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Nonlinear Theory of Space-Charge Wave in Moving, Interacting Electron Beams
with Ayylication to Solar Radio Noise
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(Received June 10, 1954)

A consideration of the complete equations of interaction (without the linear approximation) of two moving
electron beams of given densities (with suthcient numbers of iona to make the charges macroscopically
neutral} shows that propagation of steady-state space-charge waves is possible in such a medium. The period
of the space-charge wave is a function of its amplitude and phase velocity. For small amplitudes the oscilla-
tion is simple harmonic, and the characteristic dispersion equation of the 6rst order theory is obtained. For a
given phase velocity of the wave, the oscillation becomes increasingly anharmonic with increase of amplitude.
Beyond a particular value of the amplitude (which is a function of the phase velocity of the wave), the wave
form of the oscillation becomes discontinuous.

The above theory is applied to estimate the relative intensity of the second harmonic component in solar
radio outbursts recently discovered by Australian workers.

A theoretical analysis based on the antenna theory of electromagnetic radiation from oscillating plasma
gives a radio Rux of the order of magnitude of that observed.

1. INTRODUCTION

S PACE —CHARGE wave amplidcation in moving
interacting charged beams has been used in electron

wave tubes' and to explain the abnormal intensity of
solar radio outbursts. ' The theory so far has been con-
fined to small, sinusoidal oscillations. The large ampli6-
cations obtained, however, clearly indicate the need for
a nonlinear theory. Such a theory has received added
interest from the recent. interesting discovery by Aus-
tralian workers' of the second harmonic component in
solar radio-noise outbursts, which exhibits the charac-
teristic frequency drift of the fundamental and is
comparable with it in intensity.

We have considered in this paper the complete equa-
tions of interaction of moving electron beams (with
sufhcient numbers of ions to make the charges macro-
scopically neutral), and find that propagation of steady-
state space-charge waves is possible in such a medium.
The theory indicates the nature of the asymptotic non-
linear steady-state oscillation. Work is needed to trace
the buildup of the amplitude under conditions in which
the linear (i.e., small-signal) theory predicts wave
growth.

We find that the period of the space-charge wave, on
the nonlinear theory, is a function of its amplitude and
phase velocity. The oscillation becomes increasingly
anharmonic with increase of amplitude, and discon-
tinuous beyond a limiting amplitude. An estimate is
obtained, from the theory, of the relative intensity of
the second harmonic component in solar radio outbursts,
and compared with observation. ' It is also shown that a
rapid current buildup will enable the plasma to radiate
the observed radio Aux.

' J. R. Pierce, J. Appl. Phys. 19, 231 (1948); Proc. Inst. Radio
Engrs. 37, 980 (1949);A. V. Haefi, Proc. Inst. Radio Engrs. 37, 4
(&949}.' A. V. Haefi, Phys. Rev. 75, 1546 (1949);J. Feinstein and H. K.
Sen, Phys. Rev. 83, 405 (1951).' Wild, Murray, and Rowe, Nature 172, 533 (1953).

2. THE NONLINEAR DISPERSION RELATION

We shall derive the nonlinear dispersion relation for
space-charge waves in moving electron beams (with
sufFicient numbers of ions to make the charges macro-
scopically neutral) injected into a common space. For
simplicity of treatment, we shall confine our analysis to
one dimension and to two electron beams. 4 We shall use
the following notation: e= number of charged particles
per unit volume; v= velocity of charged particle;
e= charge of electron or ion (minus for electron);
rts=mass of electron; &=potential of space charge;
co=dielectric constant of free space; U=phase velocity
of space-charge wave.

The sufFixes 1 and 2 will refer to the two electron
beams. The suKx + will refer to the ions and 0 to the
origin of the wave system of coordinates. (See later on.)

