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Slow Electrons in a Polar Crystal
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A variational principle is developed for the lowest energy of a system described by a path integral. It is
applied to the problem of the interaction of an electron with a polarizable lattice, as idealized by Frohlich.
The motion of the electron, after the phonons of the lattice 6eld are eliminated, is described as a path
integral. The variational method applied to this gives an energy for all values of the coupling constant.
It is at least as accurate as previously known results. The effective mass of the electron is also calculated,
but the accuracy here is dHBcult to judge.

A N electron in an ionic crystal polarizes the lattice
in its neighborhood. This interaction changes the

energy of the electron. Furthermore, when the electron
moves the polarization state must move with it. An
electron moving with its accompanying distortion of
the lattice has sometimes been called a polaron. It has
an eGective mass higher than that of the electron. We
wish to compute the energy and effective mass of such
an electron. A summary giving the present state of
this problem has been given by Frohlich. ' He makes
simplifying assumptions, such that the crystal lattice
acts much like a dielectric medium, and that all the
important phonon waves have the same frequency. We
will not discuss the validity of these assumptions here,
but will consider the problem described by Frohlich
as simply a mathematical problem. Aside from its
intrinsic interest, the problem is a much simplified
analog of those which occur in the conventional meson
theory when perturbation theory is inadequate, The
method we shall use to solve the polaron problem is
new, but the pseudoscalar symmetric meson Geld
problems involve so many further complications that
it cannot be directly applied there without further
development.

We shall show how the variational technique which
is so successful in ordinary quantum mechanics can be
extended to integrals over trajectories.

STATEMENT OF THE PROBLEM

With Frohlich's assumptions, the problem is reduced
to that of finding the properties of the following
Hamiltonian:

H= ,'P'+P artcc+arr-+i (V2rra/V)& Ptr-
E

XLax+exp( —iK X)—are exp(iK X)). (1)

Here X is the vector position of the electron, P its
conjugate momentum, cz+, a~ the creation and annihi-
lation operators of a phonon (of momentum K). The
frequency of a phonon is taken to be independent of K.
Our units are such that 5, this frequency, and the

H. Frohlich, Advances in Physics 5, 525 (1954). References to
@ther work is given here.

electron mass are unity. The quantity a acts as a
coupling constant, which may be large or small. In
conventional units it is given by

1 t'1 1) e' (2tttto) &

CK

e&h &It)'

i8$/Bt =HP, (2)

so that if q„and E„are the eigenfunctions and eigen-
values of H,

(3)

then any solution of (2) is of the form

4=2
Now we can cast (1) and (2) into the Lagrangian form

of quantum mechanics and then eliminate the Geld
oscillators (specializing to the case that all phonons are
virtual). Doing this in exact analogy to quantum
electrodynamics, ' we find that we must study the sum
over all trajectories X(t) of exp(iS' ), where

1 (dX)'s'=-
2& (dt's

+2-&%i I
[
Xg- Xg( 'e '~' '~dtds (4—)-.

This sum will depend on the initial and Gnal conditions
and on the time interval T. Since it is a solution of the
Schrodinger Eq. (2), considered as a function of T it
will contain frequencies E„,the lowest of which we seek.
It is difficult to isolate the lowest frequency, however.

For that reason, consider the mathematical problem
of solving

8$/itt= HP, —

without question as to the meaning of t. This has the
same eigenvalues and eigenfunctions as (3), but a

s R. P. Feynman, Phys. Rev. SO, 440 (1950).

where e, e„are the static and high frequency dielectric
constant, respectively. In a typical case, such as Nacl,
a may be about 5. The wave function of the system
satisfies (5=1)
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solution will have the form

Q=Q„C es"e"'e s.

then we know that E exceeds the true Eo,

(13)

with

E= expSX) X(t),J (6)

For large t any solution therefore asymptotically dies
out exponentially, the last exponent surviving being
that of the lowest E, say ED.

An equation such as (5) can be converted to a path
integral just as easily as (2) is, and the integral over
the oscillator coordinates can again be done in an
analogous way. The Lagrangian form corresponding to
(5) turns out to be

(5 Sr) = s—T. (14)

Furthermore, the factor exp(S —Sr) in (12) is constant,
of course, and may be taken outside the integral.
Finally, suppose the lowest energy E& for the action 5&
is known,

"expsr5) X(t)~exp( —ErT), (15)

If there are any free parameters in S& we can choose
as the "best" values those which minimize E.

