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Following an earlier paper based on the Morse potential, the analysis of the thermal properties of a linear
chain is now extended to cover an interatomic potential of arbitrary form. The Lennard-Jones potential is
taken as an example and the results for the thermal expansion coeKcient are compared with experimental
data.

1. INTRODUCTION
' 'N a previous paper' which we shall refer to as (I),
~ ~ an analysis was made of the statistical thermo-
dynamics of a linear assembly of atoms interacting
with nearest neighbors through a Morse potential. We
now show that the analysis may be extended to cover
an interatomic potential of arbitrary form, and apply
the Lennard- Jones potential.

2. ANALYSIS

As in (I), we consider a linear chain of %+1identical
particles of mass ns which at 0 K and under zero tension
have a uniform separation Ap (Fig. 1); let the potential
energy between two particles, at arbitrary distance r,
be C (r) We no.w assume that C (r) has the general form
of Fig. 2 such that

P(s) = 1 for (see Fig. 3).

We now proceed essentially as in (I) to set up the
partition function Zg(P, X,T), which may then be
written

EPA p
—SD)

Zg(P, E,T) = (2prmkT)~~' exp~ —:—

~

a ~I~,
iT

where

p(ax„) = (ax„)'+Xp(ax„)p+. +X,(ax„)'+
so that

a= (C "(Ap)/2D) & X,={2'"D'~""4"(Ap) }/s!(C")"
(2)

and (writing s=ax)

(i) C'(A,)=0; C(A,)=—D,

(ii) (a) LimC (r) =0,

(b) Lim{rC'(r)}=0,

such that: f" rC'(r)dr exists

(iii) Lim(C (r)/ —r}= ~.

The potential energy of the whole system with arbitrary
displacements, y„, is

where

[
(»I= ' exp —

( + g(s) )
ds

E alcT 1sT )
pPs D

exp —
I + 4(s) I i

takT kT )!
akT

P

Xy'(s)ds .

aD -*o "
p Ps D

y(s)
P 4~ ~ gp -EakT kT

V=+ C(Ap+y„—y,)=g C(Ap+x„),

=2 D(4 (ax.)—1)

&n+)

FIG. i. Section of linear chain. FIG. 2. General form of interatomic potential.

~ National Research Laboratories Postdoctorate Fellow. ~ It follows readily that the one-dimensional GrQneisen param-
' J. S. Dugdale and D. K. C. MacDonald, , Phys. Rev. 96, 57 eter, y—=—d logv/d logL is given by y $4$Ap (v: charac-

(1954). teristic frequency; L: length of chain).

673



D. K. C. M~cDONALD AND S. K. ROY

Fre. 3. General form of normalized interatomic potential.

The first term then vanishes identically for all P)0,
using 1(iii). In the curly brackets, the first term becomes
significant as P~O, assuming the form (akT/P)
Xexp( —D/kT), and corresponds exactly as in (I) to
the gas-like state at sufficiently low "pressures. " The
remaining term, say J, which is dominant for all

normal values of P, determines the properties of the
condensed state and we shall now evaluate it.

3. CONDENSED STATE

Writing X(s) =f(s) —'s=X sz+X 4'z+

Thus,

G= —kT 1nZ0

Nk—T In(2s mk'/a'D)& —NkT lnT+PNAs

ND ——ND(A t (kT/D)'+ De(k T/D) s+

+Bt (P/aD) (kT/D) +Es (P/aD) (kT/D)'+
+C (P/aD)'+" I, (3)

where

Ds As ,'A——ts =—(1—5/8)(—Xs+-Xs4 +s(7/2)Xshs
—(15/2)Xs9,4+ (27/8)Xs4),

Es——Bs—A tBt= (15/8) (Xs—(16/5) Xs'A4+ (9/4) Ass),

Fs
——Cs——',Bts—A tct ——4 (—X4+s.)ass).

4. SPECIFIC INTERATOMIC POTENTIALS

If we now introduce the values of the X's [Eq. (2)) to
generate the Morse potential (i.e., Xs———1, X4=7/12,
Xs= —1/4, As=31/360, etc.), we find complete agree-
ment with the direct analysis given in (I). Let us con-

TAsLE IL Alkali metals (Structure: b.c.c.).

aD~p P q'1 r" DJ=— Q) —
~

— exp — s' s'
P a=o E akT) s! "—,0 kT

D
)&exp — „(z}

)

y'(s)ds.
kT

Element

ll
Na
K
Rb
Cs

D (cal/mole) a

36 000
26 200
21 900
20 600
18 700

~.,(deg-I)

5.6X10-&
7.2x10 '
8.3X10 5

90X10 5

9.7x10-~

2.02
1.89
1.82
1.85
1.81

& D is interpreted as the latent heat of vaporization at absolute zero.

Assuming D/ Tk»1, we may now extend the lower limit
of integration to —~, and evaluate the integrals by sider also the well-known Lennard-Jones potential:
expansion of the second exponential factor.