We shall neglect the oscillatory motion of the ions on
account of their heavier mass relative to the electrons.
We also neglect collision effects, which produce a small
damping of oscillations in most plasmas (see Bohm and
Gross, reference 4). The equation of motion for either
electron beam is

8'v ctv, e 8$
VS

Bs m 8$

where s=1 or 2. The equation of continuity for either
beam is

O'SB 8
+—(N,s,)=0,

Bt Bx
f

4 The analysis can be extended to n beams and to continuous
velocity distributions. A. I. Ahiezer and G. Y. Lubarskiy, Compt.
rend. 80, (2), 193 (1951)have considered the nonlinear theory of
oscillations of electronic plasma. D. Bohm and E. P. Gross, Phys.
Rev. 75, 1853 (1949)have derived the nonlinear dispersion relation
for a continuous velocity distribution. The author has given in
Appendix I a derivation of the nonlinear dispersion relation by the
Boltzmann equation.
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where s=1 or 2. The Poisson's equation is linear dispersion relation':

c}2$
sp ——4ore(ssr+rss —so+).

8$
(3) 1

(cp —I'vjp)s (or —I'vsp)s

As we are interested in the steady-state space-charge where co,' is the plasma frequency:
wave propagation in the medium, we shall suppose all
oscillating variables to be functions of the variable'

(12)

x'=x—Vt.

Equation (4) represents a transformation to the
coordinate system stationary with respect to the wave.
We choose the origin of this coordinate system (i.e.,
x'=0) at the point where &=0. We shall denote the
physical parameters (particle velocity and concentra-
tion) at this point by the suffix zero.

With the substitution of (4), Eqs. (1), (2), and (3)
reduce to

dv, e dQ
(v.—V)

d'$' m dS'

4. STEADY-STATE NONLINEAR OSCILLATION

Integrating (10), we ftnd that the electric field
8= —dp/dx' is given by

trdp ) ' (2e
sol I

=8svs stol V vtol I m+« —vlo)'
I0dx') Em

$2e
++sol V—

viol I ~+(V—"so)'
I

Em

——n+ +C, (13)
m

+s—V + (ss,v,) =0,
dx dS

de =4~e(ssrym, —I+).
dS

Equations (5) and (6) yield, on integration:

(6)

where C is a constant.
E reaches a maximum (or a minimum) at &=0, where

dE/dx' given by (10) vanishes. Denoting the maximum
(or minimum) of 8 by E*, we can fix the constant C in

(13). Further, changing to the following dimensionless
variables and parameters:

&10 sslp/'++ &sp '+20/'++ »0 vlo/V ssso v20/V

P= (2e/mVs)y, P= (2(op/V)x', (14)

and

2e
(V—v.)'=M+(V —v o)'

m

~, (V—.,)=~„(V—...).

we obtain from (13) the following nonlinear equation
(8) for the oscillation of the electric potential:

(4/dk)s=»to I1—~MIL4+ (1—»o)')'
(9)

+»so
I
1—ssso

I Lf+ (1—~so)')'*

Equations (7'), (8), and (9), on elimination of r4 and
e„give the nonlinear dispersion relation:

—f—2r to(1—urp)' —2vsp(1 Nsp)

doer
&0 4&& +10

L(2e/~)@+ (V—.„)s)'
&vo in (14) is given by

+ —. (15)
4xmU2 n,

+'+20 —sop . (10)
L(2e/m)y+ (V—v,p)')-'*

a&ps ——(4s e'/moo) so+.

S. NATURE OF THE OSCILLATION CURVES

(16)

3. THE LINEAR DISPERSION RELATION

On the linear (small-signal) theory we suppose that
all oscillating quantities vary as exp s(1'x—pot), where
ot/I'= V, oo denoting the angular frequency and I' the
wave number. If we expand the right-hand side of Eq.
(10) to the first power of @, we shall obtain the usual

s V in (4}is a constant and a free parameter of the solution. V is,
in fact, the velocity of propagation of the progressive space-charge
wave. We assume that such a wave is the limiting form of the
growing initial perturbation. A proof of this assumption would be
desirable.

A graphical analysis of Eq. (15) is given in Appendix
II. We shall merely quote here the results. The oscilla-
tions of the electric potential, f($), begin with 8*=0 at
Ft in Fig. 2. Near Ft, g is small, and the oscillations are
simple harmonic. With increase of E*, the oscillations
become increasingly anharmonic. Beyond Il0 in Fig. 2,
there is a discontinuity in the tangent to f(f), and
hence in the electric 6eld. This is similar to the phe-
nomenon of jump well known in nonlinear oscillation

Note that n+=n10+e~0, on account of the assumption of
macroscopic neutrality of charge.
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theory. We shall call Fp the criticaL poitst of the oscil-
lation.

We shall suppose that at the critical point, the maxi-
mum amplitude is reached of the steady state nonlinear
oscillation. v This maximum amplitude is a function of
the phase velocity U of the space-charge wave, and is
given by the following relation:

=2vip(1 —uip)'+ (2vsp 1)(1 usp)
U2

—2vip
f
1—uip f [(uip —usp)

X (uip+usp —2)g&. (17)
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Equation (17) holds provided that (1—usp)'((1—uip)'.

0. ILLUSTRATIVE CASES

We shall illustrate the qualitative description in Sec. 5
by numerical integration of Eq. (15), both at and
beyond the critical point of the oscillation curves, for the
following set of values of the parameters: e~0=9X10
cm ', fess=10' cm ', ttip=4X10" cm/sec, pep=0, V=5
X10' cm/sec.

Figure 1, Curve A, gives the oscillation of the electric
field at the critical point (f= fp —0.236, s——ee Appendix
II). From (14), the angular frequency &o is given by

(18)

where fq=2.76 is the wavelength of the oscillation in
Fig. 1A.

The nonlinear frequency v is ~1292 Mc/sec. On the
small signal theory (Eq. (11)],v is ~1349 Mc/sec. We
find a decrease in frequency with increase of amplitude.

The Curve A in Fig. 1 is anharmonic with a steep rise
and a slower decline. Its analysis into a Fourier series
gives for the ratios of the successive sine coefficients (the
cosine coefficients are small) '.

1:0.39:0.21:0.14:0.09.

Figure 1, Curve 8, shows the oscillation curve for
f= —0.1, which is beyond the critical point (i.e., in the
region of discontinuity or jump).

$&=3.36, and the nonlinear frequency v is ~1061
Mc/sec. We 6nd a further decrease in frequency with
increase of amplitude.

Harmonic analysis of Fig. 18 gives the following
ratios of the successive (sine) coefficients:

1:0.46:0.29:0.22:0.17.

The anharmonicity has increased with increase of
amplitude.

This assumption is founded on our interest in regular oscilla-
tions and not in "jumps. "

We should in fact give the ratio of the total amplitudes, i.e.,
g(sin'+cop'). Since, however, we are interested only in orders of
magnitude, we have omitted the cosine terms which are very small.

FIG. i. The steady-state oscillation curves of the electric field.
The lower scale of the abscissa refers to Curves A and 8, the upper
refers to Curve C.

8. ABSORPTION OF THE FUNDAMENTAL AND THE
SECOND HARMONIC AT THE PLASMA

FREQUENCY LEVEL

Australian workers' have recently detected the second
harmonic component in solar radio outbursts, and
invoked the selective absorption of the fundamental at
the plasma frequency to explain the fact that the
intensity of the second harmonic was found to be
comparable with, or greater than, that of the funda-
mental. We shall examine this hypothesis quantitatively
on the nonlinear theory.

The absorption per unit path length of intensity of
radiation of angular frequency &o in an ionized gas (as
the solar corona) is given by"

k=
tÃco Cp,

(19)

P Hari K. Sen, Australian J. Phys. 6, 67 (1953).IS. K. Mitra, The Upper Atmosphere (The Royal Asiatic
Society of Bengal, Calcutta, 1952), p. 184.

V. APPLICATION TO SOLAR RADIO NOISE

We shall apply the above theory to solar material
moving through the ionized plasma of the static corona,
which is supposed to account for the abnormal radio
noise received from the sun. ' The following parameters
that give space-charge wave ampli6cation in small-
signal theory are taken from a paper by the author':
mio=1.68X108 cm 3, m~0=0.89X108 cm 3, vz0=5X10~
cm/sec, psp=0, V=SX10' cm/sec.

Figure 1, Curve C, gives the anharmonic oscillation of
the electric field at the critical point ((q ——20.8). The
corresponding nonlinear oscillation frequency is v 87
Mc/sec. The successive Fourier (sine) coefficients are in
the following ratio:

1:0.45:0.23:0.15:0.12.
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where
t' 4srme') &

ssssos ) '

radio frequency being comparable with the second
harmonic in intensity. '5

(20)
9. ESTIMATE OF THE RADIO INTENSITY

where 1/P is the scale height of the corona (~10"cm)."
Then, for the absorption of the fundamental (which is
equal to the plasma frequency), the optical depth rr is

given by

p t" e 'e"dh
kgdh=-

~p c 'p (1—e e")'*

= (4/3) (s'p/cP) =1.78, (22)

if one takes vp 4 sec ' at the level ( 10" cm above
photosphere) of plasma frequency ( 87 Mc/sec), from
Smerd's" data. For the absorption of the second har-
monic, the optical depth 7, is given by

~ tO ~
—2Ph

k,dh= —— dh
"p 2 e "p (4—e e")&

s'p (16=—
(
—3' (=0.18.

cPE3 )
(23)

If we assume a constant conversion factor for space
charge into electromagnetic wave energy for the funda-
mental and the second harmonic, we have, from Sec. 7,
the relative intensity at the origin (plasma frequency
level) given by

Itp/Isp= 1/(0.45)'. (24)

e is the electron concentration, v is the collisional fre-
quency, and c is the velocity of light. The formula (19)
holds when v((co.

We suppose that the radiation originates at the level
of plasma frequency" where the electron concentration
is ep and the collisional frequency vp. As we are interested
in an estimate only, we shall also suppose that the
electron concentration, e, and the collisional frequency,
v, follow the exponential laws:

g = ape
—t'" v= vpe

—&"
r

From the observed radio Aux we can form an estimate
of the eKciency factor, o., for the conversion of space
charge into electromagnetic wave energy.

Poynting flux =n(c/8sr)Z*', (26)

3ot ( sun's radius

5 &earth-sun distance)

)&ergs cm ' sec ' (cps) '

10 tssr watt m s (cps) (28)

Observed' flux ~10 'p to 10 'p watt m ' (cps) '. (29)

Hence the efficiency factor is

+~10 4 to 10 '. (30)

The eKciency factor n given by (30) is of the same
order as that obtained' on the assumption that the
source of the available energy is the initial difference of
energy between the interacting streams.

The extremely low value of n obtained in (30) indi-
cates that the physical mechanism of conversion of
space-charge wave into electromagnetic radiation energy
need not be efficient at all. Even a very weak coupling
between longitudinal and transverse waves, such as is
provided by a transverse magnetic field or mass velocity"
or nonlinear effects, may su%ce for such conversion. In
the following section, we shall consider one such
mechanism.

where 8* is given by (17). With our solar parameters
(Sec. 7),

Poynting flux=3n)&10' ergs cm ' sec '. (27)

Assuming that the active area is one hundred mil-
lionths (10 ') of the solar surface, and that the effective
bandwidth of radiation is 50 Mc/sec, we get:

Radiation Qux at the earth

J. Feinstein and the author" had previously sug-
gested that the very rapid growth of space-charge waves
found on the small signal theory was responsible for
conversion of the longitudinal plasma wave energy into
transverse electromagnetic radiation. This suggestion
was followed up by Feinstein in a letter" in which,

(25)I,/Ip I~pe &'t "/Iso 1——.

If we take Hagen's'4 value of vp~6 sec ', Ii will be even
less than I&.

We thus see that the nonlinear theory 'as outlined
above confirms the observational fact of the fundamental

From Eqs. (22)—(24), we have the relative received
- 10. ANTENNA THEORY OF ELECTROMAGNETIC

RADIATION FROM OSCILLATING PLASMA
intensity given by

"J.C. Jaeger and K. C. Westfold, Australian J. Sci. Research
AB, 376 (1950).

's H. C. van de Hulst, A Course hn RaCho Astronomy (Leiden,
1951),p. 62.

's S. F. Smerd, Proc. Inst. Elec Engrs. 97, 448 (.1950)."John P, Hagen, Astrophys J. 115,.557 (1951).

'5 The results of this section should indicate orders of magnitude
only, as we have employed the linear damping theory for the
damping of the nonlinear oscillation. We note also that the
nonlinear theory gives an appreciable third harmonic, which
should be observable.

"See Feinstein and Sen, reference 2, p. 411, Sec. 6."J.Feinstein, Phys. Rev. 85, 145 (1952).
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I(x) =Ioe&'+'r', 0(~x(~l;
(31)

extending the conventional analysis of the oscillating
current in a radiating antenna, he showed that the
rapid spatial changes in the current distribution of the
plasma effected the coupling of energy from the
oscillating plasma into an electromagnetic radiation
field in free space. This section contains a further de-
velopment of the same idea, which leads to an estimate
of the eS.ciency factor, o,, of Sec. 9.

We shall suppose that the oscillating current I(x) in
the plasma (of length I.) quickly builds up to saturation
in a length /(~wavelength X= 2w/I')" and then slowly
decays:

From (34) and (35), we see that the efficiency factor, n,
is given by2P

ot= (k/r)' (t/c)s. (36)

a=2.5X10 ', (37)

which is of the same order as that in (30).
The author is indebted to Mr. James W. Lowry for

the graphical analysis in Appendix II and the compu-
tational work.

The time delay in the arrival of magnetic storms"
indicates the speed of the solar corpuscles to be of the
order of 1500 km/sec. Hence we obtain from (36) the
following estimate for the eBRciency factor:

In (31) b I', n((I" (decay is small in one wavelength),
and aL))1. Also I'/k=c/U c/v, where v, the stream
speed, is of the order of V, the phase velocity of space-
charge wave, for eGective interchange-of energy between
wave and stream. "For the solar corpuscular streams,
e(&c. Hence we may take F»k.

At distances far (compared to the plasma dimensions)
from the oscillating current in the plasma, the electro-
magnetic held is transverse to the direction of propaga-
tion. At a point (R, 8, p in polar coordinates), the
electric held, E&, and magnetic field, H~, are given by":

APPENDIX I. DERIVATION OF THE NONLINEAR
DISPERSION RELATION BY THE BOLTZMANN

EQUATION

As the direction of wave propagation provides a con-
venient axis of reference, it will be sufhcient to restrict
our consideration to one dimension. "Let f(n, x,t) be the
normalized velocity-distribution function for the elec-
trons satisfying the Boltzmann equation"

Bf itf e cl& itf
+v—+ =0,

Bt Bx m cIS cIV

otto)1 Scop, p sine
e ikB—ice t

where p is the electric potential due to the space charge.
We neglect the oscillatory motion of the ions, on account
of their larger mass. We suppose that the ions are
present in sufhcient numbers to cancel the static nega-
tive charge of the electrons. We also consider the plasma
to be rarefied enough to justify the neglect of collisions.
In most plasmas, collisions produce a small damping of
oscillations, which can usually be neglected. '

We assume a traveling wave solution of Eq. (1), so
that all oscillating quantities are functions of x', where

e
—toe coseI(x)tax (32)

Jp

where cp is the dielectric constant, pp the permeability,
and k the wave number of propagation, in free space,
and I(x) is given by (31).

The rate of energy radiated is obtained by integrating
over the sphere of radius R the real part of the complex

Poynting vector,

x'= x—VI,,

S*=—,EgHp*,
V being the phase velocity of the wave. With the

(33) substitution (2), Eq. (1) transforms into

where H&* is the complex conjugate of H~. We thus
obtain, with the indicated approximations, that the
oscillating current I(x) in (31) radiates electromagnetic

energy at a distant point at the following rate:

(ctto/24sr) Io'e' "(k'/I'). (34)

(ctto/24m)Io'e o'. (35)

's D. Bohm and K. P. Gross, Phys. Rev. 75, 1851, 1864 (1949)."J.A. Stratton, Electromagnetic Theory (McGraw-Hill Book
Company, Inc. , New York, 1941),p. 440. Following Stratton, we
have employed the rationalized mks system of units in Sec. 10.

For electromagnetic wave growth, I' in (34) must be
replaced by k, and the corresponding rate of energy
radiated will be

elf e @Bf
(tt—U) +— —=0.

