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Effective Carrier Mobility in Surface-Space Charge Layers*
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Carriers held to a region near the surface by the potential well of a space charge layer may have their
mobility reduced by surface scattering, if the width of the well is of the order of a mean free path. An effective
mobility, which may differ from the bulk mobility by as much as a factor of ten, has been obtained from a
solution of the Boltzmann equation. Solutions have been carried out for two types of potential functions:
(u) a linear potential corresponding to a constant space-charge field, and (b) a solution of Poisson's equation
including an external bias applied normal to the surface. The results have been used to calculate changes in
surface conductance of germanium with changes in surface potential and predict the "field eBect" and
"channel effect" mobilities.

I. INTRODUCTION

HE surface of a semiconductor is the seat of a
space-charge double layer produced by a surface

charge distribution which is counterbalanced by a
space-charge region consisting of holes, electrons, and
impurity ions. '

The surface charge distribution arises from the
trapping of holes or electrons at the surface of the
material. There are three obvious types of &"surf ace
traps. First, by adjusting the mathematics of the energy
band solution for an ideal inGnite crystal to take the
surface into account, one may find allowed levels
which correspond to states localized near the surface,
and which lie in the forbidden gap of the energy level
diagram. A second type of surface trap arises from the
impurity ions found in increased . quantity near the
surface. A third type is that arising from chemisorbed
material on the semiconductor surface. The chemisorp-
tion process in general requires a charge transfer from
the body to the surface of the semiconductor. The
chemisorption traps are often separated from the bulk
material by an oxide layer. By changing the gaseous
ambient surrounding the sample, one can change the
density of chemisorption traps and therefore alter the
magnitude of the space-charge double layer.

Morrison' has used this technique on a free ger-
manium surface to displace the energy bands near the
surface relative to the Fermi level. The conductance
of the sample is changed by such a displacement because
the carrier concentrations in the space-charge region are
different from the bulk concentrations. Figure 1 (a)
shows a p-type semiconductor with a large positive
charge on the surface causing an e-type surface layer,
or "inversion layer, " to be formed. Similarly, a large
negative surface charge would cause the bands to rise

and a strongly p-type layer would exist at the surface.
The intermediate case is obtained when a small positive
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charge exists on the surface which is counterbalanced
primarily by a space-charge of impurity ions, termed an
"exhaustion layer. " Since the hole concentration is
reduced under such conditions while the electron con-
centration is still relatively small, the conductivity in
an exhaustion layer will be smaller than that of the bulk
semiconductor.

If an alternating Geld is applied normal to the surface,
by arranging the semiconductor to be one plate of a
condenser, an eGective mobility of the carriers intro-
duced by this field can be determined from the change
in conductance of the sample. This type of eGective
mobility will be called the "field eGect" mobility.
Unlike the bulk carrier mobilities, the field eGect mo-

bility can change its sign, the positive value corre-
sponding to electrons. Morrison finds in general that
the sign of the Geld efFect mobility changes when the
ambient causes the conductance to go through a
minimum value. 4

Brown' and Kingston' have measured the conduc-
tance of a "channel" or e-type surface layer on a
normally p-type base region of an tt—p—I junction
transistor, as a function of applied reverse bias. By
Gtting theoretical curves to experimental data, Brown
estimates the mobility of electrons in the channel to be
one-fifth to one-tenth the bulk mobility. Kingston
carried out measurements in a water vapor atmosphere
for several values of vapor pressure. The water vapor
tends to form a positive surface charge distribution on
the p-type base and creates an rt-type inversion layer
as described above. Kingston Gnds the surface con-
ductance appears to vary inversely with applied bias,
and has proposed a theory to explain this eGect by
taking- into account the reduction in mobility of the
channel electrons.

To estimate the change in conductance of a semi-

conductor due to a space-charge layer existing at the
surface, one must consider at least two eGects. The
Grst is simply the change in the number of holes and
electrons in the space-charge region. The second is the
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the space-charge potential. The general solution for the
surface conductance is given in Part II for disuse
surface scattering and applied to (u) a linear space-
charge potential corresponding to a constant electric
field, and (b) a solution of Poisson's equation including
an externally applied potential, V„across the surface.
The change in the number of holes and electrons in the
space-charge layer as a function of f,e (see Fig. 1), has
been computed for impurity densities from intrinsic up
to 10"/cm'. ' These results are combined with the
carrier mobility obtained from the surface scattering
considerations to discuss Morrison's work and predict
the carrier mobility in the channel eGect.
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Fro. 1. (a) Energy level diagram of an I-type inversion layer
existing at the free surface of a p-type material. (b) A voltage V,
applied across the surface shown in (a).

