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Theory of Multiple Coulomb Scattering from Extended Nuclei*
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Two independent methods are described for calculating the multiple scattering distribution for projected
angle scattering resulting when very high-energy charged particles traverse a thick scatterer. The single
scattering law for projected angle scattering is taken to be the Rutherford scattering law for projected angle
scattering modified at small angles by electron shielding and at large angles by a nuclear form factor P„(y/pf))
which gives the eQ'ect of the finite nuclear size. The calculations can be carried through for any reasonable
choice of P„and have been carried through for two suggested choices of S„for the examples of fast p-meson
scattering in lead slabs of thickness 2 cm and 5 cm, with good agreement for the two methods of calculation.
The results are compared with the theories of Moliere and Olbert.

ence of an anomalous p-meson-nuclear interaction.
Among the many difhculties arising in the interpreta-
tion of these experiments (see Appendix 8), one of the
most obvious seemed to be the absence of a reliable
estimate of the expected multiple scattering distribu-
tion from extended nuclei.

In the Moliere multiple scattering theory the nucleus
is treated as a point charge. The single scattering cross
section is taken to be the Rutherford cross section modi-
fied, at small angles only, due to electron screening.
This gives more scattering for large angles than would
be expected from extended nuclei. In the Olbert theory
an attempt is made to estimate the effect of the nuclear
extension by multiplying the Moliere projected angle
single scattering law by a step function which cuts off
all scattering beyond a given projected angle pp )1/R.
This, however, gives a very great underestimate of the
multiple scattering for angles larger than po, as for
large angles Olbert's distribution falls off as a Gaussian
which soon is much smaller than even the coherent
part of the single scattering law.

In what follows we shall outline two distinct pro-
cedures by which a multiple scattering distribution can
be obtained from given single scattering laws. We deal
with projected angle scattering as this is the usual
experimental parameter. Our second method could be
extended to include the total scattering angle. Sections
2 and 3 describe the two methods we have developed
for dealing with multiple scattering problems. The
results of these two sections have been used to calculate
the expected multiple scattering distribution of rela-
tivistic p, mesons (cp=1 Bev) passing through 2 and 5
cm of lead. Agreement between the two methods is
excellent. Appendix A contains a discussion of the
single scattering cross section used for the above calcu-
lation. Appendix 8 gives a review of the experimental
situation with regard to p,-meson scattering.

l. INTRODUCTION

S EVERAL multiple scattering theories have been
published' 4 which are concerned with the angular

distribution of particles passing, with no substantial
loss of energy, through a thick material for which the
single scattering law is the Rutherford cross section
modified at small angles due to electron screening.

In this paper we shall present two methods by which
a multiple scattering distribution for projected angle
scattering can be obtained from more general single
scattering laws than those already treated. We shall
be concerned in particular with single scattering which
is of Rutherford type for a wide middle region, but is
modified both at large as well as at small angles. In
scattering from atoms the modi6cation at sma11 angles
is due to electron screening, while at large angles there
can be modifications due to additional forces (as in the
scattering of a mesons from carbon) or due to the finite
extension of the nucleus and the subsequent deviations
from Coulomb's law inside the nucleus. We consider
only the case where relatively small q are important
so the approximation q =sing = tan@ is appropriate.

There has been a good deal of experimental interest
recently" in the multiple scattering of p mesons.
Experimental results, after being compared with the
results of the Moliere' and Olbert' multiple scattering
theories, have been interpreted as indicating the exist-
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SECTION 2. DESCRIPTION OF THE FIRST METHOD
OF COMPUTING M(y)

The first method to be described consists of folding

1 together several simpler distributions in a manner some-
what analogous to the actual eGect of successive layers
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of the scatterer. Although this method is simple in
principle, it seemed on first inspection that it would be
extremely tedious to carry through such folding opera-
tions. This did not prove to be the case when the com-
puting techniques described below were used, and we
give a rather detailed description of the procedure for
this reason.

The method is based on the observation that if
f(q)dq, the probability of a single scattering through
pp to q+dq to one side in projected angle, is given,
then the multiple scattering distribution M (q) is
completely defined. [Note that f(q) is not normalized
to unity, but integration over all angles gives the
average number of single scatterings in transversing
the sample. ] Furthermore, if the actual scattering slab
were replaced by a series of consecutive slabs A, 8, C
having single scattering laws f~(q), fe(q), , where

f(q) = f~(q)+fe(q)+ (1)

then the same multiple scattering distribution results
on traversing all of the slabs in series. If M&(pp),

Me(q), are the separate multiple scattering distri-
butions for A, B, , then M(q) results on folding

