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It follows that

Cs ——(XI—4y —h T)/4(XI —)ts),

D s (———Xs+4y+)I, T)/4 (XI—)is).

Table I gives the expected lifetimes for two-quantum
annihilation and their relative intensity II/Is for various
possible choices of the conversion rate y, assuming that
the triplet three-quantum annihilation rate is X&= 7.14
X10'/sec as given by Ore and Powelis and that the
singlet two-quantum rate is )ts=SX10%ec.' As noted
in the text, the assumption of rapid conversion would
require that these rates be increased by factors of
about 2 or 3. For rapid conversion one then obtains
1/)t. =2X10 " sec in agreement with the experimental
lifetime r~.

The dependence of the total rates for two- and three-
quantum annihilation on the triplet-singlet conversion

rate can be calculated in a similar manner. In the differ-
ential equations one replaces the probabilities P8 and
P& by the populations Sz and Xz, respectively, intro-
duces constant rates of formation (4 for the singlet
state and As for the triplet state), and finally equates
the derivatives to zero. This gives for the total rates:

)tsar

s= h s(4&+)tz)/4P' (two-quantum),

XrNr = 3Xr (4&+)t s)/4P' (three-quantum).

For ) p small compared to y and Xg, one 6nds

As' s=1 3)—T/4Xs,

XTXT=3) T/4Xs.

For very rapid conversion, Xs~)ts/4, and hence

) T1VT—+3k T/X s.
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Matrix Elements in Superallowed Transitions*
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The nuclear matrix element for superallowed transitions between two states of an isobaric spin multiplet
can be expressed in terms of a diagonal matrix element of the spin operator difference S —S„.Known
theoretical results on the nuclear matrix element in image transitions are summarized and the methods
which have proved useful in the study of image transitions are extended to superallowed transitions within
the lowest T=1 isobaric spin multiplet in the 4n series.

Experimental results indicate the actual occurrence of such transitions in Na", Al", P", Cl" and Sc~.

1. INTRODUCTION

HE known superallowed transitions now include
the following types:

g AI=0
AI= +1,

c. d I.=+1,
d: I;=Ig=0,
e: AJ=O,

2

(A =4ti&1),
(A=7),
(A = 4n.+2), (1)

(A =4ts+2),
(A =4m).

Types a to d are well known, but only recently has
experimental work on short-lived radioactivities in the
4m nuclear series' ' indicated the actual occurrence of
type e.' The list a to e does not exhaust the possible
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types of superallowed transitions. To see that others
may occur, consider the approximation of spin- and
charge-independent forces. In the 4m series the lowest
supermultiplet containing a T= I isobaric spin multiplet
has the basic structure shown in Table I. Thus there
are seven different final states coupled to the initial
(Ts———1) state by nonvanishing Gamow-Teller matrix
elements.

Now, by introducing a spin-dependent force, the
seven distinct final states are spread out into a spectrum
as illustrated in Fig. 1. The Fermi matrix element
vanishes in all but the e-type transition. Other transi-
tions with AT=0 may occur, but they involve smaller
decay energies and smaller decay matrix elements;
hence they may be neglected in a preliminary discussion.
The remaining three final states (those with T=O

TABLE I.

r(x, go)

L—11L,L+1
L
L—1, L, L+1
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derived from the lowest I
4" '31) supermultiplet) are

not easily fixed on the energy scale. If one or more of
these levels falls below the final state involved in the
type e transition, a complicated decay scheme may
occur with two or more strong superallowed components
in, the beta decay of the T3———1 isobar.

In this paper we begin with a summary of known
theoretical results on the Gamow-Teller and Fermi
matrix elements in image transitions (type tt). The
methods which have proved useful in the study of type
e are then extended to type e. Finally the experimental
evidence requiring the existence of type e transitions is
exhibited and compared with theory.

