PHYSICAL REVIEW

VOLUME 97,

NUMBER 3 FEBRUARY 1, 1955

Dynamics of Nuclear Deformation

D. R. IncLis
Argonne National Laboratory, Lemont, Illinois

(Received September 24, 1954)

The droplet model of collective nuclear motions is ordinarily based on the assumption of classical irrota-
tional fluid flow and has been used to obtain both the rotational properties of nuclei associated. with a circu-
lating surface wave and the vibrational properties of a surface deformation, though only the rotational re-
sults are confirmed experimentally. As a partial justification of the irrotational assumption, the energy of
collective rotation of a closed-shell nucleus has been derived from nucleon wave functions in an earlier paper.
The vibrational problem is here similarly treated and it is shown that, in contrast to the case of rotation, the
vibrational distortion of a closed-shell nucleus is so rapid that the adiabatic treatment used is not valid. The
potential energy of distortion calculated with phenomenological nuclear forces is not very different from
that calculated by use of the deformed three-dimensional oscillator potential, which verifies that the latter
is a fairly good approximation to a “self-consistent field” for a deformed closed-shell nucleus.

INTRODUCTION

HE collective motion of nucleons associated with
a change in nuclear shape may be approximated
by lintroducing a nonspherical distortion into the zero-
order wave functions of the shell model, as was done
for the case of a rotating distortion in a recent paper.!
There a perturbation procedure equivalent to the
adiabatic approximation was used and it was shown
that for the low rotational states of moderately heavy
and appreciably nonspherical nuclei the rotation is
indeed slow compared to the nucleon motions, as re-
quired for the validity of the adiabatic treatment. The
rotational energy was found to agree with that ob-
tained by assuming irrotational fluid flow in the droplet
model, and Aage Bohr has, by defining a local collective
velocity associated with a rotating distortion, discussed
in general terms the relation between shell-model closed
shells and classical irrotational flow.? The ad-hoc
assumption of irrotational fluid flow introduced into
the usual droplet-model treatment is just as essential
for the vibration as for the rotation, although no ex-
perimental data are as clearly relevant, and it would
be desirable to have a similar derivation starting from
nucleon wave functions in the vibrational case. Un-
fortunately, the collective frequencies for vibration are
considerably higher than for the rotation and it is here
shown that the adiabatic approximation is no longer
valid. This treatment is based explicitly on harmonic-
oscillator wave functions, but the result leads to the
anticipation that more general treatments of collective
surface or volume vibration will encounter trouble with
density fluctuations. However, it does not preclude the
possible existence of states whose properties are deter-
mined partly by modes of collective vibration.
In the binding and vibration problem of a diatomic
molecule, one calculates the energy of the system, arising

1 D. R. Inglis, Phys. Rev. 96, 1059 (1954).

2 Aage Bohr, Rotational States of Atomic Nuclet (Munksgaards
Forlag, Copenhagen, 1954), especially, the appendix. See also
A. Bohr, Kgl. Danske Videnskab. Selskab, Mat.-fys. Medd. 26,
No. 14 (1952); A. Bohr and B. R. Mottleson, Kgl. Danske Viden-
skab. Selskab, Mat.-fys. Medd. 27, No. 16 (1953).

principally from the electron behavior, as a function of
internuclear distance R considered fixed, and then be-
cause of the obviously adiabatic nature of the motion
takes this to represent a potential energy curve, of
which a term in (AR)? determines the frequency of
vibration. The electrons are so light compared to the
two nuclei that one ordinarily does not consider their
contribution to the kinetic energy. In the problem of
vibration of shape of a nucleus about an equilibrium
shape, the mass is contained entirely in the nucleons
and their contribution, in the total energy of the sys-
tem, to a term in the square of the rate of distortion is
to be interpreted similarly as the collective kinetic
energy.