M~, M~, . together.
For the case of two components,

angles. fz(q) is then set equal to f(q) for
l q l

(q' and
=0 6» Iq l

& q', dphil~ fe(q)=0 for lql(q' and
= f(qt) for [q l ~& q'. The multiple scattering due to
f& is given with good accuracy by the Gaussian:

where
M~(pp) = (2~(q'))-& exp( —q'/2(q')), (5)

(q')=Q q'(q'+q-') 'dq, (6)

(")=Q
(1+x')t p

so

+[in(x+ (1+x')—:)j,~'«-,

(q")=Q(»(2~ '/q )—1).
(7)

It is convenient to use the parameter y= q/qp and
replace f(q), Q, q„, and q' by the equivalent quanti-
ties g(y), B, y, and y'. For the case of a p meson with
cp=1 Bev and a 2-cm lead scatterer, qp ——0.0304 ra-
dians=1. 74', 8=0.126, and y =9.6)&10 4. For the
choice y'=0.5 we obtain (y')=0.75, showing that this
is a satisfactory choice for y'. Then, for this case,

since P~(q/qp)=1 for
l pal &~q'. Also y'))q for a

reasonably thick scatterer, so we can simplify the
resulting expression:

- q'/gent,

M(pp) =) Mg(qi)Me(pp —qi)dqi. (2) Mgi(y) = (1.50vr) l exp( —y'/1. 50), (g)

We require that only small p are important so sinp
= tanp= p, and eGectively consider p as ranging from
—oo to + op.

The distribution law for small angles is just the
Rutherford scattering law modified because of electron
shielding. Following Moliere, we represent this as

f'(q)= pQ(q'+q-') ', (3)

where p is the projected angle, p is the screening angle,

1.14m,c'Z&

137cp

( Z qp
1.»+3.76l

(137')

and Q=47r(Nt/A) (Ze'/pe)'. Here (Nt/A) gives the
scatterer thickness in atoms/cm'; p is the momentum
of the incoming particle; X=5/p; e is the incoming
velocity; a is the "Fermi-Thomas radius" of the atom
= 1.67)& 10'Z &(e'/m, c'). Z is the atomic number of the
scattering material (the incident particle is taken to
be singly charged) and nt, is the electron mass.

The modification in the above distribution law at
larger angles is given by multiplying f'(p) above by
PN(q/qp) to give

f(q) = pQ(q'+ q-') '&~(q/q p) (4)

F'~(pp/pp) is discussed in Appendix A.
The trick of this method consists of selecting some

angle q' which is a little smaller than the rms width of
the Gaussian which approximates M (q) at small

where the subscript 1 on M~~ emphasizes that this
method gives the distribution in terms of y=q/qp.
(The distribution function Mp(x) of the next section is
given in terms of the angle characteristic of the Moliere
theory. )

The multiple scattering distribution M»(y) corre-
sponding to single scattering angles ~& p'= y'po is
obtained using the following considerations. If we
chose, not the full scatterer thickness, but some suK-
ciently small fraction n, then the single scattering law

ng(y) for
l yl )y' would have essentially unit weighting

for no scatterings at all, and very small weightings for
all

l y l
)y'. The corresponding multiple scattering

distribution would then be identical to the single
scattering law for ly l

)y' since there is negligible like-
lihood of more than one scattering. If this distribution
is folded together with itself the multiple scattering is
obtained for fraction 20. of the total thickness. This
distribution differs from the single scattering law by
double scattering terms proportional to o.', so the
fractional deviation is proportional to a«1. If the mul-
tiple scattering law for thickness 2' is folded together
with itself the multiple scattering law for thickness 4n

- results. For lyl)y' this distribution has a fractional
deviation from double that for 20. of an amount double
that of the previous process (always neglecting higher
order eBects). Thus the net fractional correction from
the single scattering law is 3 times that obtained in the
first folding. Subsequent foldings for Sn, 160,, 32n, etc.
have net fractional corrections (1+2+4), (1+2+4+8),
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(1+2+4+8+16), etc. , times that of the folding
starting with thickness e. These sums, 7, 15, 3l,
would be 8, 16, 32, , if we had started our folding
process with an infinitesimal fraction of a, since going
from n/2 to n gives ~i, from n/4 to n/2 gives ~i, etc. , for
the extra series terms (2i+ri. + ) = 1. %le thus note
that the net fractional correction after any stage of
folding (neglecting higher order effects) is just double
the fractional correction obtained by the given step
(i.e., comparing the multiple scattering for y/0 for
the given thickness with double that for half thickness).
We make use of the above feature to select as our start-
ing thickness a fraction 2 " of the total for which the
fraction correction of any of the points in the erst
folding is not too large. This fractional correction is
then doubled to account with good accuracy for the
eGect of not starting the process with an infinitely thin
sample. In the calculations for 2-cm lead and ep= 1 Bev
it was found to be suitable to start with 8 the sample
thickness, while —,'6 the sample thickness was suitable
for 5-cm lead. The actual folding operations can be
carried through with good accuracy by replacing the
continuous fe(y) by a discontinuous function having
values only at regular grid points. For the 2-cm lead
case where y' =0.5, the region 0.5 to 0.7 was represented
by 0.2 g(0.6), etc. so values were defined only at y;= 0,
&0.6, &0.8, &1.0, , with a maximum y; =6.0 used
in the calculations. For the 5-cm lead case we used
y' = 1.2 and 0.4 intervals to y = 10.0. It was found con-
venient and permissible in these cases to neglect con-
tributions to values of y/0 where

