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lating material. Frequently, however, the substance by
itself has only poor Quorescent properties under high-
energy radiation, and when it is put into an eS.cient
Quorescent solution a considerable decrease in light
output results because of quenching. Such behavior is
often found when materials contain elements of medium
or heavy atomic weights. By applying the results ob-
tained with added naphthalene, solutions which exhibit
considerable Quorescence have been made with such
quenching molecules present.

A list of substances containing diferent elements is
presented in Table I with which at least moderate high-
energy Quorescence eKciencies can be obtained in
organic liquid solutions. (The common elements in
organic substances such as hydrogen, carbon, nitrogen,
and oxygen are not included. ) In most cases, as can be
seen from the table, the addition of large amounts of
naphthalene produces sizeable enhancement of the light
output although considerable amounts of the quenching
material may be present in the solution. The various

Quorescent solutes shown in the table give comparable
results, and in many cases o.,o.'-binaphthyl may also be
used. p-terphenyl cannot be utilized because of the
insufficient energy transfer found with naphthalene. '
The heaviest element that has been successfully used to
the present has been bismuth. The list which is pre-
sented represents the results of a preliminary search
for successful substances. Finding substances with
desirable properties presents certain problems. One of
the major difficulties is the lack of solubility in suitable
organic solvents. Once a soluble material is found, it
must generally be such that it does not quench the
solution too strongly. The naphthalene, as discussed
above, acts as a "solvent" in which less quenching
occurs and provides a medium to and from which more
energy is transferred.

The investigation presented in this paper opens up
the possibility of studying the inQuence of various atoms
and molecules on other excited molecules not normally
present in work with Quorescence.
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A study is made of the one-electron energy levels of a disordered alloy by means of perturbation theory,
extending the results of Nordheim and Muto. To the accuracy of first-order perturbation theory, a disordered
alloy is equivalent to a particular perfect crystal, the "virtual crystal, " as was shown by Muto. For a
certain rather general model, the eAects of second-, third-, and fourth-order per'turbation theory upon this
"virtual-crystal" approximation are analyzed. The question of convergence of the perturbation approach
is studied. A certain basic limitation of the perturbation approach is discussed, namely, the limitation to
nonlocalized states. Accurate results obtained by Landauer and Helland for a hypothetical one-dimensional
alloy are compared with results obtained by perturbation theory. It is pointed out that the same approach
can be used with 'equal validity in discussing not only disordered alloys but also other types of imperfect
crystals; e.g., imperfections resulting from dislocations. The most striking prediction of perturbation
theory, i.e., the "tailing-oG" of the density-of-states curve into a forbidden band, appears to have some
experimental verification.

I. INTRODUCTION
',N this paper we will discuss the one-electron energy
~ ~ levels of a completely disordered alloy. For hypo-
thetical one-dimensional alloys, this problem has re-
cently been solved with the aid of computing ma-
chines. ' ' For the three-dimensional problem, however,
there seems to be little hope of a reasonably exact
solution. The great diQiculty, over and above the
problem of a perfect crystal, lies in the lack of spacial
periodicity of the disordered alloy even though the
atoms of the alloy may reasonably be assumed to lie

on periodic lattice sites. For this reason, we will attempt
to solve the problem by perturbation theory. Such an
approach was used by Muto' in an attempt to justify
Nordheim's "virtual-crystal" approximation. This ap-
proximation consists of replacing the correct one-
electron potential (appropriate to a given configuration
of atoms of the alloy) by its average (the average to
be taken over all possible random configurations). In
order to gain some physical insight into the accuracy
of the approximation, we will now rephrase Muto's
discussion in terms of electron scattering in the alloy.

'H. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(1953). 'T. Muto, Sci. Papers Inst. Phys. Chem. Research (Tokyo)

s R. Landauer and J. C. Helland, J. Chem. Phys. 22, 1655 &4~ 3&& (1938).
(1954). e L. Nordheim, Ann. Physik 9, 60/ and 641 (1931).
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II. VIRTUAL-CRYSTAL APPROXIMATION

The straightforward way to obtain physical infor-
mation about an alloy in the one-electron approximation
would be to solve the one-electron Schrodinger equation
appropriate to some particular con6guration of atoms
of the alloy. Results obtained for each configuration
are then averaged over all possible con6gurations,
weighting each configuration according to its proba-
bility of occurrence. In particular, the average of the
wave function over all possible con6gurations, namely
(4), is known as the coherent-wave amplitude, and
(%*)(%) as the coherent-wave intensity, while (%*%)
—(+*)(@)is known as the incoherent-wave intensity.
Thus (4'*4), the total intensity, is the sum of two
parts, the coherent part and the incoherent part.

In atomic units, the one-electron Schrodinger equa-
tion for a particular con6guration of atoms may be
written

L
—P+V(r,r„)$%',(r, t,r„)=E,(r„)%,(r, t,r„),

where r is the electronic coordinate, while the E
different r„, denoting the positions of the S atoms of
the alloy for a given configuration, appear in V, 4',
and E parametrically. q is an index enumerating the
solutions of the equation. De6ne

V'(r, r„)= V(r, r„)—Vo(r).