Since (S—Sr) defined in (11) is proportional to T,
let us write

1 t (dXqss=—
2& & dt)

then we have
E=Eg—s (16)

+2 &cr
~
X,—X, it 'e ~~'~dt-ds. (7)

f
J

This is just as one might expect from replacing t in (4)
by it Now—, s.ince E is a solution of (5), its asymptotic
form for a large t interval, 0 to T is

E'~e—EP7 (8)

as T'—&00. Therefore, we must estimate the path
integral (6) for large T.

from (12), with s given by (11) and (14). (In the case
that 5 and Sr are both simple actions Lof the form of
(18) below( this can readily be shown to be equivalent
to the usual variational principle. )

POSSIBLE TRIAL ACTIONS

Some of the methods which have been applied to
this problem, so far, correspond to various choices
for S~. The perturbation method corresponds to
Sr—— ',f (d X/d—t)'-dt and gives

VARIATIONAL PRINCIPLE

The method we shall use is a type of variational
method. Choose any S& which is simple and purports
to be some sort of approximation to S. Then write

%e see immediately that the perturbation result is an
upper limit to Eo, a result proven only with much
greater eGort by more usual methods, by Gurari' and
Lee and Pines. ' Another suggestion is

expSS X(t)= exp(S —Sr) expsrG X(t). (9) S,= ——', (d X/dt)'dt+ V(X,)dt, (18)

Now this last expression can be looked upon as the
average of exp(S —Sr), the average being taken with
positive weight expS&. But for any set of real quantities

f the average of expf exceeds the exponential of the
average,

(expf) & exp&f)

Hence if in (9) we replace S—5& by its average,

(S—Sr)

(10)

I (S—Sr) expsrK)X(t) ps, nx(t), (11)

exp((s —Sr)) expsrK) X(t) exp —ET, (12)

we will underestimate the value of (9). Therefore, if
E is computed from

Z = —(1/3m) n' = —0.106cP. (19)

If n is not so large, the form (18) can still be used in
(16). The evaluation of s requires knowledge of the
eigenfunctions and eigenvalues for the potential V.

s M. Gurari, Phij Mag. 44, 329 (1953).
4 T. Lee and D. Pines, Phys. Rev. 88, 960 (1952). Lee, Low,

and Pines, Phys. Rev. 90, 297 (1953),

where V is a potential to be chosen. If a Coulomb
potential is chosen, V(R) =Z/R, and the parameter Z
varied, one hnds

E= —(25/256) cP= —0.098n.'

asymptotically for the case that n is very large. For
large o, this corresponds to Landau's method' with a
trial function of the form e &". H a harmonic potential
V(R) =RE' is used (corresponding to a Gaussian trial
function in Landau's method) the value is somewhat
improved:
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The result'is somewhat dificult to evaluate for the
Coulomb potential, but fairly simple for the harmonic
case [see (34) below] H. owever, it is readily shown
that for any a less than about 6 no choice of V can
improve the result (17) for V=O. Frohlich has asked
for a method which works uniformly over the entire
range of n. He points out that the artificial binding to
a special origin, which (18) implies, is a disadvantage.
It is this which presumably makes any potential U
give a poorer result than V=0 for small n.

To remedy this, I thought a good idea would be to
use for S~ the action for a particle bound by a potential
V(X—Y) to another particle of coordinate Y. This
latter could have 6nite mass, so no permanent origin
would be assumed. Of course the action for such a
system would contain both X(t) and Y(t). But the
variables Y(t) could be integrated out, at least in
principle, leaving an effective Si depending only on X.
At first I tried a Coulomb interaction for V(X—Y)
but it was rather complicated. The technique may be
useful in more dificult problems. But here we have
already seen that an harmonic binding should be as
good, if not better. Further, an extra particle bound
harmonically has its variables Y(t) appearing quad-
ratically in the action. It may therefore be easily
eliminated explicitly. The result we know from studies
of similar problems in electrodynamics. We are, in this
way, led to consider the choice

t (dX& '
S,= ——', i~

(
~dh ', C "ir[X—,—-X,]'J (dhj JJ

Xexp( —ie
i
t—s i)dtds, (20)

where C and m are parameters, to be chosen later to
minimize E.

