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and this is impossible for any positive real value of X.
Adding a factor P to the trial solution does not improve
the situation.

Thus even the possibility of noncovariant solutions
of the integral equation has to be excluded.

IV. DISCUSSION

The foregoing conclusions might be interpreted as
casting doubt on the ability of the S-3 equation to
predict bound states. Xt might appear that the solutions
of this equation obtained by various authors are merely
a feature of the noncovariant approximations which

they used. The present author, however, would prefer
to take the view that the extreme value of the binding
energy assumed by Goldstein is responsible for his
failure to obtain a valid discrete value of the coupling
constant. If one gave the binding energy of the ground

state its maximum value (infinity) in the nonrelativistic
approximation, one would not get a solution there
either. One may thus maintain that to give a binding
energy equal to the total rest-energy of the two nucleons,
the coupling constant would have to be infinite, and
that the possibility of a discrete 6nite value for any
other binding energy is not excluded.

Goldstein stated that an expansion of the solution in
powers of the total energy appeared to be singular, and
if that is so it rather supports such a conclusion. But
what is really needed is independent evidence of the
nature of the solutions of the S-8 equation for general
values of the binding energy. Such evidence should not
be founded on a noncovariant approximation, as
covariance is clearly the crux of the matter. The author
hopes to present a completely covariant. treatment of
the S-B equation in the near future.
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Expansions in powers of g &, where y is defined in the introduction below, for the Coulomb wave functions
b'z(p) and Gs(p) and their derivatives are given for special values of p=2ri and p= pz, =s+Ls'+L(L+1)g&,
the classical turning points for I.=O and any I, respectively. Expansions applicable in the vicinity of the
turning point are given as a series involving Bessel functions of order +I/3 with the expansion parameter

pL, . Approximations valid for large values of q are given and discussed.

I. INTRODUCTION

~NUCLEAR reactions involving "heavy" charged
particles" and the inelastic scattering of charged

particles by nuclei'4 have recently been the object of
several investigations, both theoretical and experi-

mental. Xn both cases, the Coulomb interaction can be
expected to play a dominant role, and the Coulomb

wave functions are necessary for discussions of nuclear

interactions of this type. It is evident, that for the

parameter
r) =ZZ'e'jets,
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which, together with p=kr and I., characterize the
Coulomb function, ~ the values of interest will be fairly

large; q, for example, lies in the range 5—15. Tabula-
tions in this particular range of parameters are either
unavailable or incomplete' and the present work was

undertaken to fill this need as far as feasible, with par-
ticular emphasis on large values of the parameter q. It
extends and supplements the earlier work of Breit and
his associates, ' and of Abramowitz and Morse, ' and in

part runs parallel to or overlaps work of Newton, '

' Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).
'The recent appearance of tables with 1&v(10 (U. S. Na-

tional Bureau of Standards Report No. 3033 (unpublished)j by
C. E. Froberg and P. Rabinowitz is a welcome addition in this
1ange.' Yost, Wheeler, and Breit, reference 5; G. Breit and M. H,
Hull, Jr. , Phys. Rev. 80, 392 (1950) and Phys. Rev. 80, 561
(1950); Bloch, Hull, Broyles, Bouricius, Freeman, and Breit,
Phys. Rev. 80, 553 (1950).

'M. Abramowitz, Tables of Coulomb Functions, Vol. I, U. S.
National Bureau of Standards Applied Mathematics Series, No.
17 (1952). Several expansions due to Mr. Abramowitz are dis-
cussed in the introduction, pp. xv-xxvii, and one due to P. M.
Morse.

'T. D. Newton, Atomic Energy of Canada, Limited, Report
CRT-526, 1952 (unpublished).
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Tyson, "Feshbach, Shapiro, and Keisskopf, "and more
recent work of Abramowitz. "Two diferent needs have
been kept in mind in this work: The desirability of
having formulas for calculating the functions at given
points to high accuracy for starting numerical inte-
grations, and of being able to obtain fairly good values
of the functions for gey value of p, g, L for estimates,
checks, etc. The first expressed need is met here in
series which converge rapidly for large p and for
L&g, L g, L&g at two special values of p.. p=2q and
p=pl, =rt+[—rts+L(L+1))&. These will be recognized,
respectively, as the classical turning point for L=O and
for any L. The methods of obtaining the expansions
start from the integral representations of the functions
(given, in the form used here, by Bloch, Hull, Broyles,
Bouricius, Freeman, and Breit"). Use of the special
points indicated leads to simplilcations in the work.
Expansions for arbitrary values of p in the vicinity of
the turning points are also obtained. A noteworthy lack
of dependence on L is found, and for general values of
p&pg extending down to fairly small fractions of pl. , it
has been found possible to group the functions rather
close to a "universal" curve from which values for any
q, L can be read.

The second need is met by an approximation by
means of Bessel functions of order one-third which is
an extension of the procedure given by Morse and
Feshbach. " Again the integral representation, or ex-
pressions obtained from it, is used to evaluate constants
in the approximation. For the present case, it is found
that the difference between the potential appearing in
the equation actually solved by the usual Morse-
Feshbach approximation and the true Coulomb poten-
tial is nearly proportional to p '. An improved approxi-
mation is easily obtained, therefore, by defining an
effective value of L in the Morse-Feshbach potential.
This approach is pursued, and comparisons of accuracy
are made for several special values of p. The approxima-
tion suGers, of course, because its accuracy is not
definitely assignable for arbitrary p, but its virtue is
that it yields values of the function for any p with an
error not expected to exceed one or two percent.

II. EXPANSIONS AT THE TURNING POINTS

Expansions at the turning points for Fr, (p) and Gr, (p)
and their derivatives, valid for large values of y and
moderate values of L &q, have been obtained from the
integral representations for these functions given in the

"J.K. Tyson, thesis, Massachusetts Institute of Technology
(1948) (unpublished).

"Feshbach, Shapiro, and Weisskopf, Atomic Energy Comrnis-
sion Reports NYO 3077, NDA 15B-S, 1953 (unpublished)."M. Abramowitz and H. A. Antosiewicz, U. S. National Bureau
of Standards Report No. 3225, 1954 (unpublished); M. Abramo-
witz and P. Rabinowitz (to be published).

