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6eld and two sub-bands of the 3d shell also having
spins parallel and antiparallel.

It appears that the resistivities of these materials also
can be understood on the basis of the same four-band
model. Actually only the resistivity of Ni as a function
of temperature has been worked out in detail but this
had appeared, at the outset, to be the most doubtful
case.

Since all of the calculations have used the saturation

magnetization data to determine the number of carriers
in each band, the saturation magnetization data is also
consistent with this model.

The author desires to thank the many colleagues who
have contributed by discussions and constructive criti-
cism. He is especially indebted to Dr. Norman Rostoker,
Professor Walter Kohn, Professor J.E. Goldman, of this
institution and to Professor Harry Jones of Imperial
College.
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Measurements have been made of the temperature-disuse scattering of x-rays from a single crystal of
copper at 300'K by using crystal monochromaked:Cu ICa radiation. The measurements were analyzed by
the method of Laval and James to give dispersion curves of frequency vs wave vector for longitudinal and
transverse waves in the 100, 110, and 111 directions. These results were then expressed in terms of the
generalized force constants of the Born theory of lattice dynamics.

By considering the interaction of first, second, and third neighbors, nine force constants are involved,
and these have been evaluated from the dispersion curves. These force constants appear in the secular
equation of frequency vs wave vector and constitute the necessary data for computing a complete vibrational
frequency spectrum.

Such a spectrum has been calculated from the secular equation, by machine computation, for 3417 wave
vectors. From this spectrum a specific heat curve was calculated and compared with experiment in the
range of 15'K to 100'K.

I. INTRODUCTION

'HE interaction of radiation with a thermally
vibrating crystal lattice is equivalent to the case

of radiation scattered from a vibrating molecule. In the
case of a molecule, the levels manifest themselves as
absorption-emission lines in the infrared spectrum and
as lines of modified frequency in the visible spectrum,
the frequency shift being of the order of 10" out of
10'4 cps. The latter phenomenon is known as the Raman
effect and is of interest here by way of giving a unified
picture.

It is possible to study the lattice dynamics of a
crystal from the standpoint of the Raman effect. The
crystal may be thought of as a giant molecule, the
vibrational levels comprising the vast vibration spec-
trum of the lattice. Experimental and theoretical work
has been carried out along this line, notably by Krish-
nan, ' Bhagavantam, ' Placzek, ' Born, 4 and Smith. '
However, the use of visible light is generally not
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permitted since most crystals are opaque to optical
frequencies. Furthermore, even for transparent crystals,
the interpretation of the experimental data is rather
difficult.

One may study crystal lattice dynamics more con-
veniently with x-rays. In this case a Raman shift does
indeed still occur but it is generally below the level of
observation, being about 10" out of 10" cps. Fortu-
nately, it is unnecessary to detect this shift in the case
of x-ray investigations. Born' has shown that the
general mechanical treatment of Placzek reduces to the
relatively simple and direct interpretation of Laval'
and James. r Their formulation quantitatively relates
the diffuse scattering of x-rays to the frequency and
wavelength of traveling elastic waves in the crystal.
The thermal motion of the lattice is described by a
linear superposition of these waves. By measuring the
diffuse intensity along directions in reciprocal space of
high symmetry, such as the 100, 110, and 111 in the
case of cubic crystals, it is a simple matter to obtain
dispersion curves of frequency and velocity zs wave
vector for waves propagating along these axes. It is

' J. Laval, Bull. soc. franc. mineral. 64, 1 (1941).
R. W. James, The Optical I'rirrcip/es of the DQfractioN of

X-Rays (6, Bel] and Sons, London, 1948), Chap. V.



usually not possible to obtain directly dispersion curves
for waves of arbitrary direction because such waves do
not possess a pure longitudinal and transverse vibra-
tional character. A number of investigators' " have
employed the Laval-James relation to obtain dispersion.
curves for waves propagating along the symmetry axes
of a crystal, from which approximate vibrational
frequency spectra and specific heats were calculated.