EVALUATION OF THE ENERGY

Since Si contains X only quadratically, all the
necessary path integrals are easily done. ' Because the
method may not be familiar we outline it brieQy here.
Define the symbol ( ) as

We concentrate first on the first term A of (21). In
it we may express

~
X&—X,

~

' by a Fourier transform,

~
X&—X,

~

'= "d'K exp[iK (Xi—X,)](2xsEs) '. (23)

For this reason we need to study

(exp[iK (X,—X.)])

expSi exp[iK (X,—X.)]X)X(t)

expSiS X(t). (23)

The integral in the numerator is of the form

I= r exp —-',
~ ~

dh ',c ~ —~'-(X,—X,)'

Xe "~' '~dtds+ f(t) X(t)dt 5)X(t), (24)

where specifically

f(t) = iKs(t —~) —iKt'(t —~). (25)

Now we shall find (24) insofar as it depends on f or K
aside from a normalization factor which drops out in
(23). Incidentally let us notice that the three rec-
tangular components separate in (24) and we need
only consider a scalar case. The method of integration
is to substitute X(t) =X'(t)+ V(t), where X'(t) is that
special function for which the exponent is maximum.
The variable of integration is now V(t). Since the
exponent is quadratic in X(t) and X' renders it an
extremum, it can contain 7'(t) only quadratically.
Evidently I' then separates oft as a factor not containing
f, which may be integrated to give an unimportant
constant (depends on T only). Therefore within such
a constant

r=..p —,) x,"dt—;ct')I'(x, -x.)

Xe ~' '~dtds+ rf(t)X,'dt-, (26)

(P)= F expSiX) X(t) expSiK) X(t).

Then comparison of S~ and 5 shows that

where I is that function which minimizes the expres-
sion [subject for convenience, to X'(0) =X'(T)=0 if
the time interval is 0 to T]. The variation problem
gives the integral equation

s=—(S—Si)=2—'*n)r([ X,—X, (
')e—~'—'~ds

T

+,' ~Cr((X,—X,)') -~' d =A+8. (2—1)

d'X'(t)/dt'=2C I (Xi' X,')e "~' '~ds —f(t) (27)— .

Using (27), (26) can be simplified to

E=exp s f(t)X'(t)dt .' R. P. Feynnian, Phys. Rev. 84, 108 (1951),Appendix C.
(28)
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We need merely solve (27) and substitute into (28).
To do this we define

so that

while (27) is
d'Z(t)/dt2= w'[Z(t) —X'(t)],

=exp— (1—e "~' '~) — K )r—o(, (29)
'V K 2'0

where we have made the substitution

v'=w'+ (4C/w). (30)

1"he result is correctly normalized since it is valid for
K=O. The integral on E in (22) is a simple Gaussian,
so that substitution into A gives

'V2 —K2
w'r+ (1—e ~~) e ~dr. (31)

0

To 6nd 8 we need ((Xi—X,)'). This can be obtained

by expanding both sides of (29) with respect to K up
to order E2. Therefore

The integral in 8 is now easily performed and the
expression simplifies to

8=3C/vw. (32)

The equations are readily separated and solved. The
solution for X'(t) substituted into (28) gives, for the
case (25),

I=(exp[iK (X,—X,)])

The integral in A unfortunately cannot be performed
in closed form, so that a complete determination of E
requires numerical integration. It is, however, possible
to obtain approximate expressions in various limiting
cases. The case of large cx corresponds to large m. The
choice m=0 leads to an integral

at p

nI'(1/v)
e—'dr[1 —e

—"']—&= (34)
v &I'(-', +1/v)

A=n(v/w) 1—e r ie "(1 e')dr/—wv&+ ~ ~ ~

0

The integral is
2w '[(1+w) &—1]=P.

The problem (33) then corresponds, in this order, to
minimizing

and Ei=3v/4. It corresponds to the use of a fixed
harmonic binding potential in (18). For large v, e "'
can be neglected, so that A =m &O.v&. This corresponds
to using a Gaussian trial function in Landau's method.
For n less than 5.8 and w= 0, (33) does not give a rnini-
mum unless v =0, so that the m =0 case does not give a
single expression for all ranges of o.. In spite of this
disadvantage the result with (34) is relatively simple
and fairly accurate. For o.&6, only fairly large v are
important, and the asymptotic formula (good to
1 percent for v)4),

A =n(v/v. )&[1+(2 ln2)/v],

is convenient. Frohlich, however, considers the discon-
tinuity at n= 6 as a serious disadvantage, which it is the
purpose of this paper to avoid. This we do by choosing
m diferent from zero.