ADDITIONAL ENERGY ACCOMPANYING
ADIABATIC DISTORTION

The method here introduced for calculating the
kinetic energy associated with the rate of deformation
of a charge distribution which arises from quantization
of a particle in a slowly-varying confining field depends
on an application of the adiabatic approximation. In
solving the slowly time-dependent wave equation
1hd¥/3t=3C(t)¥, we expand ¥(x,t)=> @, exp[— (¢/
7S 'E.dt"] in terms of normalized solutions #%,, sup-
posed known at any time, of [3C(x,t) — E,.(£) Jun (x,) =0.
This substitution, followed by multiplying by % and
integrating, yields®

Ar=—Y I1nan exp[— (i/h)ft(Ek——E.n)dt'], (1

or

d/czz Ikn(an/iwkn)[exp(—-iwknt)——C;c], (2)

if in this “adiabatic” integration we consider (E,— Ej)
=hwr, and the other factors to vary slowly compared

to . Here
Ilcn:f

vol

1 (du,/0t)dr, 3)

3 M. Born and V. Fock, Z. Physik 51, 165 (1928); L. I. Schiff,
Quantum Mechanics (McGraw-Hill Book Company, Inc., New
York, 1949), p. 209.
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an integral which may be further evaluated,?

Tin=— (k| (33C/0¢) | n)/liwrn, 4
if one wishes to stress the Hamiltonian rather than the
wave functions. In this approximation the coefficient
a), experiences no secular increase, since the time-
dependent terms in (2) are rapidly oscillatory. Because
of these terms, the system cannot remain in one of these
states, with a,=1 and all other a;=0 (unless all the
I, vanish), and if this is introduced as an initial
condition, as is frequently done with the Cr=1, there
is inevitably a small temporary occupation of some of
the other states k and a corresponding contribution to
the average energy of the system. If instead we seek a
solution with one a, large and all other a; small, we
may obtain an energy with no rapid oscillatory time
dependence by taking the small a; from (2) with the
initial condition C;=0, neglecting the small terms.
Thus we have

E=f¢3c¢d7'=En-*—zk(Ek—-En)a—kdk

=E,+2 il it/ wpn. ©)

Since I, contains linearly the rate of change of a
parameter which may describe the size or shape or
position of the system, that is, essentially a collective
speed, the last term of (5) contains the square of a
speed and is equivalent to a kinetic energy in problems
involving only the variation of this parameter, as is
explicitly exemplified in the Appendix.

KINETIC ENERGY OF AN EXPANDING
ONE-DIMENSIONAL OSCILLATOR

The manner in which the adiabatic admixture of
other ‘“‘quasi-stationary’ states contributes to the
energy of the system is very simply illustrated by
considering the problem of a one-dimensional oscillator.
In the familiar equations,

L#2/2M)0%/ 0>+ E,,— (K/2)2* Ju,=0 or

[6%/084Na— £ Jun(£)=0, (6)

we consider K=K() as a slowly-varying externally
imposed parameter, and as a consequence the scale of
length of the wave functions varies, d=d(t), with
&= (x/8)*=h/Mow, P=K/M,\=2E,/ho=2n+1.

The #,(x,f) normalized in x are then du,(¢)
=d*H,(£) exp(—£/2), where the u,(f) are nor-
malized in &-space, and obey the recursion relations
(10) of reference 1. From these we obtain

D1 (2,0) /0t = (d/2d)[ (n+1)*(0+2) 01.5(8)

— (n—Ddu, »(8)]. ()
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This in (3) gives

I"+2’"=f o (10, /00 dx= (n+1)(n+2)1d/2d

—o0

Iy n=—(n—1)ntd/2d. (8)
All the other I, vanish, so a state consisting mainly
of the ground state n=0 or the first excited state n=1
can have an admixture by this adiabatic process only
of the state k=n+2, with wi,=2w, and the added
energy in (5) arising from the admixture is

E—E,= (hd?/8wd?) (n+1) (n+2)

= (M/8)d(n+1)(n+2). n=0,1. (9)
For a state consisting mainly of a higher state the ad-
mixture comes from down as well as up by two units,
An=+42, and the sum of these two contributions to the
average increment of energy is

E—E,=(M/8)d[ (n+1)(n+2)— (n—1)n]

=(M/2)d*(n+3). (10)
It will be noted that (10) agrees with (9) and thus
applies for all # because (z—1)n vanishes for #=0, 1.