Vo(r), as yet unspecified, is independent of the r„
although it does depend upon the lattice structure of
the alloy. Using the time-dependent Schrodinger equa-
tion, we may write

t9

V'+Vo(r)+—V'(r, r„)j%,(r, t,r ) =2i %,(r, t,r„)—
Bt

Specify that at time t=0, 4 be a particular solution to

met by choosing Vo such that

( ~e,"(r,t)v'(rr. )e,'(rt)d ) =o.
00 rn

The above integration is over all of the space occupied
by the alloy, and the averaging is over all possible
con6gurations of the atoms. Let us now place the array
of atoms in a box and impose periodic boundary
conditions on the electronic wave function. The wave
functions 4q' may therefore be expanded in terms of
the complete set of plane waves satisfying the boundary
conditions and vice verse. It follows that the above
equation is equivalent to

r

V'(r, r )e"'iEr =0,
aJ ~ fn

where k is any of the set of k-vectors allowed by the
periodic boundary conditions. It should be pointed out
that this equation, in conjunction with the original
definition of Vo, serves to determine Vo uniquely.

Following Nordheim, 4 we assume that the crystal
potential can be written as a spacial sum of atomic-like
potentials; i.e.,

V(r) =Q„v.„(r—R„), (1)

where R„denotes the position of the eth lattice site
and the index s denotes the type of atom on the eth
lattice site. U, (r) is an atomic-like potential associated
with an atom of type s. Let f, be the fraction of lattice
sites occupied by atoms of type s.

(2)
We have

8
L
—V'+ Vo(r)+,'(r, t) =2i—e,'(r, t)

Bt Thus
J

V(r)eik rd& P eik. Re U8 (r)eik. rdg

n

=Z„e,&(r,t).

Since Vo is independent of the r„, so also are 4',' and
Eoq. The development of 4 with time can be determined
by means of time-dependent perturbation theory. Thus
we expand + in terms of the%"s.

e,(r,t,r.)=Z, a„(t,r„)e;(r,t), a,„(o,r„)=o,„.
The time-dependent coefBcients a depend upon the
matrix elements of V' with respect to the unperturbed
wave functions @'. Thus V' causes scattering of the
electron. cqq% q represents the unscattered portion of
the electron wave while 4'q —cqq%'q' represents the
scattered portion.

Thus far we have not defined Vo. We now choose Vo
such that the scattered wave is completely iecoheremt.
In the approximation of first order time-depend-ent
perturbation theory, this requirement can always be

V(r) '"'d =Q f, U, (r)e'"'dr Q e'" R~.~ ~ ~

~

n

We now see that only by picking

Vo(r) =Q„UO(r —R„),
where

V, (r) =Z. f.V.(r),

can we satisfy the requirement that

V'(r)e'"'d )=0

so that Vp(r) is a potential having the periodicity of
the lattice associated with the alloy. This periodicity
results from the fact that the positions of the atoms in
a disordered alloy are not completely random but must
coincide with the lattice sites of the crystal. In an



ENERGY LEVELS OF DISORDERED ALLOY

ideal liquid, on the other hand, where the positions of
the atoms are random, Vs is a constant. The band gap
observed experimentally' in a disordered alloy is a
manifestation of the band structure resulting from the
periodic nature of Vs. The effect of V' is to scatter the
electrons of the alloy incoherently. A disordered alloy
is analogous to a perfect crystal at a finite temperature,
where lattice vibrations have destroyed the perfect
periodicity of the crystal potential. For this latter case
also, the crystal potential can be written as a periodic
Vp and a V resulting from lattice vibrations which
gives rise to incoherent scattering.

Why did we choose Vs such that V' would give rise
only to incoherent scattering (in the approximation of
first-order perturbation theory) P We wish to pick our
initial wave function 4', (r,1) such that, aside from the
phase factor, exp( —ssEs, t), the change in 4, with time
is a minimum when averaged over all possible con-
figurations of atoms. In other words, we wish to mini-
mize the time-dependence of the "spacial part" of the
wave function, since it is the perturbing potential V'

which is giving rise to this time dependence of the
"spacial part" of the wave function, and the success
of any perturbation scheme depends upon the weakness
of the perturbation. Mathematically, we wish to
minimize

III. EFFECT OF SECOND-ORDER PERTURBATION
THEORY

The e8ect of second-order perturbation theory on
the unperturbed energy Ep, is to correct it by an amount

where
& .=Z.'I V-'I'(&o, —~o.)-', (5)

(6)

6 E. R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954).
See also Levitas, Wang, and Alexs. nder, Phys. Rev. 95, 846 (1954).

but by picking Vs, and thus 4,', such that only inco-
herent scattering occurs, we insure that the above
quantity vanishes (to the accuracy of first-order
perturbation theory) .

The problem of a disordered alloy has been resolved
into two parts: (1) The determination of the wave
functions and energy levels of an electron in the periodic
potential Vp. (2) The determination of the amount of
incoherent scattering of the electron by V', this scat-
tering giving rise to the "residual resistance" of a
metallic alloy. The theory of the "residual resistance"
has been worked out4 and will not be discussed here.

In the following sections we will study the corrections,
resulting from second- and higher-order perturbation
theory, to the wave functions and energy levels associ-
ated with the periodic potential Vp.

Hp= —V', (8)

(9)

To conform with the results of the previous section,
we must take

V, '(r) = V, (r) —P, f,V, (r),

where the various V,' must satisfy the relation

Z. f.V' (r) = o
s J. C. Slater, Phys. Rev. 76, 1592 (1949).

The prime on the summation sign denotes that the
term for p=q is not included. As was pointed out by
Muto, ' when E« lies in the middle of an energy band
there will be roughly equal positive and negative
contributions to the above sum so that E2, might be
expected to be small. When Ep, is near the bottom or
the top of a band, however, the leading terms in the
sum will be negative or positive, respectively. Thus
the effect of E2, will be to "smear" band edges out
into the band gaps. Muto implied that E2, vanishes in
the limit as Ã, the number of atoms in the alloy,
becomes infinite. Such is not the case. As will be shown
presently, E2, approaches a finite limit as S approaches
infinity.