~ y t
&y'. (In cases

where these contributions are not negligible it requires
only slight additional computing time to include them. )
The remaining computing tricks can best be illustrated
in terms of the example of the calculation for the 2-cm
lead case where we started with 8 of the total thickness.
Let /v8'(y;) be the lumped weights given to the grid
points 0, &0.6, %0.8, , &6.0 to represent the single
scattering law (0.2/8)g(y, ) for

~ y, ~
)0.5, with

The first number appearing in the column (y;= 0 here)
is circled and is only counted once in the subsequent
summing. The next column entry starts at y, = 1.2 and
contains products /vs'(0. 6) /vs'(y; —0.6). Again the first
term at y, = 1.2 is circled. The next column starts at
y;= 1.6 and contains terms /vs'(0. 8) /vs'(y; —0.8). Sub-
sequent columns are formed similarly to produce a
triangular array (requiring less than 1 hour of slide
rule computing time). Contributions from negative yi;
are usually negligible but the terms for the first few
negative values of y& can be added if necessary. The
rows are then added as indicated by Eq. (11) to give
/v4 (y;). The function /v4'(y;) is then compared with
2/vs'(y;) for y, WO and the differences are added to
/v4'(y;) to obtain the corrected multiple scattering
distribution /v4(y;). This is similarly folded with itself
to give /v2(y, ), and a repetition gives /(y, ) which corre-
sponds to Mz&(y). Values of Mz&(y) LEq. (8)) are com-
puted for y;= 0, 0.2, 0.4, , 6.0. The final Mi(y) is
just the sum of Gaussians centered at 0, ~0.6, +0.8,
&6.0,

Mi(y;) =P /(y&)M»(y; y&). — (12)

Mii, (yj+x) =Ms&(y&)e ",
then Eq. (2) gives

(13)

The value of Mi(y;) for any y; is computed using
Eq. (12).For y; near 6.0 the contributions from y&) 6.0
must be estimated. Fortunately the single scattering
g (y) and /(y&) are decreasing positive functions of y,
so the terms in Eq. (12) have a maximum for yl, &y;
and the remainder can be estimated by noting the be-
havior of the series for smaller values of y;.

The above observations suggest an easy method for
estimating Mi(y) for large y in terms of Mzi(y) and
M»(y) without actually carrying through the process
indicated by Eq. (12). If Mz&(y) can be approximated
by a straight line on a semilog plot of the form

/vs'(0) = 1—2 Z /v~'(y~). Mi(y ) =M»(y;) exp((y')/2a'). (14)

A calculation sheet is now prepared in which values
of y;=0, 0.2, 0.4, , 6.0 are entered in the 6rst column.
The values of /vs'(y;) are entered in the second column.
An uncorrected multiple scattering distribution /v4'(y)
is then computed, where

/v4'(y;) = Ps /vs'(y~)/vs'(y, —ylt') (10)

The calculations thus proceed as follows. In the third
column the values of /vs'(y;) are multiplied by /vs'(0).

Use is made of the fact that terms for y&Wy, /2 ap-
pear twice and we can write

/v" (y~) =2 2 /v '(y.)/ I '(y y.)—
+L/ '(y~/2) 7 (11)

This may be regarded as increasing M&i(y, ) by a
certain amount on the semilog plot to produce Mi(y, ) .
Alternatively, it can be written

Mai (y;) =M&(y~+6) (15)

corresponding to a sidewise displacement 5 of Mz, (y,)
to generate M&(y, +A). The quantity 6 is obtained by
plotting both Mzi(y) and Mz&(y) on the same semilog
plot as in Fig. 1. Let 6 be the value of y at which
Mzi(y) has the same (logarithmic) slope that Mz&(y)
has at y=y;. Using Eq. (13) shows that 6'= (y')/a, so
A =6'/2. Here a is assumed to be a slowly varying
function of y. (The plot by comparison can be made
rapidly, using two straight edges. ) When the semilog
plot of Msi(y) also has curvature so

M81(yl+~) =Mai(ya) e ' exp(*'/2/'), (16)
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FIG. 4. Curves for cp=1 Bev and 2 cm Pb, using 5~ for the

total elastic plus inelastic scattering. g =point-nucleus single-
scattering law; g=g'F~ is the assumed extended-nucleus single-
scattering law; MI is the resulting multiple-scattering distribution.
Multiply y by 1.74 for Bev degrees.