The kinetic energy of the distribution H,2(x/d)
exp(—a?/d?) considered as an expanding classical fluid
is likewise (M/2)d?(n—+3%). The adiabatic admixture of
other states #; may thus be understood as an adequate
wave-packet description of the expanding motion.
Although we calculate an average over the admixed
quasi-stationary states of their excitation energy 7w,
which is half kinetic and half potential energy in the
varying impressed field, it all appears as kinetic energy
associated with the rate of expansion.

In one dimension there is no distinction between irro-
tational and vortex flow and for this reason the example
here given is a somewhat trivial one, but the fact that
the kinetic energy calculated in one dimension is
equivalent to that of a classical expansion of a density
distribution, when taken together with the separability
of the contributions from the several dimensions in the
calculation below, does lead to the expectation that the
three-dimensional flow in this approximation is irrota-
tional, corresponding to a simple expansion in one
dimension and contraction in the others.

With more particles in the same varying oscillator
potential, each would make its contribution (10) to
this “collective” kinetic energy of distortion. Since the
Hamiltonian is a sum of single-particle terms, there are
no cross-term contributions, and the only effect of
antisymmetry of the total wave function is to suppress
the contributions of individual-particle states with
7 <1max—2, if the states are filled up to and including

Mmax-
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COLLECTIVE VIBRATIONS IN THE DEFORMED
OSCILLATOR MODEL

In, the central model with a harmonic oscillator
potential we substitute for the actual average inter-
action energy the fictitious zeroth-order potential V (r)
=1 K12 so as to have simple oscillator wave functions.
If we deform this in such a way that the sphere on
which we have V(r) becomes an ellipsoid of semiaxis
ar along the z-axis and br along the x- and y-axes,
maintaining volume so that ab?=1, then V may be
written?

V (ay2) =3KT (23 542/
— K[ (A=) a9+ (1)1
= IKL (@) (149 +#(1+9 "]
=3> Kx? (11)

We shall use the expansion parameter e=(a/b)"6—1
for a reason that will appear, in preference to y=1
— (b/a)? used by Pfirsh* in discussing static deformation.
For a nucleon with oscillator quantum numbers #., 7,,
7, we have the energy

E,=ho[ (ns4n,+1) (14 >+ (n.43) (146 ]
=hw[natn,+n,+3+2(nAn,—2n,)e

+ (notn, 4100 46)e+-- -], (12)

with w= (K/M)*. For each particle the oscillator wave
function arising from (1) is a product of three factors,
one for each dimension,

Yni(%:) = Hoi(§:) exp(—£2/2), (13)

with &;=8x; and 82= Mw;/h= (MK ;)*/A. In the oscilla-
tor representation of O, for example, each of the
following sets of oscillator quantum numbers is char-
acteristic of four nucleons:

Ny Ny N,

0 0 0

0 0 1 (14)
0 1 0

1 0 0

Because of the closed-shell nature of this nucleus, this
representation is equivalent to one displaying the
nucleon orbital angular momenta ! through the rela-
tions Pil(cosf)ei®~x-+iy, etc.,, or to the (jj) repre-
sentation obtained by introducing spin and taking
further linear combinations, and the total spin-orbit
coupling energy for the closed shell is zero. The first
set contains the four nucleons of the s-shell, the next
three sets the twelve nucleons of the p-shell, and the
single-nucleon excitation energy from one shell to the
next is %iw;. The total oscillator energy (12) for the four

4+ D. Phirsch, Z. Physik 132, 409 (1952).
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nucleons of He, described by the first row of (14), is
E =2k 2(14¢)*+ (14 ]=6Aw(14+4e+- - ), (15)

and summing similarly over all of (14) for O, we ob-
tain E(O%)=6E,. The term in € arises equally from
kinetic and potential energy of the nucleons, a char-
acteristic property of a harmonic oscillator. If we as-
sume that e varies so slowly that the deformation of
the oscillators may be considered adiabatic, we may
consider (15) to be the equivalent potential energy of
the system as a function of e.