It is possible to extend the meaning of the Laval-
James analysis by relating the dispersion curves to the
Born theory of lattice dynamics. This approach allows
one to calculate a number of interatomic tensor force
constants which are the fundamental quantities govern-
ing the vibrational behavior of the lattice. Curien' has
by this method obtained a set of force constants for 0.

iron (b.c.c.) and Joynson" has by a similar method
obtained force constants for the hexagonal lattice of
zinc." Having experimentally obtained the values of
the force constants, one may then obtain a complete
frequency spectrum by solving a secular determinant.
The secular equation relates frequency to wave vector,
and must be solved for a large number of wave vectors
distributed throughout an appropriate section of the
first Brillouin zone of reciprocal space. From the fre-
quency spectrum, the partition function and specific
heat may be calculated. Also, a relation between the
elastic constants and the atomic constants may be
obtained by considering the long wave limit of the
secular determinant. These topics are discussed briefty
in the following section. For a more detailed account,
the reader should consult the work of Laval' and James'
concerning temperature-disuse x-ray scattering and the
work of Born, Born and Begbie, " and Smith' con-
cerning lattice dynamics.

II. SECULAR EQUATION AND DIFFUSE
X-RAY SCATTERING

Symmetry considerations show that, for a monatomic
face-centered cubic lattice, a total of 9 atomic force
constants are required to describe general interactions
between an origin atom and all neighbor groups out to
and including the third. The secular equation for this
case is the 3X3 determinant represented by

' Ph. Olmer, Acta Cryst. I, 5'I (1948); Bull soc. franc. mineral.
71, 144 (1948).

s H. Cole and B. E. Warren, J. Appl. Phys. 23, 335 (1952)."H. Curien, Acta Cryst. 5, 392 (1952)."H. Cole, J. Appl. Phys. 24, 472 (1953).
's R. E. Joynson, Phys. Rev. 94, 851 (1954).
»Joynson employed Born's formulation of x-ray scattering

instead of that of Laval and James. The Born formulation relates
diffuse scattering directly to the atomic constants and so by-
passes the aspect of mastic waves.

'4 M. Born and G. H. Begbie, Proc. Roy. Soc. A188, 179 (1947).

composed of the elements

D;, (q) = (—~t" ~i'C;s p—t'(C',+Ca,)+S,'(~s+«sC;s)
m

+S,'(Ps+4PsCs, )+Ss'(Ps+4PsC, ;)),

Dc;(q) = {S;S—,zt' 4V sS—~'+«s(Cs,+C;s)),

crt'=tri+2crs, Pi'=Pi+2Ps)
Ql =csl +2P1 yi = yt+2ys

C,;=cos(2sraq, ) cos(2sraq, ), S,= sin(2sraq~).

is the angular frequency of a traveling elastic wave
with wave vector sl=iq&+jqs+kqs,

~ tI~ = I/&, where )I

is the wavelength, I is the identity matrix, and 2a is the
lattice constant. The additional elements of D(q) are
obtained by cyclic permutation of the indices i, j, k.
The atomic force constants nr, Pi, and yr describe
interactions between an origin atom and its first
neighbor group. Similar meaning applies to the other
constants, the subscripts denoting the particular
neighbor group. The atomic force constants are clearly
defined by Cribier. "These constants are proportional
to the second derivatives in the expansion of the total
potential energy. Higher order terms are neglected
here but may be treated by perturbation theory. For
the special case of central forces, nt=ps 0, p——t=yi,
and es ——2ps= 2Ps ———so.s.1

A comparison of the long-wave limit of Eq. (1) with
the elastic matrix for a cubic crystal yields the following
relations between elastic and atomic force constants:

acti= 2P1+2o's+8Qs+4Ps,

ac44 ——et+Pi+ 2Ps+ 2ns+ 10Ps,

a(cls+c44) =2yt+4ys+ 16es.