It is instructive to make a further comparison of this
method and the second method (of the next section)
for y&4, say. This method folds together the small-
angle multiple scattering Gaussian with the large
angle multiple scattering distribution, while the second
method essentially folds together a eider Gaussian and
the law for single scattering. The second method uses an
expansion in terms of the parameter (4G) ' described
below, neglecting terms of order (4G) ' and beyond.
This very roughly corresponds to neglecting multiple
large-angle scattering, so the first method would be
expected to be more reliable in cases where such effects
are not negligible.

As a Anal point of interest, we note that the curves
given in terms of y apply for all relativistic momenta
where P=1. In the example considered, y is in units
of 1..74 Bev degrees. Thus multiplying the abscissa, and
dividing the ordinate by 1.74 gives the distribution per
Bev degree unit of (cpp). This is shown by noting that
f(q)dq =g(y)dy, so

g(y) =k&(y'+y-') '&~(y),
h

B=gpo 2=4vr(ZR/137p)2(Xt/A),

1.148
y = p /go= [1,13+3,76(Z/137P)'7~,

137 t Op

and
ro, ——e'/m, c'=2.82X10 "cm

are independent of p for p=1.

SECTION 3. MODIFIED MOLIERE THEORY

A. Methods and Notation

To introduce the mathematical methods and nota-
tion used in this section we review the derivation of the
general expression for the projected angle multiple
scattering distribution for an arbitrary single scattering
cross section. The derivation follows that of Moliere'
and albert' and applies when only relatively small
angles are important.

If f(p)d p is the probability that an incident. particle
undergo a single scattering through the projected angle
y to @+de in its passage through the scatterer, then

+(pl&p2) ' ' '
9

n)dpi''

' 'dpn

=e "f((p&)f(yg) f(p„)dpgdpg . dp„, (18)
where

a,= t f(p)dp

is the probability that the particle in passing through
the material has exactly n single scatterings through
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the projected angles p~, p2, . , y„with angular inter-
vals dp&, d+2, . , dp„. e ' is the probability that there
be no other scatterings besides p~, q ~ q „.Since we
are interested only in the final angle p we integrate
over intermediate angles and put

fP(")(q))dq)= e "——f(q,)f(q 2)
nt

1 !"
f(q') =— g(8e'«d$,

2m ~
(20)

Xf(q q1——q2 ' ' q 1)dq» —dq. 1, (19)

where P(")(q))de is the probability that the particle
emerge at a projected angle between q and ()2+dqp

after exactly e scatterings in the material. The factor
1/22. occurs because in the integration over intermediate
angles the e!permutations of yi y„have each been
counted. Since Eq. (18) holds for independent events
the order of the e scatterings is irrelevant.

Now introduce the Fourier representation of the
single scattering cross section. I,et

From this it can be seen that the solution of the multi-
ple-scattering problem is equivalent to the evaluation
of the integral in Eq. (24). Moliere' has given an evalua-
tion of this integral in the case of a screened Coulomb
field. The main trick in evaluating the integral lies in
the observation that the existence of multiple scattering
will smear out fine-grained irregularities in the final
distribution so the high Fourier components give a
negligible contribution.

Moliere used the single-scattering law of Eq. (3)
appropriate for a point nucleus with electron shielding.
We are interested in the case where this is modified by
the nuclear "form factor" P)1(q)/q)p) as in Eq. (4).
From the discussion of Appendix A we note that

1 for small
( qp/q1p(

&)v((pl q)p) = 1 (our choice), (25)
!Z ' for large ~(p/qpp~

with the rapid change occurring when p 2po.
Olbert's method consisted of using a step function

for S~.

+N (q)/ q'p) (albert) (26)
0 for )q'i)qp.

g(k) = f(q)~ ""dq» (21) As mentioned in the introduction, this gives a very
large underestimate of the multiple scattering for

)where g(t) is not related to g(y) of the previous sec-
tion]. Putting Eq. (20) into Eq. (19) gives

dq
P(")(q)dq =—~ "(2~) " g($1)e!

)('g (( ) ill lP1. . .pip~(V —rP1 ~ ~ .—P~ 1)dg— —

)&dt„dp21 dq „1. (22)

I.O

.5

.R

I

)O

~r+

0

The integrations over q ~, q „~ give delta functions
which, after the $1 $„)integrations yield

.05

f" Lg(f)1" .P(n) (~)dy — ~
—01 (,'i&yd]

2z ~ „n~ (23)

.OR

The probability of a final projected angle p after
any number of scatterings is just the sum of the
P(")(qp)dqp over all values of 22.