Bs fÃ dx 8$
(3)

~ We note that our case is not strictly the standard antenna one
in that a linear current Rows in a plasma, and not in a vacuum.
The presence of the plasma is responsible for the ratio of the two
different propagation constants, j. and k, of space-charge and free
space waves respectively, which appears in formula (36). The
author is indebted to the referee of this paper for drawing his
attention to the fact that a rigorous discussion should take into
account the gradually varying properties of the plasma. Such a
discussion would indeed be valuable. As the plasma density de-
creases outward, however, we do not believe that a more reined
treatment would give a greatly diminished radiation yield.

~' See reference 7, p. 452.
~ The analysis can be generalized to three dimensions.
2' S. Chapman and T. G. Cowling, The Mathematical Theory of

Nonnniform Gases (Cambridge University Press, Cambridge,
England, 1952), p. 46.
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The integro-differential Eq. (7) then transforms into:

de fp(v)ds
pp

—— 4—see++4sem. (10)
dS 2eg(x)

11+
~(s—V)')

where we have dropped the primes in (10).
Equation (10) is the nonlinear dispersion relation for

electrons with a continuous velocity distribution (see
Bohm and Gross). ' To derive the dispersion relation for
s discrete beams, we shall suppose that the normalized
velocity distribution function f,p(p) for the sth beam (of
concentration N, p) is given by the delta-function:

f,p(v) =8(s—s,p).

Substitution of (11) in (10) gives the following nonlinear
dispersion relation for s discrete beams:

FIG. 2. Graphical analysis of Eq. (15).

The equations of the characteristics of (3) are

d2@

ep =4me
dx

rs, p[ V—s,p[
I+ . (12)—

i D2e/m)y+ (V—i.p)'jl

dx dp df

v —V (e/m, ) (dy/dx') 0

Independent integrals of (4) are

(e/m) y —-', (o—V)'= c„

Equation (12) is the generalization of the relation (10)
(4) in Sec. 2.

APPENDIX II. GRAPHICAL ANALYSIS OF
EQ. (1S), SEC. 4

Equation (15) in Sec. 4 may be written in the
(5) abbreviated form:

fp
ds

4pree~+4vrem —)t f(v, x')dv, (6)

where ci, cs are arbitrary constants. Hence f((e/m)Q—
s (s—V)') is the solution of (3), where f is an arbitrary

function.
The Poisson equation is

(4/dt)'= ~(P+b)'+cQ+d)'* 0 f, ——

where a, b, c, d, and f are constants. The quantities
a, b, c, and d are positive, and we may suppose without
loss of generality that b&d.

The maxima and the minima of it ($) are at the zeros
of (1), which are obtained from the intersection of the
curve (ACB in Fig. 2)

where e+=e is the ion or electron concentration.
Substituting for f in (6), we obtain the following integro-
differential equation for Q:

dsf
t Y

~ (s—V)'i
pp —— 4s-ex++4~—em fI —y —

I
dr. (7)

dS &m 2 )

s =a(P+b) '*+c(P+d)1,
-

with the straight line

(2)

(3)

We assume a steady-state solution, oscillatory in the
laboratory system and static in the wave system of
coordinates, so that the number of particles of any given
velocity has become constant at each point in space. To
specify the arbitrary function f in (7), we shall suppose'4
that the final (steady-state) distribution of velocities at
a given point, say, at &=0, is fp(rt), i.e.,

f(—s(s—V)') =fp(p) (g)

To express the arbitrary function f in (7), in terms of
fp, we make the following substitution:

(e/m)@ ——', (p —V)'= ——;(p'—V)'.
'4 See reference 14, p. 1853.

-b

(9)
FIG. 3. Oscillation curve of the electric potential beyond the

critical point.
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In order that f may have both a maximum and a
minimum, the intercept, f, of the straight line (3) on the
s-axis must lie between fp ——OFp and fi=OFI. The
tangent TCF» and the line AFOB in Fig. 2 mark the
extreme positions of (3).From the condition of tangency
of line (3) to curve (2), it may be shown that for the
position TCFI of (3), the amplitude E*.of the electric
field in Eq. (15), Sec. 4, vanishes.

When the line (3) lies between TCFI and AFpB, the
maxima and minima of P($) occur at different values of
tlat. So long as (3) lies near TCFI (small 8*), the differ-
ence between f,„and f; is small, and the oscillation
may be considered simple harmonic. With increasing
8*,however, the maxima and minima get progressively

further apart, and the oscillation becomes increasingly
anharmonic.

The point Fp'is obtained from the intersection of (3)
with (2) at lb= b. —This gives

fp ——OFp= b+c(d —b)&. (4)

When the line (3) intercepts the s-axis below OFp |tb

has a maximum but does not reach the minimum given
by the vanishing of (1), as df/d$ in (1) becomes
imaginary when ib( b. Th—e oscillation "curve of p has
the form shown in Fig. 3. There is a discontinuity in
dp/d$ and hence in the electric field at the minima of p
(2 in Fig. 3).

I
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Transmission of Slow Neutrons by Liquid Heliu)in*

HENRY S. SOMMERS, JR.,) J. GREGORY DASH, AND LOUIS GOLDSTEIN
University of California, Los Atamos Scientific Laboratory, Los Alamos, Xeio Mexico

(Received May 24, 1954)

We have determined the total scattering cross section of liquid helium for neutrons of wavelengths between
3 and 16 angstroms and at six helium temperatures between 1.25 and 4.6'K. The neutrons were obtained
from the thermal beam of a reactor and were monochromatized by a low resolution velocity selector. The total
scattering cross section decreases with temperature at all wavelengths studied. At the shortest wavelengths
the cross section approximates the free atom value; it exhibits a rapid drop with increasing wavelength. For
the 4.6' liquid it passes through a shallow minimum at about 10 A. At lower helium temperatures, the fall
from the free atom cross section is steeper; the existence of a minimum has not been established. The results
are discussed qualitatively on the basis of several models of liquid helium. The only one predicting the overall
features of the change of cross section with wavelength and temperature is the solid model.

1. INTRODUCTION
' 'N general, experimental investigations of the proper-
t ~ ties of liquid helium' use methods whereby gross or
average properties are studied. Even in the investiga-
tions of the saturated and unsaturated helium 61m,'
and in studies of first and second sound, ' the thickness
of the film or the wavelength of the periodic motions
has been many atomic distances. Hence, these experi-
ments involve suKciently large numbers of atoms to
permit a 6rst treatment by thermodynamics.

An exception to this generalization is the studies of
scattering of x-rays and slow neutrons by liquid helium.
When the wavelength of the incident radiation is com-
parable with the atomic spacing, the observed phe-
nomena are governed by the local or atomic rather than

~ This paper has been reported on at the Washington, D. C
meeting of the American Physical Society, April 30-May 1, 1953
(Phys. Rev. 91, 490 (1953)g.

t Present address: RCA Research Laboratories, Princeton,
New Jersey.' W. H. Keesom, Helium (Elsevier, Amsterdam, 1942).

2 See the review of E.A. Long and L. Meyer, Phil. Mag. Supple-
ment 2, 1 (1953).

3 For a recent survey see K. R. Atkins, Phil. Mag. Supplement 1,
169 (1952).

the bulk properties. Such studies help to reveal the
atomic properties of the liquid, the spatial arrangement
of the atoms, the mean forces between them, their
mean velocity, and kinetic energy. They might even
yield the laws of their velocity distribution.

Neutron scattering studies are of interest, not pri-
marily as an independent check or improvement on
x-ray results, but to complement them. Aside from elec-
tronic excitation, the vanishing rest mass of the photons
inhibits the exchange of energy with the liquid. In
addition, the velocities of photon and molecule are so
different that the internal motion of the scatterer is
unimportant. Because of these facts, the x-ray diffrac-
tion pattern is, essentially, the momentum space Fourier
transform of the static radial distribution of the atoms
around one chosen arbitrarily, as 6rst shown by Zernike
and Prins. 4 Many workers have used this transformation
to derive the pair distribution from the scattering dia-
grams. ' In the case of the scattering of slow neutrons,
however, the masses and velocities of incident particle
and scatterer may be comparable. As discussed later

' F. Zernike and J. A. Prins, Z. Physik. 41, 184 (1927).
~ See the review of N. S. Gingrich, Revs. Modern Phys. 15, 90

(1943).