2. GENERAL RELATIONS

The relation
ftl M I'= Constant

and the definitions

(2)

T =-I
2 2

IMI'=r 1 + tr

2

1 =Z I (fl 2 Q»r 2 Qs*li) I'

(3)

FzG. 1. A possible structure of the Grst I.S supermultiplet
containing T= 1 multiplets. e denotes the superallowed P transition
considered in this paper. f is another possible mode of decay.

types a, d, and e is given by the formula

2

)I'1 =2T.

Q= s (&i—irs))

Q*= s (ri+irs),

give the basic connection between theory and experi-
ment in the analysis of superallowed transitions.

The most recent analysis' of image transitions (type
tt) places r on the range 0.75—1.15 in general agreement
with earlier studies~" and consistent with the weakly
motivated but widespread preference for r=1. The
theoretical estimates of

I J trl' are most secure at
A=1, 3, 13, 15, 17, and 39; the analysis of image
transitions in this group favors r(1 as does also recent
accurate data" on the 0=-0 transition at A =14. Fairly
good all round agreement obtains for r~0.8. The
values r=0.8 and

ft I M I
'~4700

will be used in analyzing the data on fast transitions in
the 4e series.

The Fermi matrix element occurring in transitions of

I TiaiTs, I'i„aiFs (=a21rs„,

LTs,

Yi„&ibis„j=

W(Yi„&iI"s ),
in which

A

T.—r P r.(s}
1

A

F =-'Q r "})r„'"}) tt=x) y) z.
1

(7)

If P, T, Ts and P', T, Ts' represent the initial and
final state quantum numbers, Eqs. (6) and (7) yield.

Deviations from this formula exceeding a few percent
are not expected in the mass range covered by known
superallowed transitions. "

A general formula for Gamow-Teller matrix elements
in transitions of types a, b, and e can be derived from
the commutation relations"

' E. Feenberg, The Shell Structure of the Nucleus (Princeton
University Press, Princeton, 1954).
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=~i —
I

O' T ~Tls- s-I~ T ~» (8)—t
2'-'*
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ln the special case I'=I,
2 l&s. .I)—&s„ I)l

T I(I+1)
(10)

Here ( ) denotes a diagonal matrix element of the
enclosed operator.

If either (S„ I) or (S~.I) vanishes, Eq. (10) reduces to

2 l&S I)ls

T I(I+1)
3. SUMMARY OF RESULTS ON THE GAMOW-TELLER

MATRIX ELEMENT FOR TYPE a TRANSITIONS

(i) L8 Coupling, S=1/2
Under the stated condition the ground-state wave

functions possess the maximum degree of symmetry in
the space coordinates of the nucleons consistent with
the exclusion principle. All spins are paired oG in the
even group of particles; hence either (S„ I) or (S„ I)
vanishes and Eq. (10) can be rewritten in the form

l&s I)I''e =4
I(I+1)

We observe that T3 changes by one unit in the beta
transition matrix element on the left while on the right
Ts'= Ts= WT (the value of Ts in the initial state). The
operator S„—S~ is simply the difference between the
intrinsic spin operators of the neutron and proton
groups. Equation (8) gives

2 2
"n =—&(I,~', T, ~T

I S-—S.II, ~, T, ~T) I' (9)
T mI

and

l n'(I+1) —(1—n') Ig'.
I(I+1)

(15)

=giI+(g gi)S—,
now yields

&=g,I+(g,—g,)(S I)/(I+ 1),

(16)

(17)
or

(S'I)= (I+1)( g I)/(g g ). (18)

This relation is consistent with the doublet description
of the nuclear state LEq. (13)g, but holds also for an
arbitrary linear combination of multiplet components.
From Eqs. (11) and (18) we obtain Winther's formula, '7

Equation (15), first derived by Trigg, ' has proved
useful in correlating observed values of the Gamow-
Teller matrix element with the observed magnetic
moment of the daughter nuclide.