(2)

+ "vs'
exp(hv„/kT) —1 2

(4)

The quantity t fse s~) is the square of the atomic
scattering factor modified by the debye factor t. '~ and
is obtainable from a separate experiment. For copper,

's D. Cribier, Acta Cryst. 6, 293 (1953).

The elastic constants of Eqs. (2) are understood to be
those obtainable from the dynamic (ultrasonic pulse)
method.

For a monatomic cubic crystal, connection between
the atomic constants of Eq. (1) and the x-ray data is
achieved through the relation $Eq. (3)7 of Laval and
James. Equation (3) gives the first order disuse scatter-
ing, in electron units per atom, in terms of the elastic
waves of thermal vibration.

8 ' ~ J."q,.
$f'e ' j — P— cos'(S,f) cos'(S, j), (3)

m j=l V
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the values of Brindley' were used: m is-the atomic
mass, and (S/h) is the diffraction vector, i.e., the
difference in wave vector between the incident and
reQected x-ray beam. The sum extends over the three
directions of vibration j for a given elastic wave vector
q, where q is the vector from the nearest Bragg reQection
to the terminus of the diffraction vector (S/4). i„ is
the frequency of the elastic wave. (S,j) is the angle
between the diGraction vector and direction of vibra-
tion. E„ is the quantum energy of an elastic wave,
and it approaches kT for high temperatures. The value
of E„can be most conveniently obtained by an iterative
procedure: assume E=kT and solve for v, by Eq. (3).
Substitute v, in Eq. (4) and so obtain a new value of E
which is to be inserted in Eq. (3) and t;solvedfor again.
The cycle is repeated until successive values of v; agree.
This procedure is generally necessary.

In addition to the first order term [Eq. (3)$, the total
intensity at points in reciprocal space away from Bragg
reAections is composed of Compton scattering and
higher order temperature disuse terms. These contri-
butions must be calculated and subtracted from the
total intensity before using Eq. (3) to compute disper-
sion curves of frequency v ~s wave vector q. The
Compton scattering was taken from Compton and
Allison" for copper. The second order diffuse term

l2
8 t g)Q cps

y ~p~C~r s~c

IQO

(scattering from two waves) is given by Eq. (5),

fse ™vS 4

I,=

E; coss(S,i)Ee; cos'(S,j)
X dqidqsdqs, (5)

&a1', &Pj
.2 .2

where v is the volume of the primitive cell. The sum
over Z refers to the number of zones intersecting ari

imaginary zone centered on the terminus of (S/h). The
integration is performed over the regious of overlap
between this imaginary zone and neighboring zones.
By replacing the zones with spheres of the same volume
and assuming an average velocity for all waves in the
crystal, the second order term can be simplified and
evaluated numerically.

In a similar manner the third order contribution can
be calculated. For details concerning the method of
calculation for higher order terms, the reader should
consult reference 8. The maximum contribution of
the second and third order terms to the total tempera-
ture disuse scattering is 20 percent and 3 percent
respectively. Higher order terms are negligible for
copper.

The pure longitudinal and transverse character of
waves propagating along the symmetry axes simpli6es
the first order term [Eq. (3)j forx-ray data takenalong
these special directions. For example, for (S/A) along a
symmetry axis, Eq. (3) becomes

6-- [fse—sMj
m A Pq)
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FIG. i. Frequency and velocity es wave vector for longitudinal

and transverse elastic waves propagating in the 100 direction in
copper. The solid lines are drawn through the experimental
points. The dotted lines are the best fit obtainable and were
calculated from the secular equation (1) with the constants of
Table I.

"G.W. Brindley, Phil. Mag. 21, 786 (1936).
'7A. H. Compton and S. K. Allison, X-Rays ie Theory and

ExPeriment (D. Van Nostrand Company, Inc. , New York, 1935).

