degeneracy of the band at ii=0. Treating H, .,
as a perturbation, we see at once that the correct sero
order wave functions fall into a group of four and a
group of two:

1
@;&'*& =—(X+iF)n,

V2

where n and p are the spin functions corresponding to
spin "up" and "down" respectively. The set of functions
(V.11) correspond to what would be the J= 2 multiplet
in the case of tight binding, while the functions (V.12)
correspond to the J=-,'multiplet. The phases of the
functions have been so chosen that the functions
p,*&'& and p;~I& are obtained from pI«& and p I«& by
time reversal. "Similarly for Q i«& and pi«&. This time
reversal degeneracy is of course present because the
original Hamiltonian (V.2) is invariant under time
reversal. Cyclotron resonance seem to indicate at the
present moment that the top of the valence band
actually corresponds to the J=2 multiplet, the J=-,'
band being depressed by an amount, say ) . It is this X

which is very roughly 0.2 ev in Ge and 0.05 ev in Si.
If we assume that the U (or magnetic field) is sufficiently
small to produce no appreciable mixing of these bands,
then we obtain an independent set of four coupled
equations to describe the situation for the J=—,

' band
and a set of two equations to describe the J=—,

' band.
0'4 In the representation vrhere cr, o., are real and o.„=

this simply means taking thp complex conjugate and multiplying
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For larger U, on the other hand, we shall have to deal
with the full set of six coupled equations.

We shall Grst consider the situation in which the
spin-orbit coupling is suKciently small so that the
zeroth order functions (V.11) and (V.12) may be used.

This is almost certainly an excellent approximation in
Si, and is also very likely not bad in Ge. For heavier
elements, on the other hand, it may break down seri-
ously. Considering both the J= 32and —,'bands together,
we Gnd.

where

—p2

0
iL*/—v2

iV2M*

I.
—:~+-:e

0
M*

i(I'—2Q)/3@2
ASL—'/42

M
0

—:~+-'.e
JQ

iv3L/K2
i(P—2Q)/3&2

0
M
—I.
1p
2

iV2m
i L/K2

iL/K2
—i (P—2Q)/392

—iVSL*/K~
—6/2M*

s(I'+Q) —&

0

iV2M—

is3L/K2
—i.(P—2Q)/3%2

iL'/V2
0

s(I'+Q) —~

(V.13)

0 P~
M( —iv) F&
—I (—iV) Fs ,

=0.
-',I'(—iv)+ U —e, .F4

(V.15)

For cyclotron resonance experiments, the energies involved are always much less than X, and therefore one needs
only to deal with the 4&(4 matrix corresponding to the J= 2 band. Taking, for example, the magnetic Geld in the
(001) direction and choosing the vector potential as in (II.41), the differential equations describing the energy
states are clearly cyclic in x and z. If we write

F;=expl '(P.*+p')jf (y), (V.16)

then corresponding to (IV. 14) we obtain the following coupled differential equations:
A+B( as q —iC ( aq 1 (

I
—+s'y'

I p I
sy—

I
(A-»I "y'+—

I

2 E ay ) K& 5 ay) 412 E ay )
0

P(k) —= (A+B) (k,'+k ')+2Bk ' L(k)=——(iC/V3) (k.—ik„)k„
Q(k) =B(k '+k„')+Ak, ', M(k) =

I (A —B)(k —k ') 2iC—k.k„J/+12, (V.14)

X=—spin-orbit splitting at k=0.
For the impurity state problem, the matrix (V.13) with k replaced by —iV now takes place of the matrix

D;; "~( iV' ) ( —i%a—) in Eq. (IV.11).In Si, where the binding energy is comparable to the spin-orbit splitting X

it is necessary to treat these six coupled differential equations together. On the other hand, in Ge, X is very likely
su%ciently larger than the binding energy, so that these six equations decouple to a good approximation. SpeciG-
cally, if the top of the J=2 band lies higher than that corresponding to J=-', as appears likely, the acceptor states
are solutions of the following four coupled diGerential equations:

,'I'( iv—)+—U . —L(iv)— M( —iv)
—: (-' )+-.e(-' )+-

Mt( iv)— 0 -', I'(—iv)+-', Q(—iv)+ U—.
0 Mt( —iv) —Lt(—iv)

+Pp 2 ( a a-cly—+—yl

ic ( ay—p*l »+—
I

1 ( a')
(A —B)I s'y'+ —

I+12 ( ays) .