In the oscillator approximation the explicit time
dependence of the Hamiltonian lies in the elastic con-
stants K;():

ae/at=(1/2) ¥ LK

nucleons

(16)

x; being summed over x, y, and z. One sees from (11)
that K,=K,=[1+e(#)*K and K.()=[14¢({)]*K,
so K,=K,=4K (1+¢)% and K,= —8K (1+¢)¥¢. Since
the terms in K; occur in (11) for the individual oscilla-
tors, with no cross terms, there exist matrix elements
only between states of the system differing by the
excitation of a single oscillator, and these matrix ele-
ments are simply the individual-oscillator matrix ele-
ments for the x2, which obey the selection rule An;=0,
+2. Thus, we have

(ni+2]030/9t|m;) = (Ki/2) (niA4-2] 2| ms)
= (K:/48)[ (ni41) (ni42) . (17)

There is a state £ of the system admixed by the dis-
tortion process for an excitation by two units of each
oscillator, according to (2) and (4). For Het, for ex-
ample, one has eight oscillators of the type #, (or #,)=0
and four of the type #,=0 and from (5) with wim= 2w;,
we=w,= (14 ¢€)*w, w,= (1+¢€)~*w, one obtains

Eo()=[4(1+*+2(1+¢*](7/w) &
=6(1+4e+---)(h/w)e. (18)

Similarly for O, with four times the number of #.’s
indicated in (14), we have an effective kinetic energy
again just six times as great. The term in the first
power of e drops out in this expression because of the
choice of the expansion parameter [with the particular
powers 4 and —8 in (11)7], and we neglect the €é term,
as is justified for small values of ¢, in comparison with
the leading term in é. After this explanation of the
approximation, the factors (14¢) may be dropped from
the expressions for K; and w; in this part of the calcula-
tion. If we thus neglect higher powers of ¢, the sum of
(15) and (18) is of the form (constant--3ke’+3ué)
and in the more general case of any closed-shell nucleus
we have

(19)

(20)

%k=ﬁw z (nx+”y+10nz+6)
$u= (#/4w) 2" (ni+1) (n:+2).
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The summation in (19) is over all nucleons and the
summation Y’ in (20) is over the #; of the protons in
the two outermost proton-filled shells and similarly for
the neutrons, that is, over all the n; which may be
excited by two units without making states forbidden
by the exclusion principle. Carrying out the summations
over the various nucleon states, without multiplying
by the number of nucleons per state, up to include the
shell with #,+#n,+n.=mn, one finds

S (nabn, A 10n46)= T (n+1) (nit-2)

states states

=3§0 (2g+1) (14+2—9) (141—g)  (21)

having the numerical values 6, 36, 120, 300, 630, 1176,
and 2016 for n=0, 1, ---6, respectively. The note-
worthy equality of the first two members of (21)
means that the calculated frequency of the deformation
vibration, £/2r, is the same for any ‘“‘closed-shell”
nucleus such as listed in Table I of (I), whether or not
it has a neutron excess and independent of 4 :

Q= (k/u)=20. (22)

This result unfortunately denies its own validity, for
the adiabatic approximation by which it was derived
requires that the frequency of deformation is appreci-
ably less than the frequency of the single-nucleon
oscillators, that is, < w.