"Bloch, Hull, Broyles, Bouricius, Freeman, and Breit, 4th
reference of footnote 7."P.M. Morse and H. Feshbach, Methods of Theorettcal Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. II,
Chap. 9.

paper of Bloch, Hull, Sroyles, Bouricius, Freeman, and
Breit"—their equation (9). In what follows we shall
use the notation of this paper. It is convenient to
introduce a notation for the classical turning point, pq,
which has the value:

"=.+9'+L(L+1)j
Letting Fr, (p) =Fz(p)+iGz(p), one finds from reference
13, Eq. (9), that:

1' (P)=' "[(2L+1)'C P'j '

t-itrt-L (t+2sp) ctrt-Le tdt-

Introducing another change of variable de6ned by

2w'/3 =in[(1yz)/(1 —z)j—2z,

one can put Eq. (2) in the form

(3)

e—rs(2 )L+1
l".(po) = "L1—"(w))'

[(2L+1)ICr,l "r
dz(w)

Xexp[-; srtw)sdw, (4)
Ao

where the contour I' is taken from —i to 0 and from
0 to ~. The desired expansion now results when

[1—z'(w) f~dz(w)dw is expanded in a power series in w,
and term-by-term integration is carried out. Upon
taking the real and imaginary parts separately, the
desired expansions for J I, and Gl, are obtained. This
procedure is quite straightforward and will not be dis-
cussed in detail. The series for G~ divers from that for
FI. only in that some of the terms differ in sign and
there is an over-all di6erence in size by the factor v3.
Utilizing this fact, one can express the Anal results in
the compact form

Fz(ps)
1, &p(&)w—$(z~)lis(1 e stttt)t-

(Po)/'t/3 ~

X{1%[3/35+L (L+1)/2 jati~"—[2/225

+L(L+1)/20/rt '%[724/170 625

+I (I+1)/6300 —Ls(L+1)'/8]art "t'+ } (5)

Cr,=[2~/(2L+1)!j([L'+rtsj[(I.—1)'+tlsj

X[1+~'))1[2 ~/(e - —1)j'.
Consider 6rst the expansion for p= p0=2g. With

p = 2rt and the new variable z introduced by t =ipo (z 1), —
Eq. (1) becomes

e
—tte (2 )L+1 ~i- tea

F (p)= — ' (1—z')~
Lc (2L+1) j"

)1+zq
Xexp it) in~

~

—2z dz. (2)
(1—z)
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where

and where the upper sign before an expression on the
right is to be taken with the upper function on the left,
and similarly with the lower. This convention is utilized
throughout the paper.

It should be mentioned that in obtaining Eq. (5) an
expansion of the coeflicient Cr, Lgiven in Eq. (1)7 has
been made. In addition, it might be of interest to note
that the coefficients for the g 2"~' terms in the brackets
with v=6N+1 and v=6n+4 always vanish.

Similar series for the derivatives, at p=po, can be
obtained in two ways, either from the integral repre-
sentation, Eq. (1), after differentiating, or from the
recurrence relation, Eq. (11.5) of reference 13. The
results are identical, of course, and have the form

F~'(po) = —,'I'(-', )4r
—f(2ri/3)-"s(1 —e ' &)

—f
Gr, '(ps)/VS

X(+1+(1/10a)ri f+ (1/3150)ri '

+(L359/173 250—I.'(L+1)'/167/a)ri-'i'+ }. (6)

The coefficients for the g '"~' terms in brackets with
v= 6ts+2 and v= 6t4+5 always vanish, so that the 6rst
omitted term in Eq. (6) is of order ri

' compared to
unity.

Instead of evaluating all the functions at the same
point, say po as above, it is useful to evaluate the func-
tions for a given L, at their own turning point, pl. . It
develops that the results one then obtains are sensibly
independent of the value of I..

To accomplish this one first of all changes the variable
in Eq. (1) by the substitution t= ip(s 1)—Then—Yr., (p)
becomes

Yr, (p) = $e ~spr'+'/Cr, (2L+1)!7 e«'&dh
1—ioo

q (s)= I- ln(1 —s')+4—41 1nI (1+s)/(1—s)7—ips.

If q is differentiated with respect to s, one 6nds

d9/ds= (1 s'—) 'L~p(s+sL/p)'+s(2n p+—L'/p)7 (g)

In exact analogy to the methods used for the case
where p=2g, one now makes still another change of
variable defined by

v = ~s+spi~'/9(1+L'/Pi')7.

The final result is

~( yo—xy) p
Lr+1

Y~(p~) =
(2L+1) !Cl,

( t'dsp
X exp I I I I

dttt (1o)
& r &3(1+L'/pr, ')i 4 dttt)

zpK

The contour I' is the same as for Eq. (4), and the
details of the work are exactly as earlier. The results
are

This suggests, 6rst, that the variable be changed yet
again from s to s= s+—iL/ pand, second, that one choose

p to be that value for which 2ri —p+L'/p=0. This is
r40f the usual "classical" turning point value for p I in
the sense that L(L+1)~L' it is an even more "clas-
sical" value!) but the difference is rather slight. Desig-
nating this value of p by pr„one has pr, ——ti+Lri'+Ls7f.
Although the work is considerably simpler for pl, than
for pI„ the resulting formulas for Fl., GL,, and their
derivatives assume the more compact form for p=pL, .
The shift from pl, to p& is easily accomplished by a
Taylor's series. This apparently roundabout procedure
outlined above is easier algebraically than the direct
expansion at pl, .

Proceeding in this way, one finds that for p= pl,

v = ~a+ [(4pl s'/3 (1+L'/pr, ')7+
where (9)

tps=L in(1+Ls/prs) —L+2ri tan '(L/pr).

0 40 80 !20 l60 200 240 280 320 360 400 P~(p~) = sl'(s) w '(p~/3)"'(1+L'/pi') "'
G~(p~)/~

2

rv

.05 .05

p~ '(L/pi) (2L'/pi' 1)—
10(1+Ls/pr, s) s

w p J. Isb(b/35 11L /35 pr, —

+L4/140 pl.4)+ . , (11)

0 40 80 !20 l60 200 240 280 320 a 360 400
L

Fro. 1. Fs(ps) plotted as a function of Ls for v=5, 10, 15, 20
on a semi-log scale. Equation (5) was used in the calculations for
L &~rl, and Eq. (A3) when L &~ rl The smooth variation of the curve.s
allows easy interpolation in I. for a given value of p.

~I (pL)
I .~(2)w $(P /3) l(s(1+Ls/p, s)1/4

G~'(p~)/~
pi '(2 L'/p~')—

X &1+ + ~, (12)
10b(1+L'/pl, ') ls
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500 40 80 120 160 200 240 280 320 36I
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one 6nds
Fr. (pz,)

Gi(pz)/~
~-'I (-')w- f(L/6)'I'

10

rv

0 40 80 120 160 200 240 280 320 360 400
Le

Fin. 2. Gi(po) plotted as a function of L' for v=S, 10, 15, 20
on a semilog scale. Equation (5) was used in the calculations for
L &~v, and Eq. (A4) when L&~v. The smooth variation allows easy
interpolation in L for a given value of q.

where b=311'('s)/I'('s). The next expected term in Eq.
(11) and the next two in Eq. (12) contain zero factors.