( a a
+Csl y—+—y I

k ay ay )

A+SB ( a'
I

—+"y'
Ii ay'

p 2

A+5B ( a'——
I

—+"y'
I)

8+23
+ p 2

3

(
(A —B)I s'y'+

+12 ( ay')

(a a~-—csl y—y—yl

scp, ( a )
Sg——

vs ( ay)
i

=0 (V.17)

1
—

( as ) 'Cp.(—
(A —B)l s'y'+ —

I

—
I

sy+—
I

&12 & ay ) ~ E ay)

a a
+c.

l
y-+-y

I

E ay ay )

A+B ( a'
=+"y'

I

2 & ay )

+Bp,2—e
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In this equation, p,+sy has been replaced simply by
sy a shift in the origin of y not aGecting the energy
levels. The dependence of the energy levels on p„on
the other hand, is quite complicated in the present case.
We shall not pursue in this paper the solution of Eq.
(V.17). It may be remarked however that it is easy to
see that in the limit of high quantum numbers these
equations lead exactly to the usual semiclassical
treatment of cyclotron resonance due to Shockley. "
The procedure is identical with that used by Pauli" in
6nding the classical limit of the Dirac equation. On
the other hand, for low quantum numbers the energy
spectrum of (V.17) shows marked deviations from the
classical limit. In addition the direct interaction of the
electronic magnetic moment with the external magnetic
6eld must be taken into account for the low lying states.
An example, which may be worked through in detail,
is given in Appendix C.)
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The product n~*n~ is a periodic function of r and hence
can be written as

pi&,*(r)~&,.(r) =Q„M&,p &"&e—'x ' (A.6)

where the K are the vectors of the reciprocal lattice.
The normalization of the fk(r) implies that

3Egp~ & & = 1/(2') . (A.7)

For ns/0, the order of magnitude of the M's is evi-
dently similar or smaller. Now using (A.6), we find

W(k, k') =g 3E&, &, &"&Jl U(r)e'&"'—"-" &'dr. (A.8)

We shall see later that B(k) is very small except in the
immediate vicinity of the k"' (l k —k&" l(&Ki). I et us
assume further that U(r) is a "gentle" potential whose
main Fourier components correspond to wavelengths
much larger than the lattice spacing. Under these cir-
cumstances 'LL(k, k') is negligible unless k and k' lie
near the same k&", and in the latter case (A.S) and
(A.7) give to a good approximation

APPENDIX A. ALTERNATIVE DERIVATION OF
THE EFFECTIVE MASS EQUATION

Let us consider an energy band which has e equiva-
' lent minima at the points k&", i = 1, 2, , e. The wave
function f(r) of an impurity state satisfies the equation

'LL(k,k') = ~U(r)e'&"' —~& 'dr
(2pr)' (A.9)

Since the C(k) corresponding to k near different minima
are only weakly coupled, it is a good approximation to
write

(A.1)(Hp+ U) lb = eP,

where Ho is the unperturbed periodic Harniltonian.
P may be expanded in the Bloch functions fp(r), which
are eigenfunctions of Hp (see Adams, reference 1).It is
convenient to label these functions by the wave vector
k which is allowed to vary over all momentum space.
Thus we have

C(k)=Q &r&"C&"(k) (A.10)

where the n&" are numerical coefficients (governed by
the symmetry of the lattice), and the C&" (k) satisfy
equations of the following kind:

P(r) =) C(k)gp(r)dk.