Davidson' obtains numerical values for o, by an
interpolation procedure involving the relation of the
observed moment p to theoretical values of the moment
derived from the Schmidt single-particle and the
Margenau-signer uniform models. The corresponding
estimates for

l
j'nl' generally agree better with experi-

ment than the pure JS coupling values. " The improve-
ment at A =29 and 31 is particularly striking.

(iii) Odd Group Model

A simple explicit formula expressing l
J'el' in terms

of p can be derived from the assumption that all the
angular momentum and magnetic properties are carried
by the odd group of particles (odd group model). The
moment operator,

p=giL+g, s

= (I+1)/I, I=I.+
=I/(I+1), I=L (12)

I+1 ()i giI) '—
& g, -g, )

(19)

(ii) Linear Combination of LS Coupling States,
S=I 2

The wave function has the form

0'=&~ r :+(1 n')'4r r+.,-—(13)

a linear combination of the two LS coupling components
possible for given I and 5=q. Now,

This result was first derived by VVigner. " Equation
(12) is also valid in jj coupling for doubly magic &1
configurations (A =1, 3, 11, 13, 15, 17, 27, 29, 31, 33,
39, and 41). All spins are paired off in the closed-shell
core and only the spin of a single nucleon or hole is
involved in the evaluation of (S I).

Our derivation of Winther's semiempirical formula is
at fault in combining a relation

l Eqs. (10) and (11)j
derived from the assumption that the isobaric spin T
is a good quantum number with a consequence l Eq.
(18)j of the odd group model (in which the isotopic
spin is not, as a rule, a constant of motion). Conse-
quently, in default of a more satisfactory derivation,
Eq. (19) must still be interpreted as a more or less
useful semiempirical interpolation formula.

(iv) Symmetrical Interpolation Formulas

A more rigorous analysis of image transitions becomes
possible when the magnetic moments of both members
of mirror pairs are known. This statement follows from
the fact that the sum of the moments obeys simpler
relations than either moment alone. "

(S I)=-;{ns(I+1)—(1—n')I)
's E P. Wigner, Ph. ys. Rev. 56, 519 (1939).

(14) "J.P. Davidson, Phys. Rev. 85, 432 (1952).' A. Winther, Physica 18, 1079 (1952}."R. G. Sachs, Phys. Rev. 69, 611 (1946).
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The nucleon moment operator,

y=gP 2 4s (1—rs'")+g."P Sss (1+vs'"')

+g "Z Ss-'(1—&s'"') (2o)
in the form

y=sg)"I+s(g, +g,&—gp)S

+s (g."—g,')Q rs'rrs ', g(—' —Prs"ls, (21)

gives immediately the result

Equations (10) and (26) together yield

Mayer�'s

formula, ~'

I+1(
I &l+-,')

(»P's= ~ s) (1 ~—"+1~")I/j ) '
x I I

. (»)

Equation (26) also implies

~(&s= s)+~(2's= —Ls) —I
(S I)= (I+1)

g "+g"—1

after setting g~&=1.
The introduction of Eq. (22) into Eq. (11) for

~

J's~'
is justified only if (S„ I) or (S~ I) vanishes, and this is
physically plausible only under conditions which make
the doublet description of Eq. (13) a good approxi-
mation. If one assumes the doublet description, '

and yields the symmetrical interpolation formula, ~

I+1( 2 l (P( ) &( )~
(»)I El+Le) ( ir, p pP —)

(22)
~(2's= s)—~(2's= —s)

2l+1 ((S„—S„) I)=(—1)' ' ' . -(~J"—~~") (28)j I+1

l (s)+l (—s)

n'(I+1) —(1—n') I
=I+ (g."+g "—1) (23)

2(I+1)

I+1 ~(s)+~(—s)—I '
l g

g "+g"—1

The sum p(—,')+p, (——',) is expected to depend rela-
tively little on the amount and form of exchange
moment operators. When both left- and right-hand
members of Eq. (24) are known experimentally devia-
tions from equality of the two members may yield
information on the magnitude of quartet components
in the ground state wave functions and on relativistic
corrections to the moment operators. ""