reduction of the carrier mobility by surface scattering
if the width of the space-charge potential well is com-
parable to a mean free path or less. For example, if
electrons in an n-type inversion layer are held near the
surface by the potential well, the surface may scatter
the electrons more frequently than the conventional
bulk scattering mechanism, therefore reducing the elec-
tronic mobility appreciably. This reduction may be
quite important in the channel eGect where widths of
the order of several hundred angstroms are attained.
If a large dipole exists at the free surface of a semicon-
conductor, surface scattering will play a role in deter-
mining both the total change in conductance due to
ambient and the results of the field eGect measurement.
The considerations presented here primarily deal with
the inQuence of surface scattering on such measure-
ments.

The increase in resistance of thin metallic Glms from
a decrease in electronic mobility, in the absence of a
magnetic Geld, has been discussed by Fuchs7 and a
generalization of the problem to include magnetic
sects was carried out by Sondheimer. The theory
presented here in general follows these analyses, the
essential difference arising from the spatial dependence
of the unperturbed carrier distribution function due to

' K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938).
e E. H. Sondheimer, Phys. Rev. 80, 401 (1950).

where v and a are the velocity and acceleration of a
carrier, r the relaxation time, and f= fo+ fi(&,&), fo being
taken as the Maxwell-Boltzmann distribution function
and f, a small perturbing function. Thus,

fo =C expI (trtv'/—2+~)/kTj, (2)

where it is the potential associated with E„est the
effective mass and q the charge of the carrier. When
products of ft and E, are neglected in (1), ft is found
to satisfy the equation:

r)f& qE itf& f& qv E fp+ +—=
82' m 88, v kT

(3)

By introducing an energy parameter,

"=s~&'+q(0 0.)—
where itr, is the value of the potential at the surface, Eq.
(3) is reduced to

qE* ctft ft q&K*fo

m 85, T

If the boundary condition of random scattering at
the surface is imposed by making fr vanish at v, =e„,
where v„ is the positive s component of velocity asso-

This calculation has been carried out independently by R. H.
Kingston (private communication). A somewhat similar calcula-
tion has been carried out by C. G. B. Garrett.

'e See A. H. Wilson, The Theory of Metals (Cambridge University
Press, London, 1953), Chap. VIII.

II. GENERAL THEORY

We consider a volume extending inward from a unit
surface area of a semiconductor, subjected to an electric
Geld E„parallel to the surface, and a Geld E, along the
inward normal to the surface, due to the space-charge
layer. The carriers are regarded as free in the sense that
the energy depends upon the absolute square of the
wave vector only. Under steady state conditions, the
distribution function for the holes or electrons is deter-
mined by the Boltzmann equation, "

v grad, f+a grad, f= —(f fo)/r, —
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mvgEg fp pe- exp[E(v, ',e,)]
exp[—E(v„e,)] d5g )

E,(v, ', e,)

ciated with a carrier at the surface with energy param-
eter e„Eq. (5) has the solution,

I =sVqIJ,,(ATE„ (13)

The reduction in the conductivity of the carriers in the
well due to surface scattering can be taken into account
by de6ning an eGective mobility such that

and where
St f'" dP

E(v,', e,)=-
q &p rE, (v,",p,)

where X is the total number of either holes or electrons
in the well, depending upon whether a p-type or n-type

(7) surface is under consideration. If the zero of potential
is taken at the surface, Ã is given by

The current density can now be calculated as (mv
X=C dvgv„dv. dz exp —

~

— +qlP
~

kT
E2 )

pg= q t dvgdvgdvevgfi
2~kTI f kT

=Ci i . (14)
E m J qE„Introducing the distribution function, Eq. (6), per-

forming the e and e„ integrations and integrating the
current density over z to obtain the total current in the By combinmg Eqs. (12), (13), and (14) and writing

potential well for a unit surface area, we find

2v qE,CkTI =- kg dz

peri/pb»k= 1—exp(n') (1—erf n). (15)

Figure 2 shows this ratio plotted as a function of n.
For the limit of large 8„,the expression reduces to

)mv, '
&«xp —

( +qO I)
Ref f/fibu lk=2n/v (16)

E CkTr'"
I =2xq' exp[ —qit, /kT] dp.

Jo

)&exp[—e,/kT][exp2E(e, )—2E(e,)—1]=DA, (10)

where E(e,) is evaluated from. Eq. (7), the upper limit
being (2e,/m)&=v„, and D the group of constants ap-
pearing. before the integral. To evaluate the current
explicitly, some form of the space-charge potential must
be assumed.