In order to study 82, in detail, it will be convenient
to restrict ourselves to a very specific model; namely
the case where Vs is a constant. We refer to this as the
"empty-lattice virtual-crystal" model. The practical
advantage of working with this model lies in the fact
that the unperturbed wave functions are particularly
simple; namely plane waves. Without further loss of
generality we can redefine the zero of energy such that
Vs vanishes identically and only energies greater than
zero are allowed to the accuracy of first-order pertur-
bation theory. We now assume that the energy region
in the neighborhood of zero corresponds qualitatively
to the energy region in the neighborhood of the mini-
mum of an allowed band associated with a more
realistic, nonvanishing Vs. The justification for this
assumption lies in the well-known eAective-mass ap-
proximation, ' which states that in the energy region in
the neighborhood of a minimum or a maximum of a
riondegenerate allowed band, the equations of motion
of an electron in a periodic potential are equivalent,
for qualitative purposes, to the equations of motion of
a free particle with a certain reciprocal eGective-mass
tensor. A positive mass corresponds to an electron in
the bottom of a band while a negative mass corresponds
to an electron in the top of a band. The empty-lattice
virtual-crystal model is a specialization to the case
where the eGective mass equals the free-electron mass,
but the generalization to arbitrary eGective mass is
trivial.

The Hamiltonian for the empty-lattice virtual-crystal
model can be written

e=a,y V'(r),
where
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for all values of r. The solution to the unperturbed latter is divided by the volume of k-space per state, i.e.,
Schrodinger equation

is given by
Hpgp(k, r) =Ep(k)fp(k, r)

A(k, r) = (EQ)—&e"'

Ep(k) = k'.

(12)

Now
V'(k;)=V() . (15)

2

(Iv'(k)Ie)=(rvrr) e(
~

e'e'v'(r)d )
—(+Q)

—2 Q ei(r (Rre—Rp) I y (r)e()r rdV
+ IV 00

X V. '(r)e 'e'd )J

Here 0 is the volume per lattice site in the alloy, and S,
as before, is the number of atoms in the alloy. The
propagation vector k is any member of the set of
k-vectors satisfying the periodic boundary conditions.
As is shown in the Appendix, Eq. (5) becomes

Ep(k;) =P i 7'(k;) i'(2k; k;—k') ' (14)
where

Q(, =EQ(2VV) ') dV. ), (18)

Substituting (16) and (18) in (14), we find that Ep,
suitably averaged over all possible con6gurations, is
given by

Ep(k)=(2~) 'Q 'Zf i~I'U. '(g)l'(2k ~—g') 'd~ (19)
s a)~

If we assume that V,'(r) is independent of the orien-
tation of r then 'U, '((v) will be independent of the
orientation of e and the angular integrations in the
above integral can be performed immediately.

Ep(k) = (2vr)
—'Q—' Q f dgg'~~, '(g) I'

4O

X t desine(2kg cos8—gP) '
p

=(8~'Qk)-'gf, t (g,'(g)(
s dp

Xln[(g —2k)/(g+2k))gdg.

We may define 'U, '(g) to be a real even function of g,
so that the complete integrand will be an even function
of a, and we may write

=IV 'Q 'Q, f, (g, '(k) (',
where

g, '(k) =~fp, '(r) e')"dv.

Since there are X allowed states of a given spin in the
first Brillouin zone, whose volume is Q(,

——(2vv)'/Q, then
the volume of k-space per allowed state of a given spin
is given by

Q(,/)(() = (2vv)'/)l('Q.

In the limit as X becomes infinite, a summation over
the allowed states of a given spin may be replaced by
the corresponding integral over k-space, when the

-2k

Fro. 1. Contour of integration in the ~-plane.

E,(k)=(4 )-'(Qk)- gf, " [g,'( ))

Xln[(g.—2k)/(g+2k)J(Tdg. . (20)

Letting 0- range over the entire complex plane, we will
finally assume that 'U, '(g.) is analytic except at a finite
number of singular points. We assume that none of
these singular points lie on the real axis and that 'U, '(g.)
approaches zero at least as fast as a=' as r approaches
infinity in the complex plane. It is now possible to
evaluate the above integral by integration around the
contour illustrated in Fig. 1. Dehne

F,(g) = ['U, '(g) $'g ln[(g —2k)/(g. +2k) j. (21)

F.(g) has branch points at g = &2k with branch lines
extending to infinity is the lower half plane. Denote by
R» the radius of the semicircular contours about the
branch points, and denote by R2 the radius of the large
semicircular contour about the origin. The integral of
F,(g) over the latter contour, in the limit as Rp—+gp, is

8kRp[ "U,'(Rp) j'=0.

The integral of F, (g) over the contour at g =+2k, in
the limit as R»—+0, is

4k['U, '(2k) $'Ri lnRi= 0.