Hence: A 8
4 (r) =———(n&m&0),

rn r
Zg Z(mkT/D) I'——(1+'A t (kT/D)+A s(kT/D)'+

+Br (P/aD) +Bs(P/aD) (kT/D) + which satisfies the conditions of (1) above. Then from

+C,(P/aD) (kT/D) '+C, (P/aD)'+-
where

A t =~s (5Xs'—4X4),

As= —(15/8)P, s
—(7/4)X4'+ (7/2)X X

+ (63/8) X4Xs' —(231/64) Xs4j,

j.s=—(2/me) f(m+ m+3)/3,

)t4 ——(1/6am) (n'+ nm+ms+6n+6m+11),

X = ( (—)'2'I'/s!) [(0+1)(I+2) (nys 1)—
—(m+1) (m+2) . . (m+s —1)/(n —m) (nm) &'—'].

(4)

Bt= 4sXs, Bs= as[5Xs—(35/2)XgX4+ (105/8)Xs'7,

Ct ———,', Cs ———,'[—(15/2)X4+ (105/8)X3

TABLE I. Table of values of (m+n+3)/mn.

Following (I) let us discuss two properties in particular,
the thermal expansion and the specific heat.

Theraxal Expansion

Using J.= (dG/dP)r with Eq. (3), we obtain
Am

6
9

12

1.67
1.44
1.33

0.92
0.78
0.71

0.67
0.56
0.50

o34 1 (dl) k
o.44 —

I I
=—— (Bt+2Es(kT/'D)+" .

o.4o I.s EdTi ~ aA~
+2Fs(P/aD)+.
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which, for (kT/D)«1 and (P/aD)«1 gives: TABr.z IV. Group II metals.

1 )dLq 3 6,, k/'tn+n+3y
(5)

Lp &dTi s~p 4rtApD 2 i rlnD

Noting also that now

y = (m+e+ 3) /2,

we may write

Be
Mg

Ca
Zn

Cd

Hg

55 X10'
36.6X10
42.9X10'
31 4X103
40 X10
27 OX10'
40.9X10
15.5X10'

18.7'X10 s
0-e

X10-e
312 X10 '

~ ~ ~

29 X10 '
(182) )&10 '

Element D(cal/mole) zpxp(deg I)b Structure

hex.
f.c.c.~ ~ ~

0.79
0.74 b.c.c.

hex.

rhomb.

1.03 hex.
0.95 hex.
0.94 f.c.c.
0.98

TABLE III. Noble metals (Structure: f.c.c.).

Element

CU
Ag
Au

D (cal/mole) a

81.7X10'
69.4X10'
90 7X10'

~xp(deg ')b

16.4X10 '
19.0X10-s
14.4X 10—e

1.34
1.31
1.31

a Extracted from Landolt-Bornstein Tables.
~ Extracted from Smithetl, 's Metals Reference Book (Butterworth's Pub-

lications, London, 2949).

to the physical potential m would lie between the
extreme values 1 and 4 and e between 6 and 12. Table
I then shows that the factor (m+n+3)/mn lies between
the extreme values 1.67 and 0.40. Taking therefore
unity as a mean value for this factor, we find from Eq.
(5) that n=0.5k/D, which we may compare with
Griineisen's result: u =0.6C,/Ap.

Using the data collected in (I) (Table II), we have
the results of Table II, while in Table III similar calcu-
lations have been made for the noble metals (Cu, Ag,
Au) (see also Griineisens).

The relative constancy of the last column in Tables
II and III suggests that within the limits of the model
the values of m and e may be considered as constant
within each of these monovalent metal groups, i.e.,
that a law of corresponding states is valid within each
group.

Turning to the Group II metals (Be, Mg; Ca, Sr,
Ba; Zn, Cd, Hg) the experimental data conflict in a

3 lt then follows that the one-dimensional Gruneisen relationship
y=al/pCL, where p=(1/1)(dl/dI')r, holds true to the Grat
approximation.

4 E. Grttneisen, Ann. Physik. 89, 289 (1912).' E. Griineisen, Verhandl. deut. physik. Ges. 10, 822 (1912).

n= ky/Dmn,

This may be compared with the relationship deduced
by Gruneisen4:

a =C.y/Apmn.

0., y, th, , n are the appropriate analogs in three-dimen-
sions, and A.o is the sublimation energy at absolute
zero. To compare with experiment, Gruneisen then
evaluated approximately the factor p/mn; however,
we can proceed more directly from Eq. (5). If then we
risk a comparison with the experimental data on metals,
one might expect that for a reasonable approximation

number of cases, but Table IV shows that, even in this
very diverse group of metals, nD is still suKciently
constant to lead us to suggest that the as yet unknown
expansion coeS.cient of Sr should be close to 23X10 ',
and that the uncertain value for Ba taken from
Smithell's Handbook is possibly low.

Considering now solids such as the frozen inert gases
where the binding forces are of the van der Waals' type,
we should expect that here the requirements of central
forces and nearest-neighbor interaction t implicit in the
model —see (I)j would be best satisled. Using data
deduced from gas-kinetic studies, we may estimate
values for the linear thermal expansion coefBcient, n.
In Table V data are collected for the heavier inert
gases (Xe, Kr, A).