DISCUSSION

This unsatisfactory result raises some doubt con-
cerning the possible existence of states of collective
deformation of this sort. It probably means more than
merely that a convenient method of calculation is not
applicable. It suggests that without other physical
influences there is not time for the nucleons to define
a meaningful vibrating deformed surface in terms of
their average positions, and leaves the possibility that
some other correlations between nucleon positions, not
expressed in terms of the surface, may be more im-
portant. In the case of O, for example, the shell model
which seems promising for most of the states of the
neighboring nuclei does not explain the first-excited
state, a Ot state, without two-nucleon excitation and the
possibility of accounting for it as a spheroidal surface
vibration would be of some interest. There are, on the
other hand, special reasons why the correlation in
position associated with the stability of the alpha groups
of four nucleons should be important in this particular
nucleus, and the success of Dennison® in accounting for
most of its many newly-identified excited states indi-
cates that this type of correlation, leading to a tetra-
hedral symmetry of the charge distribution, seems here
to be dominant. In such a case the effective nuclear
surface would also show a distortion with tetrahedral

5 D. M. Dennison, Phys. Rev. 96, 378 (1954). See also D. R.
Inglis, Revs. Modern Phys. 25, 390 (1953).
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symmetry, but this cannot be included in the simple
treatment of the distortion given above, which because
it neglects configuration interaction contains the ap-
proximations of first-order perturbation theory in
addition to the adiabatic approximation.

Correlations invoking the alpha stability through the
saturation properties of (phenomenological) nuclear
forces would be expected to appear in the second order
of a deformed oscillator-model treatment, and might
show that the stable shape of a nucleus is a deformation
with a favorable symmetry, rather than the spherical
shape. This would leave the possibility of small vibra-
tions about the deformed shape analogous in a nebulous
way to the molecule-like vibrations of the alpha model,
and probably not resembling irrotational flow.

In a nucleus with one shell partly filled with protons
and another partly filled with neutrons, there may still
be a vibration with a frequency determined mainly by
the behavior of the nucleons in unfilled shells. It may
be in some sense collective among those nucleons, with
a suppressed participation of the closed-shell nucleons
given perhaps by the present calculation if the fre-
quency is decreased sufficiently for adiabaticity by
such additional complexities as the Gallone-Salvetti
“spilling over” discussed in the introduction of refer-
ence 1. An extension of this calculation to include the
extra nucleons, in order to examine the possible equiva-
lence to irrotational flow, might become rather intricate.

IMPROVED EVALUATION OF THE POTENTIAL

The potential energy responsible for the large value
(22) of Q was calculated from the extreme zeroth-order
assumption that the average of the interactions between
nucleons may be replaced by the oscillator potential
which is unrealistic in having infinitely high boundaries
to confine the wave functions. It is perhaps demanding
too much of the zeroth-order potential energy to expect
it to give the term in € after cancellation of the term
in e. We shall show, however, that the first-order po-
tential energy, obtained by integrating over reasonable
specific nuclear interactions gives a rather similar result
which also fails to justify the adiabatic approximation.

For calculations of this sort, it is customary to admit
our ignorance of the detailed nature of nuclear inter-
actions by introducing phenomonological exchange
interactions between pairs of nucleons, and the partial
success of this procedure in a variety of problems has
given rise to the impression that we thereby make a
fair approximation to some of the principal dynamical
features of the actual interactions which may, for ex-
ample, be many-particle interactions with the two-
particle terms predominant. A convenient form for the
assumed interaction is

Blexp(—arif)] )
X[(1—g—gi—g) P+gPQ+gi+g,0], (23)

where P exchanges space coordinates and Q spin. The
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parameter o~ thus establishes the range of the inter-
action, assumed Gaussian. We introduce also the
parameters o; (replacing 8;) to make o;* give the
extension of the wave functions relative to the range of
the interaction, the wave function containing a factor
exp(—aax?/2). Thus 0;=82/a, ca= (MK)}/li=Mw/#,
o.=0,=(14€) o.,= (14¢€)%. The simple integrations
encountered in this “Cartesian” representation are
conveniently tabulated in an earlier paper.® The
average of the interaction (23) summed over all pairs
of nucleons, calculated with an antisymmetrized prod-
uct wave function for the ellipsoidally distorted nucleus
Het is

Ue=6B(0./7.)(0./7.)}(1—g—g:) =6B(a/7)*
X(1—g—g)[1—24(s/m)(1—0/7)E]+ - -,
and for O it is