It is now quite simple to obtain the desired expansions
at the turning points by using a Taylor series for the
shift from p~ to p~. The results are"

pr, '[1+2L(L+1)/pr, 'j
X a1+ + (14)

Sb[1+L(L+1)/pr, '34"

Fi(pi) = l I'(l)~ '(pi/3)"'[I+L(L+ I)/p~'1 "'
G~(p~)/~

X(1~pr. "'(6b/35) [1+L(L+1)/p~'j "'

XL1+4L(L+I)/pi'+3L'(L+I)'/2pi']+ .), (13.)

Fr.'(pr.) = isI'(ss) s r(pr /3) i&s[1+L (L+I)/pi sjr&s

G~'(p~)/~

Fi'(p~)
~-'I"(-') l(L/6) "'

Gz'(p~)/v3

with L—+.
When L and g are of the same order, and large com-

pared to unity, pl, is about 25 percent larger than po and
the difference between pl, and po increases as L becomes
greater than q. As a consequence the regular and ir-
regular properties of Ill, and Gl„respectively, begin to
appear markedly at po, so that they are no longer of the
same order numerically. This is, of course, the basis for
the requirement that L be moderately small compared to
il for Eqs. (5) and (6) to be valid. If onedesires expan-
sions at po for cases when this restriction does not obtain,
it is clear that a very much different approach is
required. It is convenient in this case then to study I'I,
and Gl, from the standpoint of their own integral repre-
sentations. This case, where L )~ g, will not be discussed
here; for reference, however, some results appropriate
to this region are collected in the Appendix.

Since the calculations of Barfield and Broyles, " for
Fs(ps), Fe'(ps), and Gr. (ps), led initially to the work
described above, one of the first applications was to
verify their results. It was found that for p~&10 the
first two nonvanishing terms of Eqs. (5), (6) for L=O
gives the Barfield-Broyles values to the accuracy
written by them, and for p&30 the first term is suf-
ficient. This result agrees with Newton, ' who made the
same comparison.

Calculations have also been performed for q &~ 5 and
arbitrary L. The convergence of Eqs. (5) and (6) rapidly
becomes poorer as L increases, and for high L the alter-
native results given in the Appendix were necessary.

The dependence of the above results on L can be
put in evidence by expanding the various factors con-
taining L, in powers of L/ri, which will be presumed
small. Thus,

0 40 80 120 160 200 240 280 320 360 400

(pil[1+L(L+1)3»'&&""
= (2rf)+'I'[1+Ls(L+1)s/96rf4+ ] .05—o4

4 .OS

Introducing this into Eqs. (13) and (14), one finds that
Fr, (pr) and Gr. (pr,) are independent of L to about 1
percent even when L=g, for q large.

Unlike Eqs. (5) and (6), which required L(t), Eqs.
(13) and (14) [and Eqs. (11) and (12), as wellj are
valid for arbitrary values of L, and, in fact, can be used
to obtain the asymptotic forms for L~~. In this limit

"M. Abramowitz and P. Rabinowitz, second reference of foot-
note 12, have obtained, in a preprint recently received by us, an
expansion at po for L=O to which our Eqs. (13) and (14) reduce
in that special case.

.02

.0 I'
,010 40 80 120 . 160 200 240 280 320 360 400

L

Fio. 3. Fr, '(po) plotted as a function of Ls for v= 5, 10, 20 on a
semi}o8 scale. Equation (6) was used in the calculations for L &~ v,
and Fq. (A5) when L)~s. The smooth variation of the curves
allows easy interpolation in I.for a given value of q.

's W. D. Barfield and A. A. Broyles, Phys. Rev. 88, 892 (1954).
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0 40 BO l20 l60 200 240 2BO 320 360 400
Y [and g(x) similarlyj. Then Eq. (15.1) leads to

fp" (x)+xfp(x) =0,

fl"(h)+xfi(x) = )ll—x'fopz 1,

fs"(x)+xfs(x) = ) lx—'flpz 1 )-rx—'fppz "'.
(16)

g
CV

a
cn
l

The Green's function for the operator (d'/dx'+x) is
therefore required. It is found to be

G(x,x') = (2s/3&)x(f Jf(2x(&/3)x)V f(2x)f/3), (17)

0 nO BO l20 iso 200 240 2BO 320 , 360 400

where x& is the smaller of x and x', x& is the larger of
x and x'. The solution proceeds as follows:

Fro. 4. —Gz'(po) plotted as a function of L' for s= 5, 10, 20 on
a semilog scale. Equation (6) was used in the calculations for
L~&r/, and Eq. (A5) when L&~r/. The smooth variation of the curves
allows easy interpolation in I. for a given value of p.

fs(x) =xVf (-;x&),

fl(x) = —Xl I fp(x')x"G(x, x')dx', (18)

The results of this numerical work are displayed in
Figs. 1—4.

Further calculations have been performed for Pz(pz),
Gz, (pz) and their derivatives by using Eqs. (13) and
(14). The range of validity of these equations is con-
siderable, since they hold for arbitrary values of L/r/
provided only that g is large. In the parameter range

10, the first term alone in Eq. (13) is sufricient to
give Fz(pz) or Gz, (pz) to 2 percent, with accuracy im-

proving as I. increases. The results of the calculations
are plotted in Figs. 5 and 6. It will be noted that these
figures demonstrate the lack of sensitivity to the value
of L remarked on earlier.

III. EXPANSIONS VALID IN THE VICINITY
OF THE TURNING POINT

In the vicinity of the turning point, pl. , an expansion
can be obtained by successive approximation with the
aid of the Green's function for the operator d'/dx'+x.
The equation satisfied by Iir. and Gl. is

d'I'z/dp'+[1 2r//p L(L+—1)/p' jI—z 0. (15)——
It is convenient to change the variable from p to
x= (p —pz)[1//pz+L(L+1)/pzsj~. Then the coeKcient
of Fz in Eq. (15) can be expanded as a power series in x,
so that Eq. (15) becomes

fs(X) = —)ti) fl(h')X"G(X,X')Ch'

Xs~t fs—(x')x"G(x,x')Cx',

which leads to integrals of the forms

These inde6nite integrals are special cases of the
Lommel integrals in Sec. 5.12 of Watson's Besser
Iigrtotioes, or may be evaluated with their help after
application of a reduction formula due to Schafheitlin
(Sec. 5.14 of Watson) and extensions obtained in a
manner analogous to that of Schafheitlin. The resulting
expressions are sums of products of 3 Bessel functions,
but have a common factor which arranges itself into a
%ronskian relation, leaving sums of single Bessel func-
tions. Suitable portions of zero order solutions had to
be added to ensure the proper behavior of the high order
solutions at x=0, since this procedure was found to be
easier than adjusting the limits in Eq. (18) properly.