For these solids m=6 semitheoretically and, as is
common, n is taken as 12. Thus

n =21k/144D

Although o, „for argon is only approximate, the agree-
ment with theory is sufficiently good to suggest that
the at present unknown values for Kr and Xe must be
close to those predicted.

Since the Lennard-Jones and Morse potentials give
results which appear physically quite reasonable, it
might be thought that any hypothetical interatomic
potential which satisfies the elementary requirements
of a large repulsive energy for r=0, a finite value at
r =+~ and a single intervening minimum would
suKce. However, one may readily choose an artificial
potential (e.g. , see Fig. 4) which satisfies these require-

TABLE V. The heavier inert gases.

Element

Xe
Kr
A

D (cal/mole)

448'
344b
237'

rxCheor.

6.5 X10 '
8.4 X10 4

1.21X10 3
~ ~ ~

iX10-3 ~

a Beattie, Barriault, and Brierley, J. Chem. Phys. 19, 1223 (29$2).
b Beattie, Brierley, and- Barriault, J. Chem. Phys. 20, 2613 (29S2).
e R. L. Fowler and E.' A. Guggenheim, Statistical Thermos'namibia

(Cambridge University Press, Cambridge, 1949).
~ F. E. Simon and F. Kippert, Z. physik. Chem. 135, 123 (1928).

a Extracted from Landolt-Bornstein Tables.
b Extracted from Smithell's Reference Book (Butterworth's Publications,

London, 1949).
e The value of a at room temperature is 12 )&20 ii/'C and this has been

multiplied by the ratio 3R/C& (8 for Be 1000 K). All the other metals
considered are essentially classical at room temperature.
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x (= &- &o)

Fro. 4. Hypothetical form of interatomic potential.

ments but which predicts physically quite unrealistic
behavior for the thermal expansion.

Specifi Heat

Using Cp= —T(8'G/BT')p with Eq. (3), we find

Cp=Nk{1+ ,'(5) ss 4-) 4)kT/D+— },
and thus, using Cp Cr.= T(BL/B—T)p(BI'/aT), ,

Cr„.p=o =Nk{1+4s (Ass
—2X4)kT/D+ ) .

Introducing now the Lennard-Jones potential [see

Eq. (4)j, we obtain

Cp ,p .o=Nk{1+(1/12tnn) (2tn'+2ns+7tnn

+12m+ 12nq27) kT/D+

Cs;,p~o= Nk{1—(1/12tnn) [(n tn)—'+ntn

+6tn+6n+15 jk T/D—

Thus, for a/l m, e&0, Cg p 0 is predicted to increase
with T, whereas CL,,~-O is predicted to diminish with
T as found also in (I) for the Morse potential.

.The general condition that the term in C~ linear with
temperature should be negative may be written (see
also Damkohier')

This inequality is satis6ed by both the Morse and
Lennard-Jones potentials (whatever the values of n
and tn). We may therefore conclude, as foreseen in (I),
that it is extremely unlikely that any physically
plausible potential would give rise to a CI, increasing
with temperature, in agreement with Damkohler's
conclusions.

We are most grateful to Dr. J. S. Dugdale for many
helpful discussions in the preparation of this paper.

s G. Damkohler, Ann. Physik. 24, 1 (1935).
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The concentrations of imperfections in silver halides grown from the melt were investigated by comparing
the measured densities with the ideal densities computed from the lattice dimensions. The density defect of
the most perfect specimen of silver bromide was hp/p —0.8&&10 '. The greatest amount of imperfection
was ap/p= —18X10 4 in a specimen of silver bromide containing about 4 mole percent silver iodide. Con-
sidering the sects of various con6gurations of voids, it seems reasonable to attribute most of the density
defect in the best crystals to immobile aggregates of vacancies and to dislocations associated with small-angle
mosaic structure. The contributions of large-angle grain boundaries and Schottky defects are negligible.

INTRODUCTION

HE concentration of imperfections in, a crystal is
of importance in determining many of its proper-

ties. In the silver halides considered here, the number

of imperfections is undoubtedly closely associated with

photographic behavior and with such related properties

as optical absorption and electron- and hole-trapping. '

A direct method of obtaining information on the

soundness of a crystal is to compare the measured

density with an ideal density computed from the weight

*Communication No. 1690 from the Kodak Research Labora-
tories.' F. Seits, Revs. Modern Phys. 23, 328 (1951).

and volume of material in the unit cell. Straumanis' has
recently reconsidered this type of measurement, and
has determined the best values of atomic constants to
use in the computations, assuming calcite to be a
perfectly sound crystal.

The present investigation is a study of the defects at
room temperature in pure specimens, prepared from
the melt, of silver bromide, silver chloride, and solid
solutions of a few mole percent silver iodide in silver
bromide. Measurements reported by Keith and Mitchells

s M. E. Straumanis, Phys. Rey. 92, 1155 (1953).
3&H. D. Keith and J. W. Mitchell, Phil. Mag. 7, 42, 133$

(1951).