1 S 'IE, t sin'p E,i cos'p
I =—[f'e-' ) — +.,p &qt

2

With the aid of the previously determined longitudinal
dispersion curve, one may then obtain the corresponding
transverse curve.

These dispersion curves provide the information
necessary to determine the inter-atomic force constants
through the secular determinant (1).For waves propa-
gating along the symmetry axes, the determinant
factors into simple terms. Ideally, by considering a few
points along each symmetry axis, such as q= 1/4a and
q=1/2a for the 100 direction, one may determine all
nine atomic constants through a set of simultaneous
equations. That is, the frequency obtained from the
x-ray data by Eq. (3) is equated to the frequency

and thereby yields dispersion curves for longitudinal
waves. Transverse curves are obtained by measuring
intensities along an appropriate line in reciprocal space
at right angles to a symmetry axis. In this case (S/A)
is at some angle p relative to the original longitudinal
direction and Eq. (3) becomes
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Fn. 2. Frequency and velocity es wave vector for longitudinal

and transverse elastic waves propagating in the 110 direction in
copper. The solid lines are drawn through the experimental
points. The dotted lines are the best fit obtainable and were
calculated from the secular equation (1) with the constants of
Table I.

as to maintain equal angles relative to the incident and
diGracted beam in order to keep the absorption correc-
tion angularly independent. The air scattering was sub-
tracted from the total recorded counts, the remainder
being converted to electron units per atom by com-
parison with radiation scattered from a block of
parafIin at large angles.

Intensity measurements taken along the 100 direction
between 200 and 400 provided the longitudinal disper-
sion curve of Fig. 1 through Eq. (3).This curve together
with data recorded along the line 400 to 410 produced
the 100 transverse dispersion curve also shown in Fig. 1.
In the same manner longitudinal and transverse curves
for the 110 direction were obtained from intensity data
along 5/4, 5/4, 0 to 11/4, 11/4, 0 (long. ), 200 to 11/4,
5/4, 0 (trans. 1), and 400 to 4, 3/4, 3/4 (trans. 2).
Similarily, the 111dispersion curves were obtained from
data along 3/2, 3/2, 3/2 to 5/2, 5/2, 5/2 (long. ) and
222 to 311 (trans. ). These results are shown in Figs. 2
and 3. It is to be understood that the dispersion curves
are obtained from the average values of intensity
measurements made in equivalent regions of a Brillouin
zone. The solid lines are drawn through the experimental
points. The dotted lines are the best over-all Qt presently
obtainable with the experimental curves and are derived
from the secular determinant LEq. (1)(with thechoiceof
force constants given in Table I. Shown in Table II is
the comparison with elastic constants through Eqs. (2).

appearing in the secular determinant Eq. (1) for the
particular wave vector being considered. Actually it
was necessary here to so choose the atomic force
constants as to give the best over-all fit with the x-ray
dispersion curves because not all the data were self-
consistent.

III. EXPERIMENTAL PROCEDURE AND RESULTS

Three copper crystals were prepared from a single
crystal of 99.99 percent purity for which we are indebted
to Professor B. L. Averbach of the Department of
Metallurgy. The three crystals were cut with faces
parallel to the 100, 110, and 111 planes respectively.
Each face was polished and, then etched with ferric
chloride. Laue photographs taken at several points on
each face revealed sharp crystalline rejections.

All temperature disuse measurements were made at
about 300'K with Cu En radiation from a full-wave
rectified copper target tube operating at 35 kv and
21 ma. The radiation was monochromated by a bent
lithium fluoride crystal and then passed through a
balanced nickel-iron filter to cancel the half-wavelength
component. The beam divergence was limited to +0.5'
both vertically and horizontally. The scattered radi-
ation was detected by a Geiger counter and was
recorded at each angle setting for 20-minute intervals
for both the nickel and iron positions of the balanced
filter. The face of each copper crystal was so oriented
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Fn. 3. Frequency and velocity es wave vector for longitudinal

and transverse elastic waves propagating in the 111 direction in
copper. The solid lines are drawn through the experimental
points. The dotted lines are the best 6t obtainable and were
calculated from the secular equation (t} with the constants of
Table I.
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approximation is equivalent to the following: Pr=yt
=1.355X10' dynes/cm, cr&