In the case of f(x), for example, fs(x) has the desired
behavior at x=0, and fl(x), fs(x) were adjusted so as
not to interfere with this.

The results of these calculations are:

fl(X) = —(Xi/5)X'J4/s(sshf),

d'Yz/dx'+x(1+Xupz fx+Xspz 4"x'+ .) Fz, =0,
(15.1) fp(x) =x'*Jf(-ssx&),

)t.= (—1)"[1+L(L+1)/pz'3 '"+""

X[1+NL(L+1)/p, j
Two independent solutions of Eq. (15.1) will be con-
structed having the following behavior a.t x=0: f(x)
shall have zero value and unit slope at x=0, g(x) shall
have unit value and zero slope at x=0 (slope here
means derivative with respect to x). Expand f(x) as

fs(x) = (his/350) [(30x'—90x)J f (-sax')

+(7xll/s 45xs/s) Jf(shf)+90/xi J l(sxf)$

+P s/14)[(2x' —6x)J f(sax')

—3x"'Jf(sxf)]+6bx~J *, (sxf)), (19)
where

f =3'r(;)/I'(-', ),



J, ,P 1)+(1/b)* Jf('g, g —Xl

* = (), 'l»0)[(30g —9o )J
(7gll/s 45g'/') J;(sg*)1
(),ls/25b)g'J4/o(sg') —()' /

[(2/ 6 )J,(2gk)+3gs/sJ $(2g'))

FUN C T/ONS

.60-

,48

44

.32

G'(p, n)

F'(p .s)

SO
I

—,60

—.56

—,48

,40

.28
/1 9$ and (20) are con~enienThe expressions in Eqs. &1, an

p

the modified Bessel functions o eterms of the mo
'

e
. These expressions are:and order: ~—„&—„~ etc.

fo= y'If-(lr'),

.28

.24—

.20—

Ss20 ,24

—.20

—,I6

. 1 .~ l, , )240 50 60.'

/0 20 30

f1= ()tl/5)r'I4/s(sy')

s = (Xls/350) [(30y'+90y)I & (ss y&)

—7r""+45r"')I (-'r') —90br'I-f(ly')]
+ ()ts/14) L

—(2y'+6y)I-.*(sr')
+3y'/'If(sy')+6by'I-1 (sy')),

( i p)[1/pi+—L(L+1)/»')',
and

lotted as a function of L for
d

'
the calculations for a=5, 10, 15, 20. Eq tio (14) w

values of L. The slow variation of the functions w
trated.

The desired formulas for FI. and GL, are then

(21) Fz, (p)=Fr. (pl)g(g)

g)+F '(p )[1/p +L(L+1)/p '] f(,

l0 6020 30 40 50
I

l
I

2.0

L6-Q.

CO

h4—
q J
la.

1.2-
«, (p, .n)

—l.4

s l

iQ 20 30
I I I

40 50 60
L

lotted as a function of L for q 5,
ed in the calculations for all

f th f tio with I. 's 'llvalues of L. The slow variation o t e unc
'

trated.

go=y I-f(sy ),

.=-(~./5)[r I «.(-:rf)+(1/b)r»l(:rf,
go= () P/350) [—(30y'+90y)I:(ly')

(7 11/2+45 5/2)I f(syf))+ ()t /25b)ysI4 s

X (sy')+(b/14) [(2y'+6y)»(5y')
—3y'"I-f(ly')] (22)

Gr (p) =Gr (pr,)g (g)

G~'(p~) [1/p~+L(L+ 1)/pi']'f(g)

Gr, pr, , etc. of Eqs. (13) and (14)The forms of Fr, (pl), Gr, pr),
may be use wid 'th Kqs. (23) to write exp ici exp
of Fr,(p), Gz, (p). These are

1/t 6F~(p) ~k t p~ )
/o

Gr (p)/V3 3 &1+L(I+1)/pr, s)

X g:[J &(-sage)~J&(-soggy))

, ( 1+2L(L+1)/pz, s

&5[1+L(L+1)/pr')"'

x[J .„(-:.f) ~J...(-:.f))
[1+2I-(L+1)/ 'p]r' (3g'—9g)

p
-4/s

[1+L(L+1)/p, ]
( gll/2 go/s )

X[Jf(-'sg&)wJ,*(-,g )]+ +9

x[J 1(-',gf)aJf(-,'gf))

+3L(L+ )/»' & (+
E [1+L(L+1)/p ']") & 7

x[J-.(-;g') ~J f(-;g'))

![J&-',g W &-,g-sgf ~J (-,'gf)) + (24)
& 14 i
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for p —pl, &0, and

y
l(6

Gr, (p)/V3 3 l 1+L(L+1)/prs j
pg

X y'LI l(-,'yl)aI (-;y&)g

1+2L(L+1)/pl, s

+pr. *~

&551+L(L+1)/p ']"'&

&&t:I—4/2(sy ) ~I4/2(aye)3

(L1+2L(L+1)/pi, '1') (3y'—9y)
+p

—4/2!

~r1+L(L+1)/p"~" 35 ~

XLI-:(-:y')~I--:(-:y')$
(yll/2 9yo/2y

+ I + — ILI-l(-:y') ~I:(ly')3
E 50 70 /I

1+3I(L+1)/PI, 2
q (y4+3yq

+Pi "'I
i L1+L(L+1)/P,2)s/2)

XI I&(-;yf) WI -:-(-,'y')]

(3yo/2 )
ILI-:(ly') +I:(-'.y') j +, (25)

& 14

for p —pr, &0.
The results given in Eqs. (24) and (25) may also be

obtained directly from the integral representation of
Eq. (1), by suitably expanding the integrand. The lead-
ing term, for example, yields an integral that can be
put in the form of Airy's integral and leads to the
Bessel functions of order one-third. " It may be noted
in Eq. (25) that the functions with positive and negative
orders occur in the expression for Fr, (p) in the proper
combination to make E„(,x&). -

It has already been brought out, in connection with
Eqs. (13) and (14), that the dependence on L of the
functions Fr, (pr, ) and Gr, (pr.) is in the fourth power of
L/2/, in particular, the dependence is (1+L'(L+1)2/962/4)

for large g. Since

y= (pr, —p) [1/pr, +L(L+1)/PJ.s)&

—:L(p~ —p)/(2~)'j(1 —L'(L+ 1)'/4gn'j,

Eq. (25) leads one to expect that for a fair range
of parameters, Fi, (p) and Gr, (p) could be represented by
"universal" curves 6tted respectively to Fr, (p)/2/i/4

plotted against (pr, —p)/2/& and to Gr. (p)/2/i/4 plotted
against the same variable. Figure 7 shows such a set of
curves, and illustrates indeed that the functions bunch
fairly closely when plotted as suggested by the limiting
forms of Eq. (25). The functions for L=10, 2)=5

"M. Abramowitz and H. A. Antosiewicz, first reference of
footnote 12, have obtained an expansion of Fo(p) and Go(p} in
ternls of the Airy inte/frais for t p —po( (po

deviate most, as is expected since L/2/ is then 2. The
bunching is expected to become yet more pronounced
as p exceeds I.by larger and larger factors. At y=0, the
values of Fr, (pr)/r/'/4 and Gr, (pr)/r/l/4 exhibit the even
more pronounced (L,r/) independence indicated in the
discussion of Eq. (13).