.OI

I" - Lg(k)j" .
P(q)d q

= ZP'"'(q)dq =—
~=0 22r " „=o 22!

.005

gi(1gp(5) —p(P)dg

2m ~
(24) .002

where we use the result from Eq. (21): .OOI
0

r=4&4
IO

f(q)d =g(o). FIG. S. Curves for cp= 1 Bev and 5 cm Pb using the total elastic
plus inelastic scattering. The symbols have the sami. meaning
as in the preceding figures.
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y))pp where the Olbert function falls oG as a Gaussian
while, for any reasonable form factor, the multiple-
scattering distribution lies above the single-scattering
distribution f(p) for large q, and thus far above the
Olbert distribution.

B. First Derivation of M, (x)

%e first treat the multiple scattering from extended
nuclei as a correction to the Moliere theory by setting»=[1+(»—1)j, ~here (»—1) gives the correction
term. This is the method used by Olbert for his step
function. Such a treatment yields satisfactory results
for small angles, but is inconvenient for large angles
where a second method (described following this) is
preferred. Equation (4) is written

the parameter x:

dx p" vP 1 (q' 1 l
M2(x)dx= —

~l dye'&' exp ——+—
~

+—I
~

—. (32)
2m& „42G(4 2 ).

We use the fact that G is a reasonably large number (for
moderate foil thickness G varies from about 7 to 15)
and expand the portion of the exponential which is
multiplied by (2G)

—'. This gives, to first order in (2G) ',

dx
M, (x)dx=

~
dq exp(igx g'—/4)

2m ~

1 f'g' q'~ 1
X 1+—i

—ln—i+ I+ — (33)
2G(4 4) 4G

Then

Q ""(e ""—1)dv
g(k) —g(0) =-» . (~'+v-')'*

f(&)= Q(w'+& ') '[1+(» 1)j (27) After performing the integrations over g, this becomes

exp( —x')dx dx
m, (x)dx= — +—[f'(x; )—&(x)], (34)

4G
where

p" dx'[1—»(x'/x, ))
f exp[ —(x+x')']Q p" (e '« —1)(—»—1)dp

(2g) E(x)=
ger 0 (x"+x„')i

+exp[ (x x')'j —2 exp( —x') }
(v'+ ~-')'

The first integral has been treated by Moliere" and.
to a sufhcient degree of accuracy, is

and
1

f'(x; ~)=— dry exp(iqx vP/4)—
/

—ln—/.4)Q r" (e '&~—1)dq P (y'q '
=Q —1nl P (

. (29)
2 & „(p'+p„')'* 4 0 4e f'(x; ~) is the Moliere function. The integral E(x)

which occurs in Eq. (34) must be evaluated numerically
for a given»(x'/xo). Equation (34) is seen to have the
form that was desired originally. The integral which
contains the effect of the nuclear extension occurs as a
correction to exp( —x )/g~+ (1/4G) f'(x; ~), which is
the Moliere multiple scattering distribution for a point
nucleus in terms of the projected angle parameter x.
This corresponds to»=1 for all x. If »(x/xo) is the
Olbert step function, Eq. (26), the correction term be-
comes the Olbert correction function E(x; xo) is use
is made of the fact that xp))x

Using Eq. (34) the multiple scattering distribution
can be determined for a particular»(q/yo). However,
Eq. (34) becomes inconvenient for large values of x,
because in that case E(x) becomes almost equal to
f'(x; ~) and the difference between two large numbers
must be used to give a small one. For large values of x
therefore it is better to treat the modified cross section
directly, rather than as a correction to the Moliere
distribution. This is done as below.

(v'v-'
G= ——,

' ln(
e 2Gq)

'

x= (2GQ) 'v, ~= (2GQ)'5; (30)
and

Z4~'A 't
G=5.66+1.24 logso

1.13/'+3.76 (Z/137)'

is independent of the momentum in the relativistic
region.

Putting Eq. (29) in (28), and using (30) gives

1 ~' ~' 1
+ In—+—I (31)

4 264 4 2

(
s(&)—=g( I

—g(0) =
E (2GQ) '*)

where

Ke now introduce the various parameters typical of the
Moliere theory, following the notation of Olbert:

r
" (e

—' *'—1)[»(x'/xo) —1)dx'

(x"+x„')&

Inserting this result into Eq. (24) we obtain in terms of
7 Also see H. A. Bethe (reference 4) for a discussion of this in-

tegral.