Hpg&, ——e(k) ib&„

(A.2)

If now

with
substitution into (A.1) gives e&i&(k) =ep+Q &r, (k. k.&1&)(k.—k.&1&) (A 12)

[e&'& (k) —e7C &'& (k)+J~'LL (k—k')C &'& (k')dk'= 0, (A.11)
(A.3)

where

%.&k, k'& =Jl g,*UP,.rjr Ii &" (r) = JI C&'& (k) exp[i(k —k&'&) r7dk, (A.13)

(A.12) becomes the effective mass equation

[e(k)—e7C(k)+ "l1(k,k')C(k')dk'=0, (A.4) ep being the energy at the bottom of the band. If we
now introduce

Nl, *ll,, U~'(~ —~) .rgr (A.S)

"W. Shockley, Phys. Rev. 79, 191 (1950); 90, 491 (1953).
'P W. Pauli, Haldbech der Phys&h (J. Springer, Berlin, 1933),

second edition, Vol. 24, part 1, p. 240.
)Note added &s Proof.—Recently we have found the exact

solution to the practical case of A, 8, C arbitrary, p.=o, and the
Geld in the Llllg direction.

(A.14)

Clearly 8&'&(k) =0 for lk —k&" l))a ' g; being the
extent of the function F('). a; must be assumed large
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compared to the lattice spacing for the above derivation
to be consistent.

The total wave function is, by (A.2), (A.11), and
(A.13),

P(r) =P n&'&)fC&'&(k)u&, (r)e*~'dk
i=1

Therefore, we have

7rnn 7m'n p

6n

(2&r)' f ( 1 1
u..*i -V.+ ( XVV). i

~ cell E$4mc
n

n&'& u&&'&(r) exp(ik&'& r) "C&'&(k) ~+nl
Xu &,dr u„& dr. (8.5)

cell ~~p

Here we have extended the sum over e' to include
e'=n, since when m=e' and a center of symmetry is
present, the integral

i.e., it is a linear combination of products of modulating
functions F&'&(r) and the Bloch waves P&,&'&(r) at the
minima of the conduction band.

APPENDIX B. f SUM -RULE WITH SPIN-ORBIT
COUPLING

We note erst that the quantity occurring in x„~ is
related to the commutator of Ho and x . Clearly,

)fu»g dr =0.
Bk

(8.6)

Now we may carry out the sum on the right hand side
of (8.5) using the completeness of the u„&„ i.e.,

0
P u„.,"(r')u. ,"(r)= &&(r—r')a..., (8.7)"
nl (2~)'

1 (p~ 1
(IIo ~-)=—.

I + (nxVV). i.j E m 4m'c'
(8.1)

for r, r' in the same cell. Thus

'Irnn' Irn'nu p

Thus the matrix elements between two Bloch waves
are

En En' '+ &e

1 t&' p 1
=-( uk —+ (nxvV). ~'k'

)'E ~

Bl &» t~~(k) —e~(k)

(2»)'
& (1 1 't BQn@

u &*i —V + (&rXVV) i dr.
Ei 4mc' ) ak,

(8.8)

Since x„„=x„„,the original expression is symmetric
in n and P. Therefore, we may write (8.8) as

However,

=a(k —1')~.."(k). (8.2)
%nn Ãn n

m ~'» e (k) —e„(k)

(Nk~g. ~u'k')= f 'e'&-' '&~. .u' &u& «

b(k' —k)5.„.—— e'&"'-""u.
&,
*

at.' Bk '

aa(k' —k) (2&r)'
s„„,+za(k —1')

Bk' 0

f aux'k
X u.~* «. (8 3)

eel& aka

Therefore, putting (8.2) and (8.3) together, we have
for e/e':

(2~)' f (1 1 ) au„g
u.&*~ -V.+ (&rxvV).

~
dr

0 ~ ll Ei 4mc' ) ake

f &1 1 I a
+ u..*~ -Vp+ (nXVV)e I «(8.9)

Ez 4mc' ak

1 ) 1 k'-
II,+ k~ p+ (nx—vV) ~+

4mc' 2m
unk en(k)un&t; ~

(8 1o)

The right hand side of (8.9) is easily evaluated by
means of the Schrodinger equation for u„l,. This is

(2n.)'
&

au

Q &„11 0k

A'Irnn'

(8.4)
m 6n

Differentiating this successively with respect to k and
kp, multiplying with respect to n„l, and integrating

"The index u indicates the spin state involved.
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Using Eq. (B.11.), Eq. (B.9) becomes the f-sum rule.

oj'o„(k)
(B.12)

2
=6p —m

fg n'Qn En' 6n

&nn' &n'n

over a cell, we find

/1 1 ) Bene
e„~') -V.+ (oXV&).