(a) The first case considered is E,=E„,a constant.
The relaxation time is assumed constant and the
surface scattering random. By introducing Eq. (7)
into Eq. (10) and delning

n= (qE„r) '(2mkT)&,
one. obtains

t
"**exp(E')

X
~

— dv. '. (9)
e, &g

The z integration has been carried to infinity assuming
the form of lP insures a negligible contribution from the
region beneath the space charge layer. Since

BE/Bv, =m/qrE„

Eq. (9) reduces to

Thus the eGective mobility is inversely proportional to
the space charge 6eld for large constants fields. For
small 6elds, the effective mobility reduces to the bulk
value as expected.

(fl) The second case considered is that in which E,
is obtained from a solution of Poisson's equation for the
space-charge layer. For delniteness, the problem will be
solved for a p-type material with an I-type inversion
layer existing at the surface and an external bias, t/,
applied in the z direction such that the energy bands
are depressed further at the surface as shown in Fig.
1(b). The results are valid for an e-type material with
a p-type inversion layer with an appropriate change in
the de6nition of quantities involved.
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We define tp to be the mid-gap potential relative to
the mid-gap potential deep within the sample. q„and
p„are the quasi Fermi potentials and assumed constant
over the region of interest. From Fig. 1(b), we note

However, to evaluate E, Eq. (7), E, must be expressed
as a function of v, and e, by using the defining rela-
tionship for o„Eq. (4). The expression for E becomes

ts( s pO t' ' Qg tooE=——
~ ~

'

dt's, + e—xp(otP/kT)
er &gtrN, AT) ~ o kT

The charge density is taken as

p= e[ N—,+po exp( —ep/kT) —too exp(ep/kT) $, (17)

where

(po+too) t'+— tool,si
kT

2

I,=No expLetr, /kT)=electron density at the surface,

too= I; exp[(DEF eV )/—kTj,
po=to; exp( AZt/kT j—

~EF—EF(sa,m pie) EF(intrineic) q

e; is the intrinsic carrier density, E, the acceptor
density, and K the dielectric constant.

Poisson's equation becomes

4n-e
= —-- -[—N.+p, exp( —os/kT) —too exp(eP/kT) j.

Let dt's/dz=tP=O at some point within the sample as
an origin for integration. Multiplying Eq. (19) by
df/dz and integrating over z, we obtain the electric
6eld as a function of the potential.

+—exp( —eti/kT), (21)

where
ep= erat, +-', two.s—o,.

%e now make the approximation that the bracketed
portion in the denominator of Eq. (21) is negligible
compared to the terms retained, over the region of
major contribution to the current integral. This ap-
proximation is equivalent to setting the field due to
the impurity ions equal to a constant value, given by
its value at the surface, and neglecting the contribution
of holes to the space charge. If et, is greater than
several kT, the population of states in the region where
o,—-', trod, s is comparable to e/i„ is very small compared
to the population at the bottom of the well. The
bracketed expression also indicates that the maximum
possible hole contribution to the denominator corre-
sponds to a decrease of cia, by kT. Thus for most
problems of interest, the above approximation appears
valid and E reduces to

E'= 8m',
K

kT (po q
[(expt -g/kTj-1)

e &N)
&(6g/kT)

jE=-(2/~)9 " (22)
~+exp' —(o*/kT)+y'j

+ i i (expLclt/kTj —1) i . (20)
&N. ) 1 mK

P=
er 8eo

1 nZK-&

exp( —&,/kT)
er Se,

(23a)
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FIG. 3. The effective mobility corresponding to the potential
obtained from a solution of Poisson's equation for the space charge
layer, plotted as a function of the parameter P for several values
of the parameter B.
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Fro. 4. The effective mobility plotted as a function of the depres-
sion.-of the energy bands at the surface.
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FIG. 6. The "field eGect'" mobility as a function of the depres-
sion of the energy bands at the surface, assuming the charge
associated with surface traps is independent of the applified field.

where
The current is given by substituting Eq. (22) into Eq.
(10) and after some calculation gives

4p

t

&*0 exp(e(t/kT) —1
An=no — d)P,

d
(27a)

I.=DkT 2%2PL(B+1)'*—B&j t
r'0 exp( ep/kT) ——1

~p=po '

" 0 d)p/ds
dP, (27b)

+ exp —x—2(2/s) &P

Jo

~
v'~

X LB+exp(—x+y') j &dy dx —1~. (24)
~0

Jeff =1
@bulk 2v2PL (B+1)&—B&j

&( exp —x—2(2/s )&P

Jo

~
v'~

(8+exp( —x+y')) &dy dx —1t. (25)

This ratio is plotted in Fig. 3 as a function of P for
several values of B. Figure 4 shows p,,((/pb i), for in-
trinsic germanium.