G. Second Derivation of M~(x)

Q q" (e 't "' 1)F~(—y'/p—o)d p'
g(t) —g(0) =— (35)

2 4~ (v "+v-')'

Consider again the Fourier transform of the single
scattering law.



M ULTI PLE COULOMB SCATTERING

exp( —x') 1
1+—2 (2x' —1) ln («/1. 26)

4G
Ms(x) =.

I
—g(o)

—=s(~)
(
E (2GQ) 1)

1 1
+— E («,x), (39)

4G gw1 I" &sr(x'/xs)(cosrfx' —1)dx'

2G~ s (x"+x s)f where

t
" Ssr(X/xs)

T(xg )d),and E(«,x) =

Introducing the Moliere parameters x, il, and G as for the first order in (2G) '.
defined Eq. (30), we get

Jx
M s(x)dx =— e's'e'«'dr)

2m~ „ (36R)
T(x,X) =exp) —(x+X)'$+expt —(x—X)s]—2exp( —x').

Equation (36) of course is the Moliere-Fourier trans-
form if FN(x'/xs) = 1. In the case of the point nucleus,
this integral is evaluated through the observation that
there exists an angle x'= I(, at which the integral can be
split such that «»x but ««1/r). , where r), is the fre-
quency in the neighborhood of the main Fourier com-
ponents. 4 Then in the integration up to ~ the factor
(cosr)x' —1) can be put equal to —(r)x')s/2 and, in the
integration from « to ~, (x"+x ') '* becomes x' '.
Both integrations can be performed, and the splitting
point f(: cancels up to terms of the order ~', which are
very small.

In the case with which we deal the argument is
modjtded as follows. Again we split the integral at an
angle~ where' &(x'=~(&q, '. Now we make use of the
important property of the form factor given in Eq. (25)
that Ps (x'/xo) =1 for small values of the argument
x /xp. In Particular, for x'= sr our chosen form of %sr

(Appendix A) gives Fsr(1/4xs) =0.96 for the 2-cm lead
case, and 0.93 for the 5-cm lead case. The integral up
to x is thus the same as in the case of the point nucleus.

1 t
" (rfx')'dx'

s(r)) =——
2G ~a 2(x"+x ')I

In its present form Eq. (39) is convenient for calcu-
lation only for large values of x(x &4 in the 5 cm lead
case) because in this case exp( —x') is so small that the
precise value of x does not inhuence the result.

However, for smaller values of x the exact value
of ~ is-of importance. In order that the expansion of
(cosrfx' —1) in Eq. (37) be correct Emust be m'uch

smaller than 1. However, it is inconvenient to evaluate
the final integral of Eq. (39) numerically for very small
values of f(:.8

To overcome this difficulty one can use the property
of the form factor that P~(X/xs)=1 for values of X

much larger than r), '. Then J:~X 'T(x,X)dX can be
evaluated analytically, where 1.=4. This makes the
numerical integration Jl."X 'T(x,X) Ps (X/xs)dX practic-
able. In doing this it will be seen that the dependence
upon I(: vanishes and a convenient and accurate expres-
sion for Ms (x) is obtained. We observe that if I.= sr then
) can be considered small even if 2xX is not. Thus we
can expand exp( —X') in T(x,X):

T(x,X)=2 exp( —x') exp( —X') (cosh2)tx —1)
=2 exp( —x') (1—X'+ - ) (cosh2Xx —1), (40)

I

if we take only terms up to V. %e evaluate

1 r" rsr(x'/xp) (cosr)x' 1)dx'—
26 ~. X'3

(37)
J= X sT(x,X)d), =2 exp( —x')

Performing the 6rst integration and using the fact that
x ««, Eq. (37) becomes

r)s rr

s(rf) =———ln(
4G &1.26&

1
t
"%sr(x'/xs) (cosr)x' —1)dx'

(38)
2G ~„ X'3

where ln(1/1. 26) = (ln2y —s).
It is understood that ~ must be much smaller than 1.

If now s(r)) is put into Eq. (36a) and the terms multi-
plied by (2G) ' are expanded in the same way as before,
after the q integrations, the following result is obtained

(cosh2Xx —1) cosh2Xx
X dX. (41)

This, after some labor, neglecting terms in ~' or higher,

'Ke can see more clearly what error is introduced if f~ is al-
lowed to become large by doing the following. Expand T(x,X) of
Eq. (39) in powers of 2'. Then neglecting terms of order X4 or
(xX)4 gives T(x,X)=2Xs exp( —x ) (2xs—1). Integrating X(«,x)
from « to L and letting Far(X/xo) = 1 in this integral, we obtain

1 1
Ms(x)= —exp( —xs)+—2 exp( —xs)(2xs —1)

4G

Xln +—X Lx)