U=24B(0./7.)(0:/T)H X+YV (2/741/7.)
+Z(8/r2+4/ 1.1 4+3/7.2))
=24B(o/7)H{[X+3V/74+15Z/77]
X[1=24(c/7)(1—0/T)+ -]
—48(a/ )V (1—20/7)+(2Z/7)(5—120/7)]
Xe---}, (24)

where r=0+42, X=5g54+2(g,—g), Y=%(1+4g—5n
—3g,), and Z=%(1—g—g,). With ¢=0 this reduces to
the first-order result for the undistorted O nucleus
given by Kroeger.” Thus U appears in the form of
a+be® and it is the coefficient & which contributes to
the “stiffness” of the nucleus. Another contribution is
made by the kinetic energy of the internal motion of the
nucleons, which for He* in the oscillator approxima-
tion is

(24)

To=(9/4)(B/M)oa(14+4e+-- - -), (25)
and for O is
T=(69/4)(12/M)oa(1+4e+- - =ctde. (25)

This is essentially half of (15), since a harmonic oscilla-
tor has half kinetic and half potential energy, but for
He! there is a factor 2 and for O an even more trivial
factor 23/24 arising from center-of-mass considerations.
The “stiffness” against deformation is then determined
by b-+d, which replaces k/2 in (22), to give the fre-
quency of distortional oscillation.

There is considerable arbitrariness in the phenomeno-
logical representation of nuclear interactions and it is
not immediately clear in a calculation such as this
how much the result may depend on this arbitrariness,
so we give in Table I the computed numerical result for
several fairly reasonable choices of the various pa-

6 D. R. Inglis, Phys. Rev. 51, 531 (1937).
7W. J. Kroeger, Phys. Rev. 54, 1048 (1938). Erratum: In Eq.
(8), the first term in g, should have a negative sign.
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TasLE I. Collective frequency of distortion for various

choices of the parameters. )
ahit/Mme: 22 26.56 26.56
—B/me? 92 105 105
g 0 0 —0.26
& —0.126 0 —0.13
o 022 02 0.46
4 0.5 07 10 13 0.7 10 13
Qo/w 1.87 212 237 248 212 237 248
Q(0%)/w 2.40 232 229 220 231 231 226

rameters involved. The next-to-last row gives the dis-
tortional frequency, replacing (22) for He?, the last
row for O. The first column uses the parameters of
reference 7, ¢=0.5 being the result of minimizing the
first-order energy of O. The 1938 range parameter
ali*/mMc*=22 had moved toward shorter ranges from
the old long-range value 16 used in 1937, but recent
analysis of scattering measurements® indicates that the
even shorter-range value 26.56 is better. This value,
which is used in the rest of Table 1, is obtained from the
data given in reference 8, pages 56 and 201, and from
the unit-of-length conversion factor %/(mM)*c=9.012
X108 cm, thus: ofi?/mMc*=(1.4345%X9.012/2.51)2
=26.56. The values® for well depth —B and for
—B(1—g—g,) (that is, “singlet depth”), are then
103.3mc*> and 64.5mc?, implying g+g,=0.1875. In
order to keep the rounded-off value g4-g,=0.2, without
changing the average of the singlet and triplet depths,
we take B= —105mc? The g’s in the second column of
Table I are a simplified set which have been used fre-
quently and roughly satisfy the various saturation and
other requirements, and the g’s in the fifth column corre-
spond® to the symmetrical form 7;-7,;(0.14-0.230;- ).
The choice of nuclear size parameter o should be
made by minimizing the energy. The inadequate avail-
able calculations of the total energy serve only to sug-
gest within what range of values it is expected to lie.
The first-order energy is given by Egs. (13) plus (14)
with e=0, or by Eq. (8) of reference 7. The g’s of
column 1 used in reference 7 are less favorable than the
others for this purpose. With a« and B given by the
newer numbers 26.56 and 105, the g’s of column 2 give
a minimum first-order energy —50mc* at ¢=0.7, the
g’s of column 5 give —89Imc? at 0=0.9, whereas the g’s
of column 1 give only —9mc? at ¢=0.5. As an indication
of the less pronounced variation with « and B, the
latter energy is to be compared with —19m¢? at ¢=0.5
given in reference 7 for the a and B of column 1. The

experimental value of the total energy is —249mc?. The

improvement available from a more refined calculation
is indicated by Kroeger’s result’ that the minimum
second-order energy with those parameters is about
—79mc? at the minimizing value ¢=0.7. It is significant
that the better calculation not only improves the