Similarly, the integral of F, (g) over the contour at
0 = —2k vanishes in the limit as R»—4. By the residue



ENERGY LEVELS OF D I SORD ERE D ALLOY 591

theorem, we now have

F,(o)d~= 2si P' ResF, (o); (22)

y, '(r) = r-'A, e--
From Eq. (11) it follows that

Q, f,A, =O.
'U, '(e) is given by

& '( )= 1'.'() p(' )d

(23)

(24)

i.e., the integral equals 2xi times the sum of the residues
of F,(o) in the Upper half plane (excluding the real
axis). The fact that the integrand diverges at o =&2k
results from the fact that second-order perturbation
theory is invalid in the neighborhoods of these two
points. Since, however, the total contribution to the
integral in Eq. (22) comes from the residues of poles
none of which lie in the neighborhoods of the points
0=~2k, and since we may assume that perturbation
theory correctly predicts the integrand in the neighbor-
hood of these poles, then there appears to be some
justification for using perturbation theory as we have
done here.

We now take the specific example where

In order to study the shape of the density-of-states
curve, we introduce the following variables.

Thus

so that

Also

e(k) = (2/a)'E(k)
«——(Spr/a'Q) Q, f,A,', ~

g= (2pr)'(2/a)'rc.

e(k) = (2k/a)' —epL1+ (2k/a)'7 —'

6(0) = —«.

(30)

(32)

d'g/de= gv2(1+ (e+ 1)l (e+ 1) +4«7 ')
X((e—1)+l (e+1) +4sp7*}~. (33)

As e—+~,

Also, for ~0——0,
dg/d. ~~e.

dr}/de =Qe.

As can be seen from Fig. 2, the shape of the dg/de curve
depends upon eo. For large values of co, the low-energy
tail of the curve becomes very sharp. This represents
that portion of the density-of-states curve which has
penetrated into the forbidden band. I.et us examine this
tail in more detail. Consider the case where ~ is negative
and

=4orA o ' t sin(or)e '"dr

=4prA, (a'+o') '.

By picking ~0&)4, we can insure that there will be a
large range of values of e for which the above conditions
hold. To see this, we note that the ratio of the upper
to the lower limit is given by

(23)
("/2V'") =!V'"»1,

Note that 'U, '(o) has all the properties previously
mdi 1 ti th it 1. F,() illh e

second-order poles at 0-= ~ia. We are interested in the
pole at o =+ia. The residue at this pole is 1+(e+1)L(e+1)'+«o7 '=2eo[el ',

then

so that

Taking

ResF, (ia) = (41rA,)'ika '(a'+ 4k') '

Es(k) = —(2or/aQ) (Q f A ') (a'+4ks) —' (26)

E(k) =Ep(k)+Es(k), (2'I)

and solving for k in terms of E, we get

2k'= rLE (-,'a)'7—
+(LE+ (-,'a)'7'+ (2or/aQ) P, f,A ') & (28)

Define I as the total number of states (of a given spin)
per unit volume of the crystal having an energy less
than E(k).

n = (1/SQ) (4prk'/3Qs) E= (k'/&r ),
dri/dE = (dn/dk) (dk/dE)

=2 (4or) '(LE—(' )'7+(lE+(' )'7'
+(2pr/aQ)g, f, A)ls&}

x(1+LE+ (-,'~)'7(LE+(-', )'7'
+ (2m/aQ)g, f,A.s) &). (29)

de/de=«l el '(po —
I el)1~

for e negative such that

2+«~& l el ~& «»4.
Equation (34) shows that for large ep the density-of-
states curve drops o8 very rapidly as it penetrates the
forbidden band. For small eo, on the other hand, the
shape of the curve is hardly aGected, as can be seen
in Fig. 2, the apparent band edge merely being shifted
down in energy. The case of small eo corresponds
qualitatively to the e6ect of thermal vibrations on the
energy levels of a perfect crystal. '

IV. CONDUCTIVITY

E=Ep+Es

represents the energy to the accuracy of second-order
perturbation theory, and if

V= Vp+ Vs

' H. Y. Fan, Phys. Rev. 82, 900 (1951}.
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dq
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FIG. 2. dv/dp versus p for various values of pp.

represents the expectation value of velocity to the
same approximation, then it can be shown (see Ap-
pendix) that for the empty-lattice virtual-crystal model

v„(k)=-,'vsE„(k), ss=0, 1, 2. (35)

(It is also true for rs=3 in the case of third-order
perturbation theory. ) Note that Eq. (35) is identical
with the usual relationship between v and E in the
conventional theory of energy bands. Define

A=sr(2aQ) 'P, f,A.'. (36)

K= ear. (39)

We will assume that the Fermi level Ep lies far enough
below E(0) so that we may use Boltzmann statistics.
In the presence of an electric 6eld in the s-direction,
we have

elementary theory of electric conductivity, in the
presence of an electric 6eld 8 the distribution of
electrons in momentum space is shifted by an amount
K, where

Thus
E(k) =O' —A[(-'a)'+k'1 ',

v(k) =k f 1+A [(-,'a)'+k'j —s).
(37)

I v (k)e &~&" ~& ~»'*vd—rg,

In particular,
E(0)=——Ep= —(2/a)'A. (38)

—[E(k—I)—EFl IaTQ &Ie

If Eo stays finite but a becomes very small, then there
will be very large values of v (diverging as a ') in the
low-energy tail. We wish to show that these very large
values of v make a negligible contribution to the total
electronic current in the allowed band in the limit as
a—p0 (Ep remaining finite). This results from the
vanishing of drs/dE in the same limit.

We assume that all electrons in the conduction band
have a mean life 7- between collisions. According to the

ss=2(2pr) ' e 'E'" *' s""rdr7k)

J=ss(v.).

(v,) is the mean value of velocity in the field direction,
J is the electronic current density, rc is Boltzmann's
constant, and e, in this section, refers to the number of
electrons (of both spins) per unit volume. J and n may
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be written in the forms

n=2(22r) peET/"T e E(2)/"TdT2

4~
(41)

r

7=2(22r) eE /"T v, (k+K)e E("&/aTdTpa (40)
aJ

Also,

=
2a K (}(T/2r)&eE~/aT

n=2(2v) 'eET/a t e E(")/aTdT2

In the limit as e~,
J—K2r 2(4—B) aaeE

—z/ aT (2w) /ae (w/2—BaT)dw

(42)

For all reasonable values of 8, K will be very small,
so that

8
v, (k+ K)—v, (k)+K — v, (k)

Bk,

= (ky, +K)[1+A(~~a2+k2) 2]

4Kk2//2—A (~2a2+k') '

= -'22r
—'(a/4B) & exp[(E };+-'a2)//(T]

X (t aB) & e—xp[—(t—t ') (a/4B/(T)]dt
"aB

where/2 is the cosine of the angle between k and K. Thus = 22r ( B) «p[(ET+~a )/"T]

'

v, (k+K)e—E(}a)/aTdT2

(4/3)~K k2[3 A (la2+k2) —2

[1+W(W2+ a2)-&]
4 —(1 —a~2P) (2B) 1

a2B+. (W2+ a2) $],e—(w/2BaT) dW

In the limit as a—4,

De6ne
+a2A (2a2+ k2)

—8]e—E(2) /aTdk

t=A '( 'a'+k'), B-=-,'aA &.

pr
—2(4B) //eE/a'/aT —I (2W)/ae (w/2BaT)dw—

1 (~T/~) e aa/ ET}aa (43)
We now see that

Thus

Ep (2B) ', ——
E(k) = (a/4B) (t—t') ,'a', -——
k'dk= ', (a/4B)&(t a-B) &dt. —

J= (K/62r') (a/4B) t exp[(Ep+-', a2)//(T]

We can show that Eqs. (42) and (43) are identical with
the equations appropriate for J and e in the case where
there is no low-energy tail (i.e., A=0). Applying the
condition A=O to the general equations obtained
previously, we get

f
' v, (k+K)e E'""" dT2 42rK k'e E——("'" dk

J~

Berne

so that

X [3—t 2+4aBt '](t—aB)&
aB

XexpL (t t ') (a/4B}(T)]dt.

w = -'a(t —t-')

=22rK(/(T)& pp&e dx= K(2rl(T) &,
-

1=2(22r) peET/aT v, (k+K)e E("&/aTdT&

Thus
at =w+ (w'+a') &a ;K (}(T/2r) &eEI'/a -T.

Likewise,

(44)

J= (K/62r2) exp[(EE+42a2)//(T](4B) &

~—2eEy'/ttT

"o
$2~E(k) /ttTdp

X 3—
J ((,aB!l)(2B)-1 ['W+ (W +a') ~]

1
[w+ (w2+a2) ~]2 (~+a2) ~

X[w a'B+ (w'+a')&]&e ("—/' " )dw

'2r 2(}(T)&e»/aT T-~e-adX-
"0

'(eT/2r)'*eE~/ "T-
The significance of the above results lies in the fact
that the vanishing of the density of states in the tail
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overrides the divergence of the velocity. It should be
pointed out, however, that for finite A and a there can
be an appreciable contribution to the current from the
electrons in the tail, in particular for temperatures Iow
enough such that ~T is much smaller than the width
of the tail in energy.

V. EFFECT OF THIRD-ORDER PERTURBATION
THEORY

As is shown in the Appendix, the third-order contri-
bution to the energy for the empty-lattice virtual-
crystal model is

E3(k~) =P' V'( —k,)V'(k;—k )V'(k„)
737

mation:

[a2+ (~ sr)21
—l~a2(a2+x2) —1(a2+o2)—1 (50)

E3(k) = (2r/Q) (p, f,A, ') (a'+4k') —'. (51)

As a check on the approximation used in evaluating
E3, we will find the exact value for 0=0 where

To this approximation, we have

-2

E3(k) = (a2/2r3Q)gf, A, ' I (a2+o2)—2(2k. 12—a2)—rdr,
s

The above integral is identical with that evaluated in
Sec. III, so that finally

(Here we have made use of the fact that V'(k) vanishes
for k=0.) Now X[a'+(x—0)2j} 'dr„dr. .

X(2k,"k—k') '(2k; k„—k,') '. (46)
(0) (w3Q)

—1 P f A 3 I (x2(a2+x2)o2(a2+a2)
g„J„

(V'(k1) V'(k2) V'(k3))

= (XQ) '( P exp[i(kr Rnr+k2 R 2'n
tlg tl2fb3

+k3' Rn3) j'Usnr (k1) "Usn2 (k2)'Usns (k3)))

Now if

then
g(r) = (42rr)

—'e—"

G(k):—t esIs'sg(r)dr= (a2/k2)

k(r) = (42ra'r) '[1—e ")

then it follows that

Similarly if
where the averaging is to be taken over all possible
configurations of atoms in the alloy. The total contri-
bution to the average comes from the terms where

Rnr ——Rn2 ——Rn3.

W'e are interested only in the case

k1+k2+k3 ——0,
so that

(V'(kr) V'(k2) V'(k3))
=1V-2Q-3 P, f,V,'(k )u1,'(k2) V,'(k3). (47)

Applying Eq. (18), we have, in the limit as S—+so,

H(k) = a '[k '—(a'+ k') '$ = [k'(a'+ k') $ '.

We may write
I'

E3(0)= (2r3Q) 1 Q f,A, 3 H*(v)G(2s rr)H(sr)dg„dr—,

From the following form of Parseval's theorem, s

I f*(r)g*(r)k(r)dr

= (22r) 3
I F*(x)G(23 sr)H(o')dr„dr„—

E3(k)= P f,
(2~)3Q ~

it follows that

E,(0)= (42'r)3Q—' g f A s)
3t k*(r)g e(r) k(r)dr

S Cc
I

t-v. '(—~)v, '(~-~)u, '(~)
X i

i~ dr.dr. , (48)
(2k. 2s —x2) (2k sr —o-')

=(42r/aeQ)p f,A, 3
It (1 e'") e "—r 'dr

8 0where E3 is understood to be suitably averaged over all
configurations of atoms. Returning to the special case The above integral can be evaluated by the following
denoted by Eqs. (23) and (25), we get trick.

E3(k) =sr—'Q—' Q f,A, ' 3 f{(a2+x')[a'+ (~—sr)2j

X (a'+o') (2k x—x2) (2k.a —o'))—'dr, dr. . (49)

It does not appear that this integral can be evaluated
exactly. Therefore we will make the following approxi-

(1 r sr)2e erg 1dr—— —

0

db (1 e)2e "—dsrr = ln(4/3)
a 0

3 See, for example, I.N. Sneddon, Folrier Transforms (McGraw-
Hill Book Company, Inc., New York, 1951),p. 26.
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Thus the exact value of E2(0) is

(2r/g4Q) (Q, f,A,') [4 In(4/3) ),

running indices is equal to a vector of the reciprocal
lattice, K;. Since we are interested in the case where

while the previously obtained approximate value was
we have

(2r/g'Q) (p, f,A,2).

k2+k2+k2+k4 ——0,

VI. EFFECT OF FOURTH-ORDER PERTURBATION
THEORY

As is shown in the Appendix, the fourth-order contri-
bution to the energy for the empty-lattice virtual-
crystal model is

V'( —k;)V'(k; —k„)V'(k„—k,)V'(k, )
E4(k')= Z'

i, n, s (2k,"k,—jh )(2k; k —& )(2k,"k —& )

I
v'(k;) I' ~ —

I
v'(k, )I'-

(54)
(2k, .k. P,2) i (2k. .k, P,2)2

(Here we have made use of the fact that V'(k) vanishes
for k=0.) Now

1 2 3 4

= (XQ)
—'( P ezp[2(k, Rn2+k2 Rn2

tl1 '02)L3fl 4

+k2 R 2+k4 R 4)]
X'Usny (k2) "Usn2 (k2)'Usns (k2)'Usn4 (k4))) (55)

The only nonvanishing terms occur if all four running
indices in the quadruple sum coincide or if the running
indices coincide in pairs; i.es)

or
I;=e,) ny, =e)) i) j, k, 3=1) 2) 3, 4.

Furthermore, these terms fail to vanish only if the sum
of the k-vectors associated with a set of coincident

Since @in(4/3) —1.151, we see that the exact value is
about 15 percent larger than the approximate value.

A rough measure of the rapidity of convergence of
perturbation theory is the smallness of the ratio

E2(0)/E2(0) = 2g ' ln(4/3) (p, J,A 2)/(p, f,A 2) (5.2)

In many cases, a single term in each sum over s pre-
dominates so that

E2(0)/E2(0) —4 ln(4/3) (A, , /2g). (53)

Equation (53) shows that for perturbation theory to be
valid the maximum value of A, must be smaller than 2u.

The effect of third-order perturbation theory is
similar to second-order in that only energies near the
bottom or the top of a band are shifted appreciably;
however, third-order differs from second-order in that
the former shifts both ends of an allowed band in the
same direction, this direction depending upon whether
the perturbative potential is predominantly attractive
or repulsive.

l 2 8 4

=X-2Q-4 ps f,us'(kg) V, '(k2) V,'(k2) u, '(k4)

+iv—2Q-4[+, f,u, '(k2) V, '(k2))

X[g, f.&.'(k2) V.'(k4))

X5(kg+k2, K;)5(k2+k4, —K,)
+ iV-2Q-4[+, f,~,'(k,)V,'(k,))
X[K.f.~'(k )~.'(k ))
XS(k~+k2, K,)5(k2+k4, —K;)
+X-2Q-4[+, f,V,'(k,)~.'(k,))
X[K, f, 'U, '(k2) 0,'( 2))

X8(kg+k4, K~)8(k2+k2, —K;).
Since

P,—scVQ(22r) '
dr 2,

we have for the fourth-order contribution to the energy
E4(k), in the limit as iV—+40, a large number of terms,
including terms of the following type:

(2~)-4Q-2 g;(2k K,—I~,2)-' g, f, u.'(K,—~)

Xgs'(42)[2k 42 —0')—'dr. . (56)

It is clear that, because of the factor (2k K;—E,2) ',
the above expression diverges as k approaches the face
of a Brillouin zone. This behavior results from our use
of mondegeeerate perturbation theory. If we had used
degenerate perturbation theory however, there would
be no divergences, but energy discontinuities would be
introduced at the faces of the Brillouin zones. It is
interesting that in the case of the empty-lattice virtual-
crystal model, the presence of lattice periodicity asserts
itself in fourth-order perturbation theory. Of course,
in a more realistic model where the average potential
does not vanish, then the presence of the lattice is felt
in all orders of perturbation theory.

VII. ONE-DIMENSIONAL ALLOYS

It is instructive to apply the perturbation approach
to the hypothetical one-dimensional alloys' ' for which
reasonably exact solutions are available. In particular,
we consider the problem solved by Landauer and
Helland, ' which consists of two types of square-well
potentials occurring with equal probability on a one-
dimensional lattice of lattice-constant 2m. Each well is
centered on its lattice-site and has a width of m. The
top of each well is at the zero of energy. One type of
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well has a depth of 2.5, the other a depth of 4. (These
numbers are expressed in atomic units. ) In the virtual-
crystal approximation, each well would be replaced by
a well of depth 3.25. The band edges appropriate to
this virtual-crystal problem can be obtained immedi-

ately by reading numbers oG a graph in a paper by
Allen. ' The "eGective band edges" obtained by Land-
auer and Helland in their accurate solution to the
true problem are shown in Fig. 3(a) and should be
compared with the band edges given by the virtual-
crystal approximation which are shown in Fig. 3(b).
For energies greater than +1, there is a one-to-one
correspondence between the two sets of band gaps. The
gaps given by the virtual-crystal approximation occur
at about the right mean energy but are too wide. This
discrepancy would probably be removed by second-
order perturbation theory, since, as we have already
seen, the eGect of second-order perturbation theory is
to push band edges out into the forbidden bands, thus
eGectively narrowing the latter. This probably also
explains the fact that Landauer and Helland see no
band gap at 0.9 whereas the virtual-crystal approxi-
mation gives a very narrow one. Thus for positive
energies the perturbation approach appears to be satis-

(o) (b}
AB DISORDERED AB DISORDERED

(COHERENT APPROX. )

6-

3
C9
IX

z 2-
UJ

/////////////

-2-

factory. For negative energies, however, this is certainly
not the case. The negative energy levels are associated
with wave functions localized in a given well, so that
these levels are characteristic of the separate constitu-
ents composing the alloy. Obviously the virtual-crystal
approximation is unsatisfactory here. These negative
energy levels correspond to the localized ion-core states
in a real alloy. Another type of localized state are the
impurity levels of a semiconductor. As James and
Ginzbarg' have emphasized, it would be impossible to
obtain these levels from the virtual-crystal approxi-
mation. This points up the major limitation of the
perturbation approach; namely that it cannot predict
the localized states which may occur in a given problem.
This limitation, however, does not negate the method's
usefulness in studying nonlocalized states, in particular
those lying near a "band edge. "

VIII. DISCUSSION

Although this paper is concerned primarily with
disordered alloys, it is clear that the perturbation
approach may be used with equal validity in deter-
mining energy levels in a number of other problems
concerned with imperfections in crystals. The con-
ventional treatment of thermal vibrations in a crystal
follows this approach. The problem already mentioned
of a semiconductor doped with impurities is really the
alloy problem. The problem of vacancies in a crystal is
a special case of a binary alloy where one of the con-
stituents is a missing atom. Likewise, other types of
dislocations in crystals will probably give rise to quali-
tatively similar changes in the energy-band structure
appropriate to the associated perfect crystal. The most
striking aspect of these changes, namely the "tailing-
oG" of the density-of-states curve into a forbidden
band, appears to have some experimental veri6cation.
One example is the low-energy tail appearing in the
soft x-ray emission spectra of metals, "an experimental
eGect which has never been satisfactorily explained.
Experimental results on a variety of photoconductors
also suggest a tailing-oG of the density-of-states curve
into a forbidden band. " The fact that a rather large
electronic velocity (see Sec. IV) may be associated
with the states in this tail could explain the unex-
pectedly large "dark currents" sometimes seen in
photoconductors.

The writer is indebted to D. O. North, F. Herman,
and L. P. Smith for many stimulating discussions. The
writer is also indebted to Rolf Landauer for a copy of
his paper prior to publication.

a4

FIG. 3, "Allowed bands" of a one-dimensional alloy
(a) exact, (b) virtual-crystal approximation.

' G. Allen, Phys Rev. 91, 531. (1953).

APPENDIX

We wish to obtain expressions for the expectation
values of the energy and of the velocity by means of

I See, for example, F. Seits, Modern Theory of Solids (McGraw-
Hill Book Company, Inc. , New York, 1940},p. 436.

"A. Rose, R.C.A. Rev. 12, 362 (1951).
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time-independent nondegenerate perturbation theory. Equating to zero the coeKcients of each power of X,
The Hami1tonian is we get for e= 1

H= Ho+&H'. (1a)

O'=A'+ K~V '
n~1

The wave function and the expectation values will be
written as power series in ).Thus

&a;;=H; (Eo;—Eo,) ', iWj,

while for n&~2

(&a)

(8a)

(9a)

where
4-'=En' -~'don

the prime denoting that pWi in the sum.

E;=Eo,+ Q X"E;.

(3a) ~&'; = (Eo'—Eo,) ' P' ~ia;„H;„'

(4a) Thus

n—I—Q „ iJ,;E „,; . (10a)
n'-1

o 'i= (Eo' o )' —2'». 'H. ''(Eo' Eo.) '—
Substituting these expressions into Schrodinger s equa-
tion, we get

HP; EP;=0—
=Hog, +AH'P, E,P, —

—H; H, (Eo;—Eo;) ',

sic;i= (Eo; Eo~) '[—E' H n'H„'H, ''(Eo, Eo,) ~—

X (Eoi Eoo) 1iiiiEoi oiiijEli j,

=Eo'f()'+ 2 &"2' &'yEopfop+&H'4o
n 1 y

Eo'=Z'IH'~'I'(Eo' —Eo;) ',

Eo'=Z'H' Hi, 'H, '(Eo' Eo,) '(Eo'—Eo,) '—
(11a)

+ Z~"+'2' & &Hoon
n~1 y

( M i (—
(

Eo„++X-E., [( y„+ PX.P'.u, „Po„[
n~l n=l p

=&I E' i''n(Eon Eo'N»+—(H' E~~)A'j—

H,,' P'~H—, t'(Eo; Eo,) ', (1—2a)—

E4 QH/~H;„H~'o Ho' (Eo' Eo;)

X(Eo'—Eo,) '(Eo' —Eo,) '

—LE'IH'~'I'(Eo' —Eo ) ']

XC:E'IH,,'I'(Eo'-E.;)-'1

Here we have taken

n—1

-E-O' —Z Z'. ~;~ ., ;go. .
n'=1 y

H; P' H;&'H;—,'H„

X(Eo;—Eo;) '(Eo;—Eo ) '. (13a)

(Ho —Eo')Po'=0. The expectation value of velocity is given by

Multiplying on the left by Po;* and integrating, we get

) t (Eo;—Eo,) a;;+H;,' E,b;~)—
+ Q X (Eo,—Eo;) „ii;,+Q'. xiJ;„Hy,'

n 2 y
where

Voi+ P X V~i&
n=1

f;*f;dr

where

n—1—E.,S,,—P ..u,;E„.. .(1—S,;) =0,
vo;=) Po;*( iV)go, d~—

We will assume that

(15a)

H; =)t go;*H'fo;dv. — (6a) &i*( i&)A'd~ =o- (16a)
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This assumption is true for the case studied in detail in We have
this paper where the unperturbed wave functions are
plane waves. For the more general energy-band problem
it is true for two di8erent wave functions belonging to
the same energy band. We now obtain

Ep, =k,', vp;=k;l

E1,=H'(0), v1;=0,
(23a)

v; f;*P,dr )~P—,*( z~)—g;dr =0
Eo,——Q,'~H'(k, ) ~'(2k; k, —k,o) ', (24a)

VO'= —Zi'
I
Hl(kl) I'k (2k'kl' —bio)

—'. (25a)

=Xv1i+X fvoi+Q 1izip 1ciy (vo,'—voo)$

n—1

+ +X" v *++ P iz'~* iz'o (vp' —vp )

In obtaining the last two equations, we have replaced
k; by (k;—k;) as a dummy index. The primes on the
summation signs now mean that k;WO. In a similar
fashion we get

Eo;——g' H'( —k,)H'(k; —k„)H'(k„)

xL2k; k;—0'$-'L2k, 'k —u 'j-'

n—1 n"—1

+ P ~ ~ e" n'&io n'&i—zl Vnn", 4-
n"-2 n~=i ~

Equating to zero the coefficients of each power of ),
we get for v= 1,

—H'(0)P'~H'(k ) ~'(2k,"k;—k') ' (26a)

for m=2
Vys= 0) (17a)

vo, ——P ~
H, ,'~'(Ep; —Eo;)-'(vo;—vpi), (18a)

H'( —k~)H'(k; —k„)II'(k„)
. Voi

~;o (2k;.k, —k')(2k,"k„—k ')

while for e&~3 k;

21, ~ 1;—ulo 2k,"k,—X,on 1

vni= P P n n'izizl n'Sip —(vpo voi)
n'=1 y

n—1 n"—1

Z 2' ---- ~'.*"~'.v=", ' (»a)
n"=2 n'=i It is now seen that

[H'(k, ) [ k;
+2H'(0)g' . (27a)

(2k; k, —k')4

(28a)

Voi= Q
1 ~ (Eo'—Eol) (Eo'—Eo.)

&0~—~0' ~0~—&0'
x i I+I

I (E,; Eo;) EEo; —E„)—
—2H"' g ~

H'&
~
'(Eo' —Eo ) '(vo —vo ).

We now consider the special case where

so that, through third-order perturbation theory at
least, the standard energy-band relation holds between
v and E for the special case denoted by Eq. (21a). It
can be seen that Eq. (28a) follows as a result of the
fact that the matrix elements of B' can be written in
the form given in Eq. (22a). The expression for E4; is

(20a) given by
H'( —k;)H'(k; —k,)H'(k, —k,)H'(k, )I+4s-

i, o, o (2k; k, —k')(2k,"k„—k ')(2k; k,—k ')

Pp, ——(1UQ) '*e'~" (21a)

II,,'—=H'(k; —k,). (22a)

the plane wave being normalized over the volume XQ,
and the propagation vector k, satisfying the periodic
boundary conditions associated with this volume. We
write

/H'(k, ) i

- - fH'(I, ) iPl Pl
(2k"k —0') 1 (2k"k;—0,')'

H'( —k;)H'(k; —k,)II'(k„)—H'(0)g' . (29a)
1;O (2k,"k;—0')'(2k" k —k ')