~

Ei 4nsc' Bkp

(1+," N„,*~ -V,+ ( XVV)s ~

"ceil ii 4m~ ) ak.

0 p 8'o„(k)
(B.11)

(2m)' & Bk Bks

If we expand the wave function in eigenfunctions f„
of S,

f =Z-f (e)P-

and make use of the well-known properties,

at/„= (e+1)'&I~&, ag =e'*f

(c.s)

(C.6)

of the creation and destruction operators, we obtain

[n(2e+1)—o)fg(e)+y[e(e —1)]&fo(e—2) =0,
y[(e+1)(e+2)]~fg(e+2),

C.7

[P(2e+1) o)—fo(e) =0,

for the eigenvalue problem of the 6rst 2&2 block.
These equations are solved at once by the following

Ansatz:

APPENDIX C. A SOLUBLE CASE FOR
DEGENERATE BANDS

fg(e) = CD, no& fo(e) =CQ8n+o, no&

which yields

(C.S)

We consider now a special case of the cyclotron
resonance problem where everything may be calculated
completely. For simplicity we shall restrict ourselves to
the case where p, =0, and shall ignore the electron spin
e8ects. Neither of these restrictions are essential, but
they simplif'y the work considerably without obscuring
the nature of the quantum deviations in cyclotron
resonance. The case of interest is where A —B=C.
(A —8= —C may be treated with equal ease. ) Under
these circumstances, it is convenient to introduce
instead of p„and y creation and destruction operators
de6ned by

n(2eo+1) —o y[eo(eo 1))l-
y[eo(eo 1)]'—P(2eo —3)—o

(C.10)

for ep ——2, 3, and

[n (2eo+ 1)—o)Ci+y[eo (eo—1))&Co —0

7[co(eo—1)]Ci+ [p(2eo —3)—o)(.o =0.
(C.9)

The first equation is valid for mp ——0, 1, 2, , while the
second is valid for ep ——2, 3, . The condition that C»,
C2 do not vanish identically yields

then
y= (a+a')/(2s)', P.= (ls)'(a —a')/o.

(a,a') =1

o=n(2eo+1)

for eo —0 1. Solving (C.10), we get

(C.11)

and

lQ„'+s'y'=s(aat+ata) =s(21V+1),
soyo p 2 s(at2+a2)

s(yP.+P.y) = ~s(a' a")— —
(C.3)

where E=—a~a has integer eigenvalues 0, 1, 2, - .
All terms now have a common factor of s, which we

shall drop; the final energy levels should be multiplied
by s. In terms of these new operators, the matrix
operator (V.17) becomes (on changing the labeling as
indicated):

-', n(21V+1) pat'
ya' p(2%+1)
0 0
02 0

0
P(2A+1)

0
0

put'
n(21V+1)

(C 4)

Here n=—-', (A+8), p—=—', (A+58), p=—v3 (n —p). There-
fore the eigenvalue problem factors into two 2&2
problems, which differ from each other only in that e
and p are interchanged. We consider only the 6rst one.

"(e.)=!( ( +P) (2eo+1)—4P

&[((n—p) (2eo+1)+4p)'+4y'eo(eo —1))-'}, (( .12)

sp —2) 3) ' '
~

The expressions (C.11) and (C.12) represent all eigen-
values of (C.7), as may easily be seen by considering
the limiting case where y=0. Therefore the totality of
eigenvalues of (V.17) for this case is

"(e.)=-:((-+P)(2"+1)—4P

~[(( —p)(2 o+1)+4p)'+47' o( o
—1)]'},

"( )=-'{( +P)(2 o+1)—4

&[(p—n) (2eo+1)+4n)'+4y e, (e,—1)]l}, (C.13)

fol lp —2) 3

o(eo) =n(2eo+1), P(2eo+1) for e,=0, 1.

The levels are no longer each doubly degenerate, the
time reversal symmetry having been lifted by the ex-
ternal magnetic field. To see what the "classical" ex-
pression for these levels are we first need the form of the
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energy surfaces. From (V.13), there are at once seen
to be

ei —is (2g+B)ks = i (3n —P)ks

es =Bk'= -'(3P—n) k' (C.15)

si s
——s(A+2B)k'& f Ls(A B—))'k4

+sLC' —(A —B)sjI}&, (C.14)
I=k.'k—„'+k„'k.s+k.sk,',

where each is doubly degenerate.
For our simple case, C'= (A —B)', and the expressions

(C.14) become

Using each of these are our Hamiltonian, we see at
once that the energy levels in an external fmld are
(again a factor of s is dropped)

ei(np) =-', (3n —P) (2ep+1)
tlo=0, 1, 2, , (C.16)

es(es) = s (3P n) (2es+ 1)

each level being doubly degenerate. Expanding the
roots in (C.13) in reciprocal powers of 2ms+1, we
immediately obtain (C.16) for high quantum numbers.
It is also clear from these formulas, however, that for
small mo the deviations from the classical results are of
the order of magnitude of the level spacings themselves.
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Hyperfine Splitting of Donor States in Silicon

W. KOHN AND J. M. LUTTINGER't

Bell Telephone Laboratories, Murray Bill, Sew Jersey
(Received October 22, 1954)

The hyper6ne splitting of donor states in Si has been theoretically estimated. The results agree with the
recent spin resonance experiments of Fletcher et al. within a factor of about 2, which is better than the
estimated uncertainty of the calculation.

1. INTRODUCTION

I.ECTRON spin resonances exhibiting hyperhne
~ =& structure in e-type Si have recently been observed

by Fletcher et c/. ' The number of hyper6ne lines of
these resonances corresponds exactly to the nuclear
spin of the added Group V atoms, so that it is clear
that the resonances are due to electrons localized near
such atoms. The purpose of the present study is to
examine whether the observed magnitude of the hyper-
fine splitting is consistent with the picture that the
electrons in question are in the well-known donor states
with ionization energies of about 0.04—0.05 ev. In
calculating this splitting there are two main difhculties.
The erst is that the band functions for Si are not
well known. The second is breakdown of the eGective
mass formulation in the neighborhood of the impurity
atom. We estimate that due to these difhculties our
final result has an uncertainty of about a factor of 6ve.
The experimental results fall well within these limits.
Thus our calculation supports the view that the ob-
served resonances are due to electrons in donor states.

2. FORMULATION OF THE PROBLEM

Let us consider an electron bound to a Group V
donor atom such as P, As, or Sb. We denote the normal-

*Permanent address: Department of Physics, Carnegie Insti-
tute of Technology, Pittsburgh, Pennsylvania.

l' Permanent address: Department of Physics, University of
Michigan, Ann Arbor, Michigan.

'Fletcher, Ya er, Pearson, Holden, Read, and Merritt, Phys.
Rev. 94, 1392 1954); Fletcher, Yager, Pearson, and Merritt,
Phys. Rev. 95, 844 (1954).

ized wave function of the electron by p(r), where the
origin of r is taken at the donor nucleus. Then the
magnetic interactions of the spin moment of the
electron p„ the nuclear moment of the donor p~, and
the external magnetic field I, are given by

JV= —p. H+(g~/3)P(0)p p~ (2 1)

Thus the donor nucleus produces an additional eGective
field

H'= —(g /3)P(0)(1; ), (2.2)

where ( ) indicates expectation value over the nuclear
wave function. Therefore the total hyperfine separation
(between the extreme lines of the multiplet) is given by

(hII)„„g= (16m/3)P(0) pi), (2.3)

where pD is the magnitude of the nuclear moment of
the donor. Table I lists experimental values of AH
(reference 1), experimental values of pii, s and ifs(0)
calculated from (2.3). The object of the following con-
siderations is to make theoretical estimates of its(0)
and to compare them to the values listed in Table I.

The function f(r) satisfies the Schrodinger equation

L
—(k'/2ns) V'+ V(r)+ U(r) —E)P(r) =0, (2.4)

where V(r) is the effective periodic potential for a
conduction electron in Si and U(r) is the additional
potential due to the replacement of one Si atom by a
donor ion. For r large compared to the interatomic

' J. E. Mack, Revs. Modern Phys. 22, 64 (1950).