Expansions similar to Eqs. (24) and (25), but valid in
the vicinity of po rather than pL, , have been given by
Newton. ' His expansion converges for small values of I..
For I. 7(I or larger, expansions useful near po may be
obtained by other means indicated in the Appendix.

d'y/dx'+g (x)y= 0,

it is convenient to snake a transformation,

y=C24F'! 24 'dx !,
( t'*

E~

(26)

(27)

where C is an arbitrary constant. One has then

d'y (1 d224 1 F")+-
dx' (Ndhs N4 Y)

(27.1)

So far F(s) is an arbitrary function of argument

s=) I dx. (28)

Once chosen, Y determines a function y through

V"(s)+x(s)F(s) =0, (29)

and in terms of x substitution of (29) in (27.1) and
identification with (26) gives

1 ( /. *dx~ 1d'I
a(h) =—

)~lI' &~ N2) Ndxs

IV. APPROXIMATE WAVE FUNCTIONS

The discussion of the previous sections has had as its
object the enumeration of convenient methods for de-
termining the Coulomb wave functions for large g to an
arbitrarily given accuracy in any one of several regions
of interest. There exists, however, a quite diGerent ob-
jective, namely the need for simple functional forms
for the Coulomb wave functions valid to reasonable
accuracy, say 1 percent, over extended regions for p.
Although somewhat too crude for our purposes, the
JWKB approximation is typical to this approach. An
improved approximation along these lines has been
given by Morse and Feshbach in terms of the Bessel
functions of order one-third. It is characteristic of both
these points of view that one seeks to relate the solution
of the problem at hand to the known. solutions of a
diGerential equation that is approximately the same,
the physical basis of the approximation being in all
cases the small change in the potential over distances
of the order of a wavelength. In order to obtain an
approximate solution to
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Conversely, if x(s) is an assigned functional form, then
a suitably chosen e inserted in (30) gives a solution of
Eq. (26) provided one solves (29) so as to be able to
insert V in (27). Even if g(x) cannot be represented
exactly by means of Eq. (30) there are available adjust-
ments in both I and y for its approximate represen-
tation. In terms of z

5

4

0 .4 .8 l.2 l.6 2.0' 2.4 2.8 3,2 5.6 4.0 4.4 4.8

and

g(x) = (dh/dx)'x(z(x))+A,

d'[(ds/dx) —'$
6=—(dz/dx) &

d 2

y= (dz/dx)
—&I"(s(x)).

(30.1)

(30.2)
0
0 .4 .8 l, 2 l, 6 2.0 2,4 2.8 5.2 3.6 4.0 4.4 4.8

(e- p}/ n"s

Fin. 7. Ft (p)/rI I' 'and Gr, (p)/rI'I' plotted as a function of
(pr, p)/rIv3. —These curves illustrate the possibility of representing
the functions by "universal" curves, as suggested by Eq. (25).
This tendency to group is lost as L exceeds g more and more and
is emphasized as g exceeds L. The calculations were done by
numerical integrations started at p= pi, using Eqs. (13) and (14).

In the latter form z is seen to be a generalization of the
phase of the JWKB approximation.

By specializing to x=a=const, Eq. (30) becomes

8 1dQ
g~

u4 I dx'

An approximate solution is then I—(a/g)' which gives

31 It should be noted that whenever the approximation is
made by setting 6=0, then according to (30.1)

=C g 1 sinI g'dx+C" I, (31 1))'
where C', C" are arbitrary constants. If Eq. (31) is
solved for I more accurately, correction terms to the
one term JWKB formula are obtained.

The JWKB approximation is an immediate generali-
zation of a representation of g(x) by constant steps. An
improvement in convergence of successive terms is
obtained" if g(x) is approximated by a set of straight
line segments. Such an approximation is found from the
transformation under discussion by setting

(31.2)

x=(~/gf)'I ~~.(f )+~~ .(~)3,

P= 1/(v+2)
(32.1)

so that the geometrical optics approximation of the
solutions to (26) and (29) contain the same phase. The
approximation of Eq. (31.6) has been first obtained by
Morse and Feshbach' who have also worked out the
differential equation satisfied by the right side of (31.6).
They have found in this special case a relation equiva-
lent to Eq. (30.1) above.

Other approximations applicable in special situations
are obtainable by the same method. If, for example,
g(x) can be approximately represented by a power of x
then it is useful to take x(s) =z". In this case

so that according to (30.1)

g(x) =z(dz/dx)'+d.

Again if 6 is not too important,

(31.3)

For the Coulomb wave functions, the turning point
has a zero of first order in g and consequently the Morse-
Feshbach approximation is indicated. When the con-
stants are adjusted to fit the boundary conditions and
the values at the turning point, one 6nds:

3
z~=- g4xq2J

I'()= 'L~~ (-' ')+~~- (l ')j
so that according to (30.2),

(31 4) Fol p ~&If+[rp+L(L+1)]f&

(31.5)
gf = L1 2n/p L(L+—1)lp'j'—

(p a+pgf)-
y= pgf rllil—

& [& +L(I.+1)~&)

where

p=, g~dS. (31.7)

's R. E. Langer, Phys. Rev. 51, 669 (1937).

~=(./gf)f[~ ~f(.)+B'~ 1(.)&, (» 6) L(L+1 g & q—[I(L+1)g& sin 'I
& [rP+L(L+1)jf)

Fz(p)
/6g')'V- ( )~~ ( )&

Gi, (p)/V3
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For p ~& r)+[i)'+L(L+1)]&,

gi= LL(L+ 1)/p'+2nlp 1]—',

I' Pg' l
q =i pp —g tan —'I

I (p n)—&
t' [I(L+1)g]

!—[L(L+1)]&sinh 'I
0 [r)'+L(L+1)]&)

notation to facilitate the use of these tables one has

F.(.) =~ (3~/g)'I ~ I

"'
I g I

~
G~(p)/v3

X Re )tl(s)~(s)' &m hi(s), (34)
3

(33 1) where Io was defined earlier in Eqs. (33) and (33.1),

for p& g, and

, ( pgi )=s pgl —~r) —r) tan —'I
I p-q&

[I.(I.+1)g—[I.(L+1)]lsinh-'!
& [r)'+L(I.+1)]rl

for p(g,

F~(p) =
I
~I /6g'I 'L —I-i(l ~ I)~Ii(l I I)].

Gr. (p)/v3

.I I Ipg
I $ $ g I I

IO

JWKB
r) =IO —IP '

Z'
t- Io'
niI-
O0.

I
p-8

One may use the de,nition of Whittaker and Watson,
namely that I 1

—Ii——(2v3/s. )Et, to write the result for
Fl, in an alternative form.

The Bessel functions of order one-third are not single
valued in the vicinity of @=0, whereas the functions
xV~;(2x'*/3) are indeed single-valued in this vicinity.
In consequence it is convenient to utilize the latter
functions, especially since they have been tabulated for
complex values of their arguments. " Changing the

s= (s)'I I I',

=—(l)'I a I', p &p~.

I
3

Re hi'(s) a (-') 1 Im hi'(s) (35)

where s is the same as in Eq. (34). It should be men-
tioned that hi'(s) is tabulated along with ht(s).

It is of interest to check the Wronskian of these
approximations to F&, 6& and Fz,', 6&'. Employing the
properties of 1'ti(s) and hi'(s), one finds indeed that
Fr, 'Gr, Gr, 'Fr, 1 for t—he funct——ions of Eqs. (34) and
(35).

The Morse-Feshbach approximation to the Coulomb
wave functions is not, in general, suSciently accurate.
To get some estimate of the accuracy of the fit one can
examine the values assumed by the approximate solu-
tions at p= p~ and as p~~, as well as p~0. At p=pL,
one 6nds

For some applications, it is useful to have similar
approximations for the derivatives dFr/dp and tEGr/dp
which are denoted, as customary, by Fz,' and 6&'.
While these derivatives follow immediately from the
preceding formulae, the presence of absolute value
signs (which were introduced as a convenience only)
complicates the situation, and the explicit results are
therefore given below,

F~'(p) Fi(p)
=[gi/6I ~I —ld»(gi)/dp]

Gr.'(p)/A Gr, (p)/v3

+(s)'(3~/g)'I Ipl "'g'

Io —Ip'

F~(p~) ~ F(l)/2~']I
& 3[1+L (L+1)/pr, s]

I
e-e ~~L

Ol
LJ~L

I Ip IP '
IOO

Fio. 8. The error, 6, in the potentiai, given in Eq. (30.1), for
the JWKB approximation, the Morse-Feshbach (MF) approxi-
mation and the modified Morse-Feshbach (m) approximation
plotted as a function of p. The variation, constant Xp 2, of AMp,
used in making the modihcation, is illustrated.

This differs from the exact value [see Eq. (13)] in
order pl,

—')' compared to unity. In order to improve the
accuracy one may proceed in several ways:

(a) The difference between the exact potential and
the potential in the diGerential equation satis6ed by the
approximate solution is

(d'/dx') [(dz/dx) ~]
g (x)—s (mls/dx)' =- —=A(x).

(dh/dx)&

[d'/dx'+g (x)—6(x)]&= —t), (x)P=nf,

' gages of ]joe Jj/IogzfieIJ, Ilunpe) puncfions of Order One-pjgirg Thus One Can Write
artd of Their Dereoatioes (Harvard University Press, Cambridge,
1945).
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and invert this equation approximately to obtain

~4'M F+—~ [~(&)4'M-F]

This procedure is closely allied to that used earlier to
obtain Eqs. (24) and (25), but suffers from the compli-
cated form of h(x), which all but precludes anything
but numerical work.

(b) One may take a more complicated function for
x(s). In practice, this amounts to a quadratic fitting of
the potential at every point (just as the Morse-Fesh-
bach approximation was a linear fitting). While of
value as a general technique, it is of little interest for
the problem at hand since the resulting approximate
solutions involve the parabolic cylinder functions, which
are certainly less thoroughly tabulated than the
Coulomb functions themselves.

(c) One may introduce in place of g(x) an approxi-
mate function containing one or more arbitrary param-
eters and adjust the Morse-Feshbach approximation
for this latter potential so as to minimize the error for
the particular case at hand.

It turns out that procedure (c) is quite well suited
to approximating the Coulomb functions, owing to the
fortunate circumstance that the error in the potential,
i.e., A(x), is, to a fair approximation, constant &&p in

the region zero to infinity. Figure 8 illustrates this.
The application of this fact is immediate, since it

involves no additional complication in the Morse-
Feshbach approximation, requiring only a shift in the
value of L. This is reminiscent somewhat of the shift
L—+L+0i given by Kramers, and others, ' ' for the
JWKB approximation. The value of the shift is, how-

ever, not unique; one can choose it, for example, so as
to make A(p) vanish for any specified value of p. [6(p)
is, of course dependent on the altered value of L.] A
reasonable place to make 6(p) vanish is at the (new)
turning point. For this, one hnds that if

0= [1 2n/p nl—p']', —

Consider the error near the new turning point, i.t,
at the point where p=g+(tp+6/35)&= pe. U—sing the
results given by Eqs. (5) and (6) in a Taylor series, one
readily finds that

~0(p.)".--/P0(p. ): t=1+1/315%'+@(n "").
The error is surprisingly small, particularly in view of
the fact that for the unmodi6ed value of L=O, one
found earlier that

&0(2g) apprcx/&0 (2g)exact

=1+~ "'(-')'31'(-')/351'(-')

Thus the error is pushed to order q
' instead of order

p
4~' and moreover the coefficient is remarkably small:

=1/3000 instead of =1/20.
It is of interest to examine in more detail the origins

of this accuracy, especially for general L. First of all
the series for FL, and G~ had no terms of order g-&, and
FI, and G~ diGered in the sign of the q

—'" term. Since
the values for Fr, and Gi/V3 given by the Morse-Fesh-
bach approximation are the same at the turning point,
the error in this approximation is therefore of order
n
—'~', already one higher order than might be expected.

Now the use of the modified value of L, shifts the value
of the turning point to

p, =p0+g
—'[3/35+L(L+1)/2]

p ~&tl+ (tP+6/35) &, given by

d- [1 2—~/p 6—/35P'3',

~=pd »—~[(p n+—pg')/(n'+6/35)']

—(6/35)'* »n '[(6g/35)'/(g'+6/35)'], (36)

~0(P) = («/60)'[J-~(~) +~~(0)]
G0(p)/~

+g '[9/2450 —L'(L+1)'/8]+6(tt —').3 l (10+13n/tP —2(1+n/p) l
(P.)

4140tp) & (1+n/tp)p, ' ) [This uses the modified value for L(L+1) to be
L(L+1)+6/35+ (3/35'') (I-(I-+1)+6/35)+ .] To

where p, =&+ (tp+n)~. Hence to cancel the error in the obtain the value of Ilr, (p ) and Gr, (p,) one uses a Taylor
potential at p, one must use series

(10+13n/vP —2(1+n/tP)&)
=L(L+ 1)+(3/140)

(1+nlrb')

=L(L+1)+6/35+ (3/35tI') [L(L+1)+6/35]+

The approximation n=L(L+1)+6/35 is suflicient for

q large.
To examine the usefulness of this arti6ce consider

first L=0 in detail. The proposed approximation is, for

PL(p ) F&(P0)+ (1/2 I) (6/35+L(L+1))P (P )+
Upon referring to Eqs. (5) and (6), it is clear that the
shift from pl. to p is precisely that required to cancel
terms of order q 4~', for both FI. and Gl.. In fact, the
requirement that the shift minimize the error in the
wave functions seems equally as good a criterion as the
equivalent requirement that the error in the potential
cancel at p, . The terms of order g

—' do not cancel and,



B IEDENHARN, GLUCKSTERN, HULL, AND 8 REIT

for general L, one has

FLb.)

GL(P )/Vj 4 2n.& ).
1 y ( 2168 i

ln ""+ (37)
(3150) (398 125i

h-"= (l)'&(l)/&(L).
This result requires q to be large and L/g to be small.

Note the remarkable independence of L shown in this
result.

Now the value assumed by the modi6ed Morse-
Feshbach approximation at p is the same for both FI.
and Gl. and turns out to be

FL(~.) (1'(l)i,
, l(on)'[1+8(n ')). (37.1)

I GL(p.)/V3 & 2or& )

Hence one obtains the result that, for general L, the
modified Morse-Feshbach approximation yields

F L (Po)approx/F L (P )ex otae

GL (Pa) approx/GL (Po)exeat

1

&3150)

( 2168
[&-»»+6(&-a), (38)

&398 125 i

which, to repeat, is both gratifyingly accurate and more-
over independent of L for L/II small.

For p—&~ the results are also very good. As is typical
of the Morse-Feshbach approximation, the approximate
result divers asymptotically from the exact result only
in the asymptotic phase. That is,

FL(p) sin(p —Lm/2 —g 1n2p+a L),

Expanding in inverse powers of q with the help of
Sterling's series for the exact phase yields the result

(&o)approx= (0'o)exeat 1/420'+&(g ) ~

The unmodi6ed Morse-Feshbach result is

(&o)approx= (o o)exeat+1/12'+&(g ).

Hence the modi6cation results in a significant improve-
ment.

For general J., the value for 0-~ which results from the

and the approximate result divers from this exact
result only by a diGerent value for 0-&, namely, for L=0,

(o o),pp„=~/4 —q+g 1ng+ (q/2) ln(1+6/35rP)

—(6/35) & sin '[1/(1+35tI'/6) &). (39)

modi6cation is

(~L)"p--= (n/2)»[n'+L(L+ 1)+6/35] n-

+(L+2) (~/2) —LL(L+ 1)+6/35)'

(O'L) approx = (&L)exact 1/420'+ & (g ) r

which is, once again, independent of L to the order
given.

Finally these approximate wave functions can be
examined for p—+0. Using the asymptotic form for
hi(s) for s—o—rc one finds

2FL(~)
~lgl "- "[1~5/»I~I+" ), (4o)

GL(P) approx

~
p~~[L(L+1)+6/35)'*[lnp+8(po)],

as ~0. Thus
2FL(P)

~pf (I )

GL(~)
(40.1)

where f(L)= (o)&[L(L+1)+6/35)~ inp+8(po).
The exponents for p, for the exact FJ. and Gg, shouM.

be, of course, L+1 and L. The approxim—ation yields
however, f(L) ,'+[L(L+1)+—6/35)'Iwith the upper
sign, and f(L) —,

' —[L(L+1)+6/35)& with the lower.
For moderately large L the square root can be ex-

panded and one finds

f(L)-l~(L+-:+-:(6/35- l)[1/(L+l)+" )
=-', +(L+-',)%11/140(2L+1)+ ~ . (39.1)

The error in the exponents decreases reasonably well as
I increases.

For I.=O one has as exponents -,'+ (6/35)&—32/35
and o

—(6/35)'=3/35, which are to be compared to 1
and 0 respectively. The approximation to Fo is satis-
factory, but for Go the approximation is very poor for
extremely small p. Nevertheless, the 6/35 modification
did result in marked improvement.

The consideration of the special values of p above,
namely p=0, p = ~, indicate clearly that the proposed
modi6cation of the Morse-Feshbach approximation
yields a very satisfactory approximation to the Coulomb
wave functions over the entire positive real axis. This
is, of course, largely due to the simplicity of g for the
Coulomb case, since only one turning point occurs for
p ~&0. The results obtained for the approximate wave
functions using these special values of p are summarized
in Table I for convenieg, ce,

(
X»n ' 1

I
1+

I (39.1)
[L(I+1)+6/35) )

[where L(L+1) has been replaced by L(I.+1)+6/35].
For large g, with L/Il small, this becomes



TABLE I. Approximate wave functions for special values of p.

Exponents as p~0

MF: ~, —,
'

MF mod: (+[6/35+L(5+1)]1,
0—[6/35+1-(1+1)]'

Exact: 5+1, -I.

{(FL)approx/(FL)exaot~ at turnin oint
~

a urn1ng potn

1a (3/35) (-;)"~q-4'~r (-;)/r (-,')y
1+1/315(hP+

1

Error in 0L at p = ~

—1/420&
0

In order to illustrate the accuracy of these approxi-
mations for other than the special values of p used
above sample calculations have been performed for Pp

and Gp which are tabulated in Table II. It should be
noted that even for g=1, which is a severe test of the
approximations, the agreement is good. The error
decreases rapidly as p increases. The few comparisons
made reQect primarily the lack of tables for large g.

In the discussion above for FL and GL at the turning
point, the expansions have been made under explicit
assumption that g))1 and L//g is small. It is of some
interest to note that the approximate wave functions
are equally valid for L/p not small. At the modified
turning point, p, it has already been found that

F~(p.)
r~(3)/—2~'j6 "'p'(p. ~) "'

G~(p.)/~
The definition of p, is, in general,

p.=a+(n'+~)',

where a is the modified value of L(L+1) as given
earlier. For L/q»1 one has therefore

n= L(L,+1)+39/140+8(1/L)

As a result, one finds that

p =pr, +39/280pr. +8(pr. ').

Hence the Morse-Feshbach (modified) approximation
to FL and GL at p assumes the form

=I F (-')/2s. l)6 "'pr,"'
XI 1+g/6pr+8(1/pr. ')$. (41)

To obtain the exact value for I'L and GL at p, one
again resorts to a Taylor series. Noting that Irr,"(pr.)

and Gr."(pr) vanish, it is found that

F~(p.)

G.(..)
Fr.(pr.) F~'( i)

+ (39/280pr)
Gr. '(pr.)Gi(pi)

~L
+8(p~ ')

GL

Under the assumptions that L)&&&)1, Eqs. (13) and
(14) assume the forms,

Pi(pi)

Gr, (pr.)/&3
X (1%39b21pr, 4"/280+ ),

&"r.'(pr.)
-IX(l)/2~'3p""6-"'

IGr (pr)/
XL+bp 121+(3(2) 413/Sb)pr. '+ ~ ]

Fi(p.) =D (l)/2~-'jp"'"6-"(1-~/")- "
Gr. (p.)/v3'

X[1+8(pr. ')j. (41.1)

This result is seen to agree with the approximate result,
Eq. (41), up to order pr. '. It is clear therefore that the
approximate wave functions give excellent results for
FL and GL at p= p, in both limits L,»q and g»I.. This
leads one to feel confident that similarly good results will
hold for the transition region, I. q, as well. It is impor-
tant to note, however, that the aforementioned results
all require the use of a value for the "shifted" L(L+1),
that is 0., which is appropriate to the region of interest.
Now e can be given quite generally, but this would
require solving a quartic equation, given earlier. The
result is quite unwieldy, and it was therefore considered
reasonable to confine attention to limiting cases as done
above.

TABLE II. Sample calculations for P0 and G0.

1; 0.6
1 3
1;6

1.995; 1.2
3.981; 2.4

JWKB

0.1393
1.2268—0.2742

0.04853
0.005923

MF

0.1322
1.1111—0.2465

0.04725
0.005834

F1)(P)
MF mod.

0.11/7
1.0877—0.1603

0.04370
0.005635

0.1071
1.0844—0.1665

0.04343
0.005625

JWKB

1.644
0.4763—1.072

6.756
5.5450

MF

2.564
0.5591—1.074

7.0747
56.544

Go(~)
MF mod.

2.631
0.6220—1.096

7.4526
58.162

Exact

2./92
0.6284—1.090

7.5056
58.280



BI EDEN HARN, GLUCKSTERN, H UI. L, AND 8 REI T

AppENDIx found to be

For Lof the same order as or larger thang, Fl, and Gr, F i( ) F ( ){~(L+1)/2„jt-1+„~/L3
are not as similar to each other at pp as they are at pi, ,
and if I. is quite large compared to z, the diGerence may 7g—'/2L' Sg—4/2L']),
be very great. In this case it is necessary to turn to the
individual integral representations of Ill. and G~ as
given in reference 13, Eqs. (10.3) and (10.5) —g'/2L4 —Sq'/2L']}.

~
—arIpL+1 ~ 1

Fi(p) = (1—z') icos(2gtanh 'z —pz) dz,
(2L+ 1)!C,~,

(A1)
~
—7r rtp I~l I

Gi(p) = (1—z')~ sin(2g tanh 'z —pz)dz
(2L+1)!Cr, ~p

~ 00

+e " (1+I')z expL —Np —2g tan '(1/u)jdu . (A2)

The expansion for Gl. at pp may be obtained in terms
of the steepest descents result, given in reference 13,
Eq (9.6), f.or p= 2z. For large p, only the second integral
in Eq. (A2) contributes, and corrections to their Eq.
(9.6) may be obtained by expanding the integrand about
N=L/q, and integrating term-by-term. The result, after
treating the coefficient in the same manner as before, is

G (po) = (2/L)'*n '(L'+~')'"'+"

To obtain Fz, (pp), note that the main contribution to
the integral comes from small s and expand the cosine
for s small, setting p=2p wherever it occurs. Term-by-
term integration, together with the use of the expansion
of C& already discussed, yields the following result for
I.&q..

Fi(po): I
(1/2L)—'n'+'(L'+n') ""+"/( +1/2 )j

)&exp{L—
q tan —'L/q —SrP/12L' —1/8L

—L/12 (L'+q') }(1+1 '/8L4+Sr14/4L'+ ). (A3)

In order to obtain an expansion of Fl, (p) for arbitrary
p in the vicinity of pp, one must return to the integral
representation of Eq. (A1) and, as before, expand for z
small. In the present case, an extra term (po

—p) z appears
as part of the argument of the cosine in the integrand,
and necessitates use of the expression for the cosine of
the sum of two angles. Noting th, at

pl
(1—z') z'~ c os(gp z) dz= L!~k2r (—1)~

"o
XD'-L(~p) ' '~.+,(~p))=—f2-,

where D= d/dp, a—nd

I
I (1—z') z'"+' sin(Apz)dz=L!zl2~i( —1)~

5p =pp
—p, one may write the resulting ex-

pression for Fr,(p), when L )g and (p~ —p) small, as

Fr, (p) = [e &p~'/(2L+ 1)!Cr,j
X {bo 2q(bs/3+b—g/5+b7/7+ . )

—2q'(4/9+2&s/15+ )+riabg/81+ .}. (A6)

The corresponding expression for Gr, (p) is again ob
tained by finding corrections to the steepest descents
approximation. The result is

G (p) = LG (p)j {1+1/24L+r(L'+~') p'/24L]

X [&L/(X L)'(LX+p—rl)

X'/(X L)'(LX+—pal) 2/+— , (A7)

)&exp{—L+g tan 'L/q+Sg'/12L' 1/8L— where, according to Eq. (9.6) of reference 13,

+L/12 (L'+g') }(1+g'/8L'+SKI'/4L'). (A4) )g~(p) jzn 2r (2~)k(LX+—p~) m~

With the help of the recurrence relation given by
Powell, " the derivatives of Fr, (po) and Gr. (po) were

~ J. L. Powell, Phys. Rev. 72, 626 (jI947}.

&&exp{—X—2g tan ~(p/X)}/

(2L+ 1)!Crp~ (X L) '*, (A8)—
and X=L+(L2+2pg —p')l.