8J. M. Blatt and V. F. Weisskopf, T/eoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952).

9 L. Rosenfeld, Nuclear Forces (North-Holland Publishing Com-
pany, New York, 1948).
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M-m X

F1c. 1. A simple mechanical system in which the adiabatically
varying quantized motion of a small part affects the classical
motion of the rest.

calculated energy but also shifts the minimum from
¢=0.5 to 0.7, indicating a more compact nucleus. It is
clear from the improved first-order energy that the
parameters of column 5 would give a much more satis-
factory second-order energy, though probably still
considerably higher than the experimental value, and
that the minimizing ¢ would be somewhat greater than
0.9. ‘A good calculation with parameters capable of
giving the experimental energy would be expected to
give o considerably greater than unity, perhaps as high
as 0=1.3. Thus the range ¢=0.7 to 1.3 explored in
Table I is about sufficient to cover the reasonable
possibilities.

The frequency of collective vibration is thus in these
simple examples even higher than in (22), and this
more careful treatment of the potential energy fails to
rescue the validity of the adiabatic approximation.
However, the values of @/w in Table I are only slightly
larger than the value 2 of (22), which shows that the
oscillator potential is a fairly good approximation to a
“self consistent” field for a deformed nucleus, and this
is relevant to the use' of the oscillator approximation
as a criterion for the validity of the assumption of
irrotational fluid flow in treating rotating surface waves
in the droplet model.

Helpful comments of Aage Bohr have been much
appreciated.
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APPENDIX

In a problem of this sort it is perhaps instructive to
illustrate the predominant physical effect in a very
simple case. Consider in the harmonic approximation a
simple pendulum of mass # tethered by way of small
pulleys to a body of large mass M —m suspended on a
spring of stiffness K’, as in Fig. 1. The potential and
kinetic energies are

V=3K'(y—y0)*—mgy(1—a%/2y?),

(26)
=3+,

where the length of the pendulum, vy, describes the
motion of the large mass and where x is the horizontal
displacement of the pendulum. If y varies slowly com-
pared to x, we may treat the pendulum swing sepa-
rately, its wave equation being (6) (with M — m),
where K=mg/y=mw’=h*/md*. The average value of
the terms in (26) containing x and & is given by E of
Eq. (10) and the total energy E, associated with the
y-motion is thus

E, =M+ (h/16g%y) (n+3)
+3K' (y—y0)*—mgy+ (n+3)h(g/y)%

This is not in Hamiltonian form, since the momentum
conjugate to y has not been defined. With the pendulum

. excited to the quantum number %, there is an equi-
librium position ¥,, and in terms of the small coordinate
z=y—7y, we may write the total energy:

(27)

E,=31p2+31ks?+consts,
p=M+(h/16g%y.%) (n+3),

k=K'~ (3hgt/4y,%?) (n+3). (28)

Energy is conserved with a simple solution z=A cosQ if
Q= (k/w)=Qof{ 1+[3— (/2)*J(n+3)7/8K "y’ +-- - -}

with Qo= (K’/M)* and w= (g/v,)*. Thus the frequency
of the slow classical motion is influenced by the quan-
tization of the small rapid part of the system. The term
containing the factor 3 arises from expansion of the
quantum energy (n+3)%(g/y)}, and may be obtained
as well from the constancy of the action variable in
the classical adiabatic discussion. The last term arises
from the mixing of the quasi-stationary states.