But this is just the same result obtained by letting a =L in the
I'ourier transform s(g) of Eq. (37). Thus allowing f~: to become
large introduces the same error as would be introduced if the
final result were expanded in powers of 2x) .
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gives
cosh2Lx 2x

J=exp( —x')— ——sinh2Lx
L' L' L

+6x' exp( —x')+2 exp( —x') (2x'—1)

f'L. (coshf- ].)
X dt+lnL

0

—2 exp( —x') (2x' —1) lns. (42)

Putting this result into Eq. (39) gives

exp( —x') q(L, x)
Ms(x) = 1+

Qrr 4G

1 1
) -sr~(X/x, )T(x,) )e„(43)

4G/w ~ r.
where'

( L ) f'~* (cosh' —1)
~(L,x) =2(2x —1) ini

t1.26) ~s t

1 2$
+6x'——(cosh2I.x—1)——sinh2xL,

L2 L

(cosht —1) (2Lx)' (2Lx)4

+ +
2 2

D. Evaluation of the lntegrals

The integrals E(x) and E(L,x) which occur in ex-
pressions for the multiple scattering distributions de-
rived above can easily be evaluated by numerical means.
1V(L,x) in particular can be evaluated conveniently for
values of L= ,' or -'„and -for such values of L Eq. (43) is
accurate. These integrals do not depend on the mo-
mentum of the incoming particle but rather on P,
which =1 in the relativistic region. Thus a single com-
putation is sufhcient for all relativistic momenta. For
di6'erent thicknesses, or atomic number, the form factor
is changed only through the change in xs in Fs (x/xs).
Table I gives the function T(x,X))t ' for various values
of x at grid spacings of ~ for X. Table II gives the values
of the function q(L, x) for L,= sr for relevant values of x.

E(x) and E(L,x) have been evaluated numerically
for the 2-cm and 5-cm lead cases for grid spacings of
hx=~~ and ~, by using Weddle's rule. "Comparison of
the results for the two grids shows the largest numerical
errors occur for the small values of x where the correc-
tion term is unimportant. For larger values of x (x)3)

'In our earlier communication by the same title, Leon N.
Cooper and James Rainwater, Phys. Rev. 95, 1107 (1954),
g(I„x) was given as 2(2x —1)q(s)=2(2x' —1) ln(s/1. 26) which
was a sufFiciently good approximation in the example there
considered.

' H. Margenau and G. M. Murphy, The Mathematics of Physics
and Chemistry (D. Van Nostrand Company, Inc., New York,
1943), p. 461.

the change in the numerical results for grid changes
from —,

' to ~ is less than 2 percent. In all, the errors in
the distribution due to numerical errors resulting from
the integration, for a grid of ~, appear to be less than
1 percent.

For very large values of x, asymptotic formulas can
be developed. For a form factor which decreases asymp-
totically as const/x" ', the asymptotic expression is

n(v+1)
o'sr os 1+ +' ' '

4x'

Such expressions give reasonably accurate results for
x) 6 (5 percent or better). The procedure described
near the end of section 2 is also readily adapted to this
method for a quick graphical correction procedure to
obtain Ms(x) from the single scattering law. For real
atoms at the larger angles incoherent scattering pre-
clominates so that the form factor becomes S~(te/ps)
=Z—'. Then the multiple scattering distribution is
given by the asymptotic expansion of the Moliere dis-

- tribution multiplied by Z '. This is

3 45.M s(x)dx =—1+—+ +
Z x' 4@4

The results presented in this section have included
only the first powers in (2G) '. It is possible to obtain
the next order, but in view of the large uncertainty in
the nuclear form factor P~(ie/tss) it was not considered
worthwhile at present to consider this term.

We wish to thank Professor Robert Serber for helpful
discussions of the single-proton form factor. We also
wish to thank Miss Hilda Oberthal for her assistance
with the computations of the results of the modified
Moliere theory.

APPENDIX A. THE SINGLE-SCATTERING LAW

The single scattering laws used in the calculations
were obtained in the following way. The Rutherford
formula, modified at small angles due to electron shield-

ing, is given in Eq. (3) following Moliere. When nuclear
extension is considered, this must be multiplied by a
nuclear form factor Frr(p/qo) which contains a part
representing elastic coherent scattering plus a part rep-
resenting inelastic scattering, PA-(p/ps)=J s (y/ff, )
+F~r(p/ps). In principle, if the nuclear wave functions
were known exactly, one would prefer to calculate Il&

by an exact phase shift analysis for spin —,
' particles,

and calculate P& by considering in detail all of the
possible final states of the scattering system. However,
the nuclear charge distribution and the nuclear wave
functions are not known exactly, and, in fact, measure-
ments of F~~ for fast electrons" are providing valuable

"Pidd, Hammer, and Raka, Phys. Rev. 92, 436 (1953);
Hofstadter, Fechter, and McIntyre, Phys. Rev. 92, 978 (1953);
L. I. Schiff, Phys. Rev. 92, 988 (1953);Hofstadter, Hahn, Knud-
sen, and McIntyre, Phys. Rev. 95, 512 (1954);Yennie, Ravenhall,
and Wilson, Phys. Rev. 95, 500 (1954).
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TAnzz I. Values of 7'(x,&)X '= (expl —(x+X)'}+expL—(x—X)')—2 exp( —x'))X '.