(v) jjCoupling

The magnetic properties of e neutrons and protons
in a j shell are described by the moment operator,

p=g "2 is(1+ . s')/2+g "2 is(1- s")/2 (25)

in which g, "=pp/j and gp=irp/j are the Lande g
factors for single nucleons in j orbitals. Equation (25)
gives the moment formula:

1 I ((I„—IB) I)
(1 y"+1 ~") +(1 -" ~~")-.j (I+1)

1 I
=-(i ~"+u ")-.

2
' j

i+ ', ((S.—S„)-I)
+(—1)' ' ' (~"—~") (26)j ' ' I+1

's H. Primako6, Phys. Rev. 72, 118 (1947).
so G. Breit and R. M. Thaler, Phys. Rev. 89, 1177 (1953).

These relations are particularly useful when the jj
coupling configuration provides two or more linearly
independent wave functions with T= -', and the required
value of I. In such cases neither p(TO) nor

~

j'n ~' can
be computed independently without information on the
correct linear combination of component wave functions
in the description of the ground state.

(vi) Special Case: A =3
The wave function

S= ~('&)+(1- ')'~('D:) (30)

with n'=0. 96 has been derived from the assumption
of strong two particle tensor interactions between pairs
of nucleons. "In evaluating the D state contribution to
the Gamow-Teller matrix element, S„—S„may be
replaced by OS. Equation (11) yields"

~ =[—-'~' —l(1—~')1'
I(I+1)

=-'s(2n'+1)s=2. 88, (31)

possibly a little low, but not certainly inconsistent with
the experimental requirements. For comparison, Eq.
(24), based on the absence of a quartet component,
gives only 2.58.

4. TYPE e: HEI=0, T; = Ti=1 (A=4n)

(i) Both Odd Groups of the Parent System
Are in Doublet States (S„=S„=1/2)

Under these conditions the general wave function

&'0$L=I, s=o+rJ14'L=r 'I, s 1—
+S'2$L=r, S=l+&sfL=L+1, S=l (32)

2' M. G. Mayer, Indiana Conference on Beta Spectroscopy and
Nuclear Structure, 1953 (unpublished).

~ R. L. Pease and H. Feshbach, Phys. Rev. 88, 948 (1952).
O' J. M. Blatt, Phys. Rev. 89, 86 (1953).
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(j- j.—)'2

jt a =8a33a33&2. (33)
8I(I+1)U-+ 1)'(j.+1)'

X II(I+1)—(j.+j,+1)(j.+j.+2) I'. (39)(ii) I„and I„Are Good Quantum Numbers;
S„=S~ = 1/2

(iv) jj Coupling: j„=j„=j,l„=f,=f
The equivalence relations,

The ground states of »Na& and»Al» may be dis-
cussed under this heading. Equation (10) yields

(34)
(S, I,)

S,—+I, , q=33 or p,I,(I,+1) 2 2
6' I„I—I I3

I(I+1)(2l+1)'make possible the reduction of Eq. (10) to

may contain both singlet and triplet components and Interchange of j„and j„in Eq. (38) gives
~
J'e~ for

possibly three different values of I.. Equations (9) and j„=l„—3~, j„=l~+-',.
(32) gimme

I(I+1) I„(I.+1)

(S„.I„)(I„.I) (S„ I )(I„.I) '

I.(I.+1)
I3) 13 3

I(I+1)(2l+1)'
(40)

(S„ I„) (S„ I„)
1I(I+1)

2I(I+1) I„(I„+1) I„(I„+1)
+ (I- In) (I-+—I.+1)

(S„ I„) (S, I„)
X + . (35)

I-(I-+1) In(I.+1)

Equation (18) can be used to estimate (S„ I„) and
(S„ I„) if the magnetic moments of suitable 4m&1
nuclides are known. These nuclides must have the
number of nucleons in the odd group equal to —,'A —1
in one and to —,'A+1 in the other.

(iii) jj Coupling; One Hole and One Particle

In»A1~~, I=4, l=2, (I„')=35/4, (1„3)~15/4;hence

2

~c & 1/10, (41)

if we exclude the unlikely possibility that the accurate
description of the odd-neutron group requires a large
admixture of component states with I„=7/2 or 9/2.

Interpolation formulas similar to Eqs. (27) and (29)
can be derived immediately from Eqs. (10) and (26):

I+1( j
2I kl+-' &

The ground states of 1gP13 17C115, IgK17 and 21Sc1g

belong in this category. The preceding relations LEqs.
(34) and (35)] remain valid with the advantage that
(S„.I„)and (S~.I„)can be evaluated explicitly. Thus,

p' p'~

I+1 f' j ) ' t'p(1) —p, (—1) i '

2I (l+-,') 4 pp —p,p
(43)

2(S. I„)=j.+1, q„=t„+
(36) Introducing I=4, j=5/2, l= 2, and p(»Na&3) 1.688

into Eq. (42), we get

Special Cases

For j„=1„+-'„j~=l~+-3',

2

o ~0.021 (44)

2

IF
(j- j.)'—

8I(I+1)j 'i u'

X II(I+1)—(j-+j.)(j-+j.+1)I' (37)

for the type e superallowed component in the decay
of 13A111

S. EVIDENCE FOR SUPERALLOWED TRANSITIONS
IN THE 4n SERIES

For j„=l„+-'„j„=l„——',,

X
I
I(I+1)—(j n j)(j~ j+1)I

' —(38)—

Recent experimental studies' 5 indicate the existence
of a group of superallowed transitions characterized by
T=1, AI=O, A=4m. The transitions probably occur
as strong components in the decay of 13Al» 15P13,
17CI», and»Sc». Also a weak superallowed component
may produce observable sects in the decay of »Na9.
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In principle V%5 and 583 should also decay through
superallowed channels, but the theoretical estimates of
the branching ratios in these examples places the
intensity of the superallowed component below the
threshold for observation with present experimental
techniques.

The information available for locating the lowest
T=T, T2=0 level (in the level diagram of the stable
isobar) may be illustrated by the example at 2=24.
The disintegration energies of ~~Na~s and of ~2Mg~~ are
known. This information and the approximate relation

M(T=1, 12Mg12) —M(T=1, 11Na12)

=1M (T 2)i 12Mgll) ~(T 2y 11Na12) (45)

place the lowest 2 = I state in ~2Mg~~ at the excitation
energy 9.52 Mev. This value lies above the limit of
alpha stability (at 9.33 Mev) in agreement with the
observation of delayed n's associated with the decay of
$3AI] $, Information on p transitions in»Mg» may
eventually give an independent check on the location
of the T= 1 level. The mass difference M (12A111)—M(»Mg») can also be determined in several ways:
(a) from an estimate of the Coulomb energy difference,
(b) from the threshold in the p22 reaction on 12Mg12,
and (c) from the energy of the most energetic positrons
observed in the decay of »A111 (for»A1» this energy
has not been reported, but values are given for ~5P~3

and 12C112).

thresh. T = I/2

AM l4.2-.5 I4.4-.l
y- fit g-f it

I3.4&.4
9 45~.I 9.37~,I5

Q I0 0 ~ev
&e

lo

28
O.OSa 2+

2.8
log ft

I

I
I

I

I

I
I

I

I

I

P

I

I
I

I

I

I

28

g3A1U. ) Fig. 2

FIG. 3. Partial decay scheme for P

P .280

2 Nlc

ev
4.08

The diagram shown is supported by all the recent
work on ggNag3, g2Mgg2, g3Algg, and ggMggg. The 4.25-
Mev level is probably not fed by p's since it is not
observed in the decay of Na~. Turner's work" indi-
cates that, except for the T= 1 level, the only known
levels associated with the decay are those at 8.57 Mev
and at 4.12 Mev (the latter is reached by the Na"
P decay). The T=1 level at 9.52 Mev may account for
the observation of n's in the decay of AP' (the threshold
for the emission of n's by Mg'4 is 9.33 Mev). The
assumption that P+ and P transitions to the 4.12-Mev
level have nearly equal transition matrix elements
yields a partial half-life t, (»Al», 4.12-Mev level) =18
to 30 sec, with a branching ratio of approximately
10 percent. If the transition to the 8.57-Mev level is
allowed unfavored, it has a minimum partial half-life of
about 10 sec and a maximum branching ratio of about
20 percent. If no other important transitions are
assumed,