———0.0244&&10' dynes/cm
and all other constants are zero. Both the general force
and central force spectra contain the same number of
solutions and were calculated on the M.I.T. Whirlwind
I electronic computer. "The Debye curve of Fig. 5 was
adjusted to have the same area and cut-oG frequency
as the general force spectrum. This cut-oG frequency,
J, is 7.01)&10" cps and corresponds to a Debye
temperature of 8=335'K using the relation hv =k0.
The cut-off frequency for the central force spectrum
is 7.2)&10"cps.

The specific heat curves of Fig. 6 were calculated by
numerical integration from the spectra of Fig. 5 by the

FIG. 4. Decomposition of the vibrational frequency spectrum
of copper into "longitudinal" and "transverse" branches for
3417 wave-vector solutions of Eq. (1) employing the general
force constants of Table I.

A vibrational spectrum has been calculated from the
roots of the secular determinant LEq. (1)$ for 3417 wave
vectors distributed uniformly throughout 1/48 of a
Brillouin zone."This calculation employed the general
atomic force constants listed in Table I and will be
referred to here as the general force spectrum. A
decomposition of this spectrum into "longitudinal"
and "transverse" branches is given in Fig. 4. The
composite general force spectrum (solid line) is com-
pared with the central force" (broken line) and Debye
(dotted line) spectra in Fig. 5. The central force
calculation utilized the constants given by Leighton"
appropriate to copper at room temperature. This
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FIG. 6. Calculations of the specific heat, c&, for copper from the

spectra of Fig. 5. The solid, broken, and dotted lines correspond
to the general force, central force, and Debye spectra respectively.
The crosses are the experimental points of Giauque and Meads.

3~10' 4 5 6 7

FIG. 5. Comparison of composite general force (solid line),
central force (broken line), and Debye (dotted line) spectra for
copper. The general force spectrum utilized the force constants of
Table I. The central force spectrum utilized the force constants
given by Leighton. Both spectra contain 34l'7 wave vector
solutions.

' The method is outlined in reference 15.
' The term central force as applied to lattice dynamics has a

very special meaning: i,e, , forces between atoms exist only when
a component of relative displacement occurs along the line of
centers. No forces are.exerted for a small displacement perpen-
dicular to the line of centers. A physical central force, such as
that produced by a coulomb field, does not satisfy the .latter
requirement of no force for.small perpendicular displacements, . as
may be readily verified.

w R. B. Leighton, Revs. Modern Phys. 20, 166 (1948).

relation c„=kJe""1V(v)E(v,T)dv, where

E(v, T)= (hv/kT)' exp(hv/kT)/[exp(hv/kT) —1]'.

The experimental specific heat values were taken from
the work of Giauque and Meads. " Strictly speaking
these speci6c heat calculations should have employed
the low temperature atomic force constants. Such
information is not yet available, although GaGney and
Overton" have recently experimentally determined that
for copper the elastic constants c~~, c&~, and c44 increased

by 2.8 percent, 4.8 percent, and 8.6 percent respectively
near absolute zero. This suggests similar changes in
the atomic constants which would consequently stretch
the vibrational spectrum toward a higher cut-oG fre-

2'Availability of Digital Computer Laboratory time for this
problem was made possible by the Once of Naval Research.

~ W. F. Giauque and P. F. Meads, J. Am. Chem. Soc. 63,
1897 (1941).

~ J. Gait'ney and W. C. Overton, Phys. Rev. 95, 602(A) (1954).
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quency and so reduce slightly the calculated specific
heat at low temperatures. However, this calculation
was omitted because such changes in the atomic force
constants lie within the present degree of experimental
uncertainty. For the same reason the more sensitive
plot 0 vs T was omitted.