Let us study (33), just for small n, in case w is not
zero. The minimum will occur for v near ve. Therefore
write v= (1+e)w, consider e small, and expand the
root in (31).This gives

Finally we need E&, the energy belonging to our action
S&. This is most easily obtained by differentiating both
sides of (15) with respect to C. One finds immediately

That is,

E= swe Q Qe(1 P).

e= 2n(2 —P)/3w,

CdEi/dC =8,
so that, in view of (32) and (30), integration gives

Ei———',(v —w),

since Ei=0 for C=O. Since Ei—&= (3/4v)(v —w)' we
obtain finally for our energy expression:

3
E=—(v—w)' —A,

4e

with A given in (31). The quantities v, w can be con-
sidered as two parameters which may be varied sepa-
rately to obtain a minimum.

E= —n —n'/81 = —n —1.23 (n/10)'. (36)

It is not sensitive to the choice of m. For example,
for m=1 the 1.23 falls only to 0.98. The method of
Lee and Pines~ gives exactly this result (36) to this
order. The perturbation expansion has been carried to

' T. Lee and D. Pines, Phys. Rev. 92, 883 (1933).

which is valid for small n only, as e was assumed small.
The resulting energy is

E= —n —cP (1—P)'/3w.

Our method therefore gives a correction even for small
o,. It is least for m =3, in which case it gives
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second order by Haga' who shows that the exact
coeflicient of the (n/10)' term should be 1.26, so that
our variational method is remarkably accurate for
small n.

The opposite extreme of large o. corresponds to large
v, and, as we shall see, m, near 1. Since v)&m the integral
(31) reduces in the first approximation to (34), which
we can use in its asymptotic form. The next approxi-
mation in x can be obtained by 'expanding the radical
in (31), considering w/v(&1. Furthermore, e "' is
negligible. In this way we get

=3 t' 2 In2 w'q
E=—(v —m)' —n(v/vr) &i 1+

4v v 2v)
(37)

EFFECTIVE MASS

Another quantity of interest is the eGective mass.
If the particle moves with a mean group velocity V,
its energy should be greater. For small V the energy
goes as V', and writing it 'as 'mV'/2 ~we call m the
effective mass. Since there is an operator analogous to
the momentum which commutes with the Hamiltonian„
it would be expected that there is a variational principle
which minimizes the energy for each momentum. That
is, we ought to be able to extend our method to yield

' E. Haga, Progr. Theoret Phys. Qapair} .ll, 449 (1954}.

This is minimum, within our approximation of large v,

when re= 1, and v = (4n'/9rr) —(4 ln2 —1):
E= —n'/3v —3 ln2 ——,

' = —0.106n' —2.83. (38)

The approximations do not keep E as an upper limit as,
unfortunately, the further terms, of order 1/vr are
probably positive.

For further numerical work it is probably su6ciently
accurate to take m=1 for all n, rather than do the
extra work needed to minimize this extra variable.
This value of m means that the trial Sj has the same
time exponential in the interaction term as does S.
For small o., that is, v near 1, the integral can be ex-
panded in a power series in (v—1). The resulting
energy is (w=1):
E= —n —0.98 (n/10)' —0.60(n/10) '

—0.14(~/10)4 . (39)

The two expressions (38), (39) fit fairly well near n=5.
For practical purposes it may suKce to use (39) below
a=5 and (38) above. If more accuracy than 3 percent
is needed near 0.=5 numeri. cal integration of A must
be performed. The value of v which gives (39) is

v = 1+1.14(rr/10) +1.35 (n/10) '+ 1.88 (n/10) '.

This may help to choose an appropriate v. For m=3
the results are

E= —n —1.23 (n/10) '—0.64 (o./10) ' ~

v =3+2.22 (n/10) +1.97 (rr/10)'

an upper limit to the energy for each value of V, or
better, of momentum Q. We have not found the
expected extension.

If we limit ourselves just to ending the effective
mass for low velocities, however, we may proceed in
this manner: For a free particle of mass m whose initial
coordinate is 0 and final coordinate is Xv the sum on
trajectories is

exp( —mXr'/2 T) . (40)

F(r) =vv'r+ (1—e "') (42)

Substitution into (22) and (21) gives for A the value

A (U) =2—
&n ~" t (2v'Es) —'e-'

E2
Xexp — F(.)+iK U. dsKd, .

2v

Second dif'ferentiation of (41) with respect to K shows
that

((X,—X,)') =3F(t—s) v
—'+ U'(t —s)',

so that one obtains for 8 the value

3C 2C
B= + U'.