AI 2.!sthresh T= I/2 y-f it

hM I4.0-'.5

9.52-.I 9.62-.I5 2Nc

&e
log fQ =955Me

/
~ /

Ne20+

I

I

I

I

I
I

I

-.5Mev

5.55-.I5

L
l

l.5
log 4.I 2

I

I

I

I

I

2+ I

I
I

0+
~g2~

70 percent~ BR(P,) ~ 90 percent,

3 sec~t;(P,) ~2.34 sec,

3.25&0.3~ log ff (P,) g 3.4&0.3.

l.58 (46)

Equations (41) and (44) give ~M~2 1.6—1.7, close to

FIG. 2. tentative decay scheme for Ap4. I'he box in the upper the minimum possible value. Inserting this into the
left corner gives values for AM(AP4 —Mg'4) and the height of
the T=1 level, obtained by the methods which label the columns, ~ O. H. Turner, Australian J. Sci. Research 6, 380 (1933).
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y-fit P-f it
t2.7-.4

724~ I 7 08-1

thresh T-"l/2
gM ia.i-.5 12.7-.&

Cl~ .mls.

Jl

2mc

thresh T~I/2

hM I4.7-.I 15'-.5
7.48.-.2 7,50~.1

SC4Q.22s
Ji

2 Nlc

Q 694
$=7AS &.l

~e
log

Q.O8

+r
~/p

I.28
I

I

I

I

I

l

(2+)

4-.06

3.75
5.55

.08

1.714
log ft

E( '6 't

S52

K

1.525

O.QM 2-

Fro. 4. A possible decay scheme for Cp'.
C~4Q

preceding inequality, we get

3 5+0 3(»gP
I
~I'(3.6~0.3,

consistent with ft I
M

I

' 4700, log ft I
M

I

'= 3.67.

(47)

FIG. 5. Tentative decay scheme for Sc~.

gvClg5) Fig. 4

i5p~s)»g 3

In»P&;, the decay scheme is probably complex.
The ground state and the low-lying 6rst excited state
in»A1» have spins 3+ and 2+, respectively. " The
order of these two levels may be reversed in one or
both of ~4Si~4 and ~5P~3, the transition considered here
as the superallowed component is that between the
ground state of ~5P~3 and the corresponding state in

14S114

Since the number of allowed P+ components in the
decay of &5P» is unknown, only a minimum estimate
of the branching ratio into the type e component can
be given. Since

I
J'1I'=2, we must have logft(p, )

(3.45; this gives t;(P,) ~ 1.3 sec or BR(P,))20 percent.
'~ Sheline, Johnson, Bell, Davis, and McGowan, Phys. Rev.

94, 1642 (1954).

The close doublet structure exhibited by &5P» pre-
sumably occurs also in»C1» and the lowest T=1
states of &6S&6. The p's observed in the decay of »Cl»
fit known levels of &6S&6 as shown. Delayed n's observed
in the decay of »Cl» may come from the lowest 7= 1

level of &~S&8 since the excitation energy (7.15 Mev) is

greater than Q (6.94 Mev).
A procedure like that used for ~qp~3 gives BR(P,)

~ 25 percent.

gysc)g) Flg. 5

A tentative decay scheme is shown. Here a branching
ratio )25 percent is required for the type e component.
No delayed n's have been observed in the decay of Sc",
consistent with the assumption that there is no branch-

ing to states higher than the 6rst T= 1 level.