III. APPLICATIONS

The results of Sec. II may be applied to the problem
of determining the position of the energy bands at the
free surface of a semiconductor if the conductance of the
sample is known relative to the conductance at a
de6nite band position. The conductance due to the
space-charge layer is given by

a(r= eQ(„).r(mrs+ @ (,).((ap), (26)

An effective mobility is again defined by Eq. (13) and
proceeding exactly as in the constant field case we
obtain the expression,

and No and po are defined as in Eqs. (18) by setting
V =0. The eGective mobility is to be considered dif-
ferent from the bulk mobility when the carrier is con-
strained to conduct in the potential well, thus neglecting
the small correction due to some carriers of opposite
sign scattering from the potential barrier rather than
the surface. Since all quantities in Eq. (26) are ex-
pressible as functions of ))t,o, this relationship and the
sign of the field eGect give the band position. There is
some question as to what values to assume for the
eGective mass and relaxation time for both holes and
electrons. Assuming m„=m„=0.25m„we have plotted
ho in Fig. 5 for intrinsic, n-type and p-type germanium.
The relaxation times have been determined from the
relationship pb„)),——er/m. It should be noted that the
conductance decreases and goes through a minimum as
the surface conductance tends to become inverted. For
the p-type material this is due to the hole density near
the surface decreasing to a small value before the elec-
tron density has increased appreciably. The conductance
minimum can be used to establish the de6nite band
position needed above. Changes in conductance may be
interpreted as moving along this conductance curve and
the energy band position is read directly once the
minimum has been established.

The magnitude of the Geld eGect can be estimated if
one assumes the charge associated with surface traps is
unchanged when the 6eld is applied. Since there can
exist no net 6eld deep within the semiconductor,
Gauss's law applied to the free surface gives the total
charge, Q, in the space charge region by the value of
the fmld just inside the surface, Eq. (20). Defining a
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p F.E.=—dAo/dQ
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FIG. 7. The theoretical effective mobility corresponding to
Kingston's data on the channel efFect, for ambient water vapor
pressure (u) 19.8 mm of Hg, (b) 14.5 mm, snd (c) 4.6 mm.

Vapor pressure

19.8 mm of Hg
14.5 mm of Hg
8.6 mm of Hg
4.6 mm of Hg

60-(V =0)

26 micromhos
10 micromhos
6.6 mscromhos
4.0 micromhos

geo

0.25 volt
0.22 volt
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approach the bulk values indicated by the dotted lines.
Morrison's observation that the sign on the field effect
changes when the ambient forces the conductance to
go through a minimum is explained by realizing the
field effect essentially senses the slope of the e-type
curve-in Fig. 5. Sy applying the external field, the bands
are either lowered or raised at the surface, depending
upon the sign of the applied field. If the sample is at a
conductance minimum, the conductance will increase
in either case however the sign of the induced charge is
opposite, thus accounting for the observed effect.

An estimate of the effective mobility to be expected
in the channel effect can be derived from Kingston's
data of channel conductance versus reverse bias on
n-p-e junction transistors by extrapolating his con-
ductance curves to zero bias. Since Kingston's data give
directly the conductance due to the existence of the
channel, the depression of the bands at zero bias is given
by the value of P,s corresponding to the intercept. The
values obtained in this way for several values of ambient
water vapor pressure are

+jl(y) ffps[exp ( eP,/kT)—1j—
(df i regis( )effsip(ry)eff

+~ —
(

An +AP
Edz) p, 8$, 8$,

$1V +Is exp(eP, /kT) —ps exp( —ef,/kT)$, (28)

where (dP/dz) &, is given in Eq. (20), the derivatives of
the effective mobility are obtained from Eq. (25), and
hn and Ap as defined above have been tabulated as
functions of eP,/kT. The first two terms in the nu-
merator of Eq. (28) are due to the number of electrons
and holes in the space-charge layer changing, while the
last terms arise from the fact that the effective mobility
of the carriers already present in the space charge layer
changes. In general both types of terms must be con™
sidered. The field-effect mobility is shown in Fig. 6 for
intrinsic germanium. If surface scattering were not
included, the mobility for a large surface dipole would

If one assumes the Fermi level at the surface is sta-
bilized relative to the energy bands, as Kingston has
proposed, " the effective mobility is then given by Kq.
(25), where P assumes a fixed value for each value of
it, s and 8 depends linearly upon V . Figure 7 indicates
the mobility is reduced to about one third the bulk
mobility for a reverse bias of several volts.
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