Ultrasonic values'

c„=17.0X10»
c»= 12.3X1011

c4,—7.52X 10»

x-ray values

can = 17 0X10»
c»——12.4X 10»
c44 ——6.45X10»

TABLE II. Comparison of ultrasonic and x-ray values of
elastic constants (in dynes/cms).

IV. CONCLUSION

Interatomic force constants for the face-centered
cubic lattice of copper have been determined from x-ray
measurements at 300'K and are listed in Table I.These
constants describe general interaction between an origin
atom and its first, second, and third neighbor groups.
From these constants a vibrational frequency spectrum
(Figs. 4 and 5) and a specific heat curve (Fig. 6) have
been calculated. A spectrum for the special case of
central forces is compared with that of the general
force model in Fig. 5.

Possible errors in the atomic force constants of
Table I may be due to omission of anharmonic terms

TAnLE I. Atomic force constants (in dynes/cm) derived from the
experimental dispersion curves of Figs. 1, 2, and 3.

a1——0.48X 104

P, =0.87X 104
y1= 1.25 X 104

a2 =0.35X 104
p2= —0.072 X10'

=0.09X 104

p3 = —0.022 X104

y3 ———0.015X 104
es =0.06X 104

in the potential energy, omission of more distant
neighbor effects, and use of a theoretical value for the
Compton modified scattering. Of these, the latter may
be very important and as such precludes investigation
of the others until its behavior is more precisely estab-
lished. Experimental determination of the Compton
scattering is in general rather difficult but has been
achieved by I.aval in the cases of aluminum and KCl.'4

His measurements do show deviations to an extent
which would modify the apparent disuse scattering by
several percent at a zone boundary. This possibility
along with the temperature dependence of diffuse
scattering are currently being investigated in this
laboratory. Until this information has been acquired,
it is not possible to set margins of error for the x-ray-
determined force constants. The agreement between
atomic and elastic constants for cii and cis via Eqs. (2)
may thus be somewhat fortuitous a,t this stage.

It will be noted that the central force model produces
'4 J. Laval, Bull. soc. franc. mineral. 62, 137 (1939).

a J. GaSney arid W. C. Overton, Phys. Rev. 95, 602(A) (1954).

a vibrational spectrum in close agreement with that of
the general force model over the first 5// of the fre-
quency scale. Furthermore, the general force spectrum
exhibits no character essentially different from that of
the central force model. Thus the specific heats calcu-
lated from both models agree well with one another
over the temperature range considered. They also agree
quite well with the observed specific heat of copper,
although it should be added that the choice of a lower
characteristic temperature 0 will produce a Debye
specific heat which is also close to the observed values
in this temperature range.

In connection with the x-ray dispersion curves, the
central force model is not so consistant. While this
model is in fair accord with most of the curves of Figs.
1, 2, and 3, there are discrepancies of over 20 percent
for the 100 longitudinal and 110 (trans. 2) cases. Such
discrepancies require consideration of a more general
type of force between atoms when dealing with lattice
vibrations io copper. This statement disagrees with the
theoretical results of Fuchs. "

It is felt by this author that the future value of
temperature diffuse scattering experiments lies mainly
in the determination of interatomic forces in solids.
DiGraction experiments, including those with electrons
and neutrons, are the only direct means presently
available for such determinations. Through the study
of interatomic forces, it may be possible to acquire
supplementary information about the electronic con-
figuration in some solids, particularly metals, the
character of which is necessarily reflected in the tensor
force constants of Eq. (1). This topic is in fact being
studied by a member of the Solid State and Molecular
Theory Group at M.I.T. for copper.

The author is indebted to B. E. Warren for sug-
gesting this problem, and for his continued interest
and helpful advice on many occasions. He also wishes
to thank F. J. Corbat6 for help in rnachine computa-
tional techniques, and R. E. Joynson and H. Cole for
valuable discussion.

2' K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1936).