PN 'N

We again And Ei from dEi/dC=B/C and Ei= ,'U' for-
C=O. Thus

Ei——-', (v —m)+-', U'(1+4Cw '),

Hence we can study the eGective mass for our system
by studying the asymptotic form of (6) in the case
XzWO. The asymptotic form should vary for small
XT as exp (—EsT—mX&s/2T), its dependence on Xr
determining m. This only requires that (27) be solved
for the boundary conditions X'=0 at t=0 and X'= X&
at t= T. There are some confusing complications at the
end points so it is easier to proceed as follows. We
will put Xr=UT so that the propagation (40) is
exp( —rsmUsT). I Note that U is not a physical velocity
because t is an artificial parameter in Eq. (5), and is
not the time. ] That is, we seek the total energy and
equate it to Es+-,'mU'. But if we substitute X'= X"
+Ut into (27), we see that it is a solution if X" is.
This X" goes from 0 at t= 0 to 0 at t = T, and is there-
fore our previous solution. Such a substitution into
(26) means that the term involving f adds a term
exp(J'tU fdt) so that this is the factor by which I is
multiplied, aside from normalization. For the f given
in (25) this is exp[iK U(r —.o)] so that we now have

(expt iK (X,—X.)j)
E'

=exp — F(~ r ~o)+iK U(r —o—), (41)
2v

where
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The values of the parameters to use in (45) are those
which were previously found to minimize E when U =0.

For small n this gives

m, = 1+-,'n+0.025cP+ (46)

for m =3, while for m= 1 the 0.025 becomes 0.023. For
large n it becomes

m= 16n4/81m. 4= 202 (n/10) 4. (47)

Our energy values, coming from a minimum principle,
are much more accurate than the mass values, whose

precision, especially for large n, is hard to judge. Since
(46) and (47) do not match well, intermediate values
of a require numerical integration of (45).

Lee and Pines' have worked with a diGerent type of
variational principle. It seems to be nearly as good as
ours for n less than about 5, but is poor for larger e
(for example, at n=15, Lee and Pines find Eo(—17.6,
while we find Eo(—26.8). This appears to contradict
their statement that their method is exact for large o..
They are referring to a diGerent problem, however,
in which the upper momenta are cut oG. This means
that in S in (7) the function

~
X&—X,

~

' is replaced by
some other function V(~ Xi—X, () which differs for
small

~
X&—X,~. It is evident, for large e, that the best

trajectory will be the one that wanders only slightly and
the energy will be 2 'nV(0) in the limit. Their method
gives this result in the limit, as ours would also. For
the case where V is singular, so V(0) does not exist
their method is not exact, and it is inaccurate for

and our Gnal expression is

Z= —',U'+ (3/4e) (v—w)' —A (U).

We next expand A(U) to order U' and write the
kinetic energy as mU2/2 to find, finally,

for intermediate values of n even if V(0) exists, if V
has steep walls.

The method is readily extended to cases in which the
photon frequencies are not constant, and the coupling
is not just proportional to E '. The same trial action
S~ can be used, but the integral for A becomes more
complicated. For the Hamiltonian

H= ,'I +g-z~xax+axyV ~g~[Cx*ax+exp( iK X—)
+Cxax exp(+iK X)],

Eq. (33) still holds; the only change is that the integral
for A becomes

E'
A = exp coxr— &—(7—.)— -( Cx

~
'drd'K(2~) ',

2v~

where F(r) is given in (42).
An attempt has been made to apply this method to

meson problems. The case of scalar nucleons interacting
by scalar mesons seems tractable, but the greater
complexity of the more realistic problems shows the
need for further development.

We are limited in our choice of S» to quadratic
functionals, for those are the only ones we can evaluate
directly as path integrals. It would be desirable to 6nd
out how this method may be expressed in conventional
notation, for a wider class of trial functionals might
thereby become available.

I am indebted to H. Frohlich for bringing the problem
to my attention, and for his comments on it, and to
G. Speisman for emphasizing the importance of the
general inequality (10).

Note added iN proof. —Professor Frolich and Professor
Pines have kindly informed me that S. I.Pekar LZhur.
Eksptl. i Teort. Fiz. 19, 796 (1949)j has calculated the
limiting values of energy and mass for large 0., by an
adiabatic approximation. The energy is —0.1088o.2 and
the mass is 232(u/10)'. Therefore our variational
method gives an error of only 3 percent in the energy
and 15 percent in the mass for large 0., and presumably
smaller errors for smaller e.