0.25
0.50
0.75
1.00

1.25
2.50
1.75
2.00

2.25
2.50
2.'?5

3.00

3.25
3.50
3.75
4.00

4.25
4.50
4.75
5.00

5.25
5.50
5.75
6.00

6.25
6.50
6.75
7.00

7.25
7.50
7.75
8.00

8.25
8.50
8.75
9.00

—7.755—3.539—2.040—1.2642

X10 '
—8.094—5.301—3.557—2.454

X10~
—17.447—12.775—9.612—7.406

X10~—5.826—4.665—3.793—3.125

X10~
—2.605—2.195—1.8662—1.6000

X10-'
—13.821—12.021—10.520—9.259

Xio-3
—8.192—7.283—6.503—5.831

X1O-'
—5.248—4.741—4.297—3.906

X10-3
—3.562—3.257—2.985—2.743

2.793
1.1875
0.5936
0.2826

X io~
10.751
1.3329—3.087—4.597

X10~—4.619—4.034—3.313—2.657

Xio—2.125—1.7116—1.3942—1.1494

X10 '
—9.584—8.074—6.865—5.886

Xio-'
—5.085—4.422—3.870—3.406

X10 '
—3.014—2.679—2.392—2.145

Xio-
—1,9307—1.7440—1.5806—1.4370

xio-3
—1,3103—1.1980—1,0983—1.0092

xio-'
10.540
5.656
4.113
3.314

Xio '
2.730
2.199
1.6845
1.2042

X10~
7.926
4.7499
2.564
1.2268

xio-'
5.039
1.6040
0.19227—0.28618

Xio 4

—3.947—3.808—3.370—2.921

Xio 4

—2.530—2.201—1.9268—1.6959

xio-4
—1.5004—1.3339—1.1911—1.0680

X10-'
—9.613—8.683—7.869—'?.155

Xio '
—6.524—5.965—5.468—5.025

X10~
1.9112
1.3507
1.4421
1.8069

X10~
2.382
3.116
3.90/
4.595

X10~
5.000
4.983
4.516
3.703

Xio-
27.36
18.159
10.800
5.744

X10 4

27.27
11.539
4.341
1.4455

Xio '
42.04
10.120
1.4347—0.5713

Xio '
—9.050—8.813—8.000—7.193

X10 '
3.650
3.649
6.079

12.319

X10 4

2.659
5.719

11.810
22.89

Xio '
4.106
6.746

10.079
13.625

X io~
1.6598
1.8165
1.7814
1.5625

Xio-'
12.237
8.547
5.31/
2.943

X1O-4
14.486
6.335
2.460
0.8479

X10 '
25.93

'?.029
1.689
0.3591

X10 8

6.729
1.0809
0.1195

X10 '
0.8463
1.2620
3.385

11.251

Xio '
0.3999
1.4178
4.827

15,426

Xio-'
0.4561
1.2355
3.044
6.784

X10 3

1.3625
2.458
3.975
5.748

X10-'
7.423
8.547
8,765
8.000

Xio '
6.492
4.681
2.997
1.7031

X10 4

8.586
3.838
1.5208
0.5340

X10 '
16.610
4.576
1.1162
0.24103

X10~
46.07

7.792
1.1660
0.1543

X10
0.2504
0.5793
2.537

13.887

X10 9

0.08138
0.4756
2.670

14.067

X10 '
0.6858
3.062

12.438
45.71

X10 5

1.5136
4.503

12.003
28.62

X10-'
6.093

11.567
19.558
29.43

X10 '
3.924
4.681
4.941
4.630

X10 3

3.848
2.836
1.8465
1,0726

xio-'
5.500
2.498
1.0048
0.3577

X10 '
11,273
3.143
0.7756
0.1693

X 10
0.02241
0.2159
1.9982

1'?.360

X10—so

0.13953
1.0273
6.879

41.68

Xio '
17.2276
1.1161
4.905

19.283

X10 5

0.6769
2.118
5.906

14.65

X10 4

3.232
6.335

11.026
17.031

X10 '
2.326
2.836
3.055
2.916

X10-'
2.465
1.8461
1.2200
0.7185

Xio '
37.33
17.162
6.981
2.512

information concerