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A mathematical error is found in Goldstein s solution of the Salpeter-Bethe equation with zero total
energy and a cut-oG factor. When this error is corrected, no solution remains of the eigenvalue problem.

I. INTRODUCTION

LL solutions of the Salpeter-Bethe equation so
far obtained for the two-nucleon system have

been based on rather drastic approximations whose
quantitative eGect is not easy to see. Klein' has exam-
ined rather exhaustively the limitations of the "ladder
approximation"; but he allowed two other common
approximations, the neglect of the time of propagation
of the virtual mesons, and the omission of pair contri-
butions, to go unchecked. Arnowitt and Gasiorowicz'
have recently discussed pair eGects, but the eBect of
the "static potential" approximation is still largely
unknown, and most likely could only appear from a
completely covariant solution of the S-8 equation.

For this reason, the covariant treatment of the
problem by Goldstein' was of great interest, even
though it was limited to the ladder approximation and
a highly unrealistic value (zero) of the total energy.
Goldstein showed that the S-B equation as it stands,
at least in the special case he considered, has a solution
for any value of the coupling constant. He suggested
that the only way to obtain an eigenvalue of the
coupling constant, consistent with the occurrence of a
bound state of the two nucleons, was to introduce a
cut-oG factor in the kernel of the S-B equation. Unfortu-
nately, as will appear below, his solution of the resulting
eigenvalue problem has a mathematical Qaw, the
elimination of which invalidates his conclusion.

Solutions of the S-B equation exist of a more general

type than, but for the same total energy as, that which
Goldstein considered; but all solutions investigated
disappear when a cuto8 is introduced. The reason is
probably related to the extreme value of the binding
energy assumed. So Goldstein's essential idea —that
the bound-state problem should be solved by a limiting
process involving the use of a convergence factor—may
very well be right in general. For independent reasons
stated elsewhere, 4 the author does in fact agree with
Goldstein on the matter. It is hoped that approximate
covariant solutions of the S-8 equations for general
values of the binding energy will soon be available to
aR'ord a more conclusive test of the idea.

'A. Klein, Phys. Rev. 90, 1101 (1953); 91, 740 (1953); 92,
1017 (1955);94, 1052 (1954).' R. Arnowitt and S. Gasiorowicz, Phys. Rev. 94, 1057 (1954).

3 J. S. Goldstein, Phys. Rev. 91, 1516 (1953).
I. E. McCarthy and H. S. Green, Proc. Phys. Soc. (London)

A67, '719 I'1954).

II. SOLUTION OF THE S-8 EQUATION

The integral equation whose solution is required is

(p —m) s (p)(p+m) =
o c(k', Q)

yean

(k) lsd'k
(1)

(p k)'—

{(p —k)'} '= —(2m)'i8(p —k),

the result is
~(p)+4) (p',Q)v ~(p)v,
p(p) = (p —m) q (p) (p+m).

(2)

(3)

This equation has to be supplemented by boundary
conditions, which can be obtained by inspection from
(1); these are

il (P) =finite constant, P=O;

p'il (p) = finite constant, p'))Q.

(4)

(5)

If now one assumes with Goldstein that q (p) has the
form

Eq. (3) reduces to
(p) =C (p'/m'), (6)

X"(s)+)tC(s,Q) C (s),

X(s)= s(s—1)C (s), (7)

with s=p'/m'. If one takes C(s,Q)=1 for s(Q and
C(s,Q)=0 for s)Q, the conditions (4) and (5) require
that

and
C (0)= finite constant

X'(Q) =0,
which are readily seen to be equivalent to Goldstein's
conditions (16a) and (16b) (the latter with Q substi-
tuted for oe).

Goldstein gave

4 (s) = const)&P(1+n, 2—n, 2; s) (10)

as that solution of (7) which satisfies (8), where the
constant e is a root of the equation

n(n —1)+)=0

where c(k', Q) is the cut-off factor which has a value
near unity for k'((0 and near zero for k-'&)Q. Goldstein
proposed to solve it by reducing it to a differential
equation; this can be achieved, without making any
special assumptions about the form of p(p), by applying
the operator = 8'/ctp&Bp„ to both sides of (1). Since
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(12)
. One obtainsS= 2$—1p

and is to be determined from the boundary condition is that the bound-state solution might not be of the
(9). The "hypergeometric function" is, however, easily type assumed in (6). If one assumes instead that
expressed in terms of Legendre functions, as one can

(18))=+( 'im'),
see by writing

whereupon (7) becomes, for z(Q,
(z' —1)X"(z)+n(n 1)—X(z)=0.

Since
d dF. i(z)

(z' —1) +n(n —1)F i(z) =0,
dS dS

(s—1)s+"(s)+3(s—1)%'(s)—XN(s). (19)

The conditions (4) and (5) now require that 4'(0)
should be finite and that the derivative of s'%(s) should
vanish for s=Q. LThe latter is also the condition that
4'(s) and @'(s) should be continuous at s=Q.j The
solution of (19) which is finite for s= 0 is

one sees that the general solution of (13) is

tz, 1 p
'8

X(z) = F. i(z)dz+A F i(z)dz.
J1

- (14)

where

and one has also

+(s) =F(44,b; 3; s),

u= 1+(1+X)', b=1—(1+X)&,

(20)

(21)

Here one must set A =0 to satisfy (8), and (9) reduces
to

P i(1—2Q) =0.

d—(s'4(s)) =2sF(a, b; 2; s),
ds

(22)

For real positive values of ), 0. is restricted to real
values between 0 and 1, and complex values of the form
—,(1+4q), where g is real. In the real domain of n, it is
well known4 that (15) can only be satisfied by values
of Q between 0 and 1. In the complex domain, (15) can
only be satisfied by values of Q less than 0. Hence (15)
has no solution for values of 0 greater than unity.

To see how Goldstein obtained a diferent result,
notice that the asymptotic form of (15) is

r (2n —1)(—Q) r (1—244) (—Q)
-+ =0, (16)

r(~—1)r(1—u) r(~)r( —~)

or, since I"(z+1)=zr(z) and sin(z.z)r(z)r(1 —z) =z,

sin(en)
((a—1)r(2n)(—Q) "

z (2n —1)
+ar(2 —2a) (—Q) -') =0. (17)

This agrees with the condition Goldstein at first
obtains; but he proceeds to cancel a factor and write
the condition in a form t Eq. (40)]:

(—1)' r(2n) n
Q2a—1

n —1r (2—2n)

III. OTHER TRIAL SOLUTIONS

One possible reason which suggests itself for the
absence of a solution to Goldstein's eigenvalue problem,

5 See W. Magnus and F. Oberhettinger, Formulas and Theorems
for the Specia/ Fuectioes of Mathematical Physics {Chelsea
Publishing Company, New York, 1949).

which is satisfied by n=-', . The factor (2n —1) ' in (17),
however, may clearly rot be removed for n=-,'without
introducing a spurious solution; and the left-hand side
of (17) in fact approaches a nonzero value as u—+-', .

so that to satisfy the boundary condition at $=0,
F(a,b; 2; Q) must vanish. Now

F(a,b; 2; Q)

r(a—b) (—Q)-.
F (a, a—1; 1+a b; Q

—')—
I' (b)I' (u —2)

r(b —a)(—Q)-&
F(b, b 1; 1+b a—Q ')—. (23)

r(~)r(b —2)

and since, for large values of 0, 0' and Q' will be of
di8erent orders of magnitude, F(a,b; 2; Q) cannot
vanish except possibly in the degenerate case when a—b

is an integer. Then F(a,b; 2,s) reduces to one of the
Jacobi polynomials F„(2,2,s); but the zeros of these
polynomials are known to lie in the interval 0(s& 1,
so they cannot provide a solution of the problem either.

This investigation has shown that there are no
covariant solutions of the integral equation (1) with
real positive values of X. There might possibly be
noncovariant solutions, and since the derivation of
Eq. (1) assumes a relativistic frame in which the mass-
center of the two nucleons is at rest, it is fairly plausible
that the bound-state solution, if any, should depend
on p, and p4 as well as the covariant variables p' and p.
But a full investigation shows that the independent
solutions of (3), which are functions of s=p' and
z= p4(p') &, and are finite for s=0, are of the form
(s—1)—'s&"F(-',n+n, ,'n+1 n,—2+n—; s)C„'(z), where a
is the greater root of the equation

n(1—a)+-', n(-', n+1) =X,

n is any integer, and C„'(z) is the corresponding Gegen-
bauer polynomial. The boundary condition requires
that the derivative s"F(-,'n+a, —',n+1 —n; n+1; s) of
s"+'F(-',n+n, -', n+1 —n; 2+n; s) should vanish for s=Q,
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and this is impossible for any positive real value of X.
Adding a factor P to the trial solution does not improve
the situation.

Thus even the possibility of noncovariant solutions
of the integral equation has to be excluded.

IV. DISCUSSION

The foregoing conclusions might be interpreted as
casting doubt on the ability of the S-3 equation to
predict bound states. Xt might appear that the solutions
of this equation obtained by various authors are merely
a feature of the noncovariant approximations which

they used. The present author, however, would prefer
to take the view that the extreme value of the binding
energy assumed by Goldstein is responsible for his
failure to obtain a valid discrete value of the coupling
constant. If one gave the binding energy of the ground

state its maximum value (infinity) in the nonrelativistic
approximation, one would not get a solution there
either. One may thus maintain that to give a binding
energy equal to the total rest-energy of the two nucleons,
the coupling constant would have to be infinite, and
that the possibility of a discrete 6nite value for any
other binding energy is not excluded.

Goldstein stated that an expansion of the solution in
powers of the total energy appeared to be singular, and
if that is so it rather supports such a conclusion. But
what is really needed is independent evidence of the
nature of the solutions of the S-8 equation for general
values of the binding energy. Such evidence should not
be founded on a noncovariant approximation, as
covariance is clearly the crux of the matter. The author
hopes to present a completely covariant. treatment of
the S-B equation in the near future.
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Expansions in powers of g &, where y is defined in the introduction below, for the Coulomb wave functions
b'z(p) and Gs(p) and their derivatives are given for special values of p=2ri and p= pz, =s+Ls'+L(L+1)g&,
the classical turning points for I.=O and any I, respectively. Expansions applicable in the vicinity of the
turning point are given as a series involving Bessel functions of order +I/3 with the expansion parameter

pL, . Approximations valid for large values of q are given and discussed.

I. INTRODUCTION

~NUCLEAR reactions involving "heavy" charged
particles" and the inelastic scattering of charged

particles by nuclei'4 have recently been the object of
several investigations, both theoretical and experi-

mental. Xn both cases, the Coulomb interaction can be
expected to play a dominant role, and the Coulomb

wave functions are necessary for discussions of nuclear

interactions of this type. It is evident, that for the

parameter
r) =ZZ'e'jets,

*Assisted by the Office of Ordnance Research, U. S. Army and
by the joint program of the U. S. Once of Naval Research and
U. S. Atomic Energy Commission.

t Now at the Rice Institute, Houston, Texas.
' Breit, Hull, .and Glucltstern, Phys. Rev. 8?, 74 (1952); N. F.

Ramsey, Phys. Rev. 83, 659 (1951).
s L. D. Wyly and A. Zucker, Phys. Rev. 89, 524 (1953).
'C. J. Mullin and E. Guth, Phys. Rev. 82, 141 (1951); Ter-

Martirosyan, J. Exp. Theoret. Phys. (USSR) 22, 284 (1952);
A. Bohr and B. R. Mottleson, Kgl. Danske Videnskab. Selskab,
Mat. -fys. Medd. 27, No. 16 (1953); K. Alder and A. Winther,
Phys. Rev. 91, 1578 (1953).

4T. Huus and C. Zupancic, Kgl. Danske Videnskab. Selskab,
Mat;fys Medd. 28, N.o. 1 (1953); C. McClelland and C. Good-
man, Phys. Rev. 91, 760 (1953); G. M. Temmer and N. P.
Heydenburg, Phys. Rev. 94, 1399 (1954); Sherr, Li, and Christy,
Phys. Rev. 94, 1076 (1954).
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which, together with p=kr and I., characterize the
Coulomb function, ~ the values of interest will be fairly

large; q, for example, lies in the range 5—15. Tabula-
tions in this particular range of parameters are either
unavailable or incomplete' and the present work was

undertaken to fill this need as far as feasible, with par-
ticular emphasis on large values of the parameter q. It
extends and supplements the earlier work of Breit and
his associates, ' and of Abramowitz and Morse, ' and in

part runs parallel to or overlaps work of Newton, '

' Yost, Wheeler, and Breit, Phys. Rev. 49, 174 (1936).
'The recent appearance of tables with 1&v(10 (U. S. Na-

tional Bureau of Standards Report No. 3033 (unpublished)j by
C. E. Froberg and P. Rabinowitz is a welcome addition in this
1ange.' Yost, Wheeler, and Breit, reference 5; G. Breit and M. H,
Hull, Jr. , Phys. Rev. 80, 392 (1950) and Phys. Rev. 80, 561
(1950); Bloch, Hull, Broyles, Bouricius, Freeman, and Breit,
Phys. Rev. 80, 553 (1950).

'M. Abramowitz, Tables of Coulomb Functions, Vol. I, U. S.
National Bureau of Standards Applied Mathematics Series, No.
17 (1952). Several expansions due to Mr. Abramowitz are dis-
cussed in the introduction, pp. xv-xxvii, and one due to P. M.
Morse.

'T. D. Newton, Atomic Energy of Canada, Limited, Report
CRT-526, 1952 (unpublished).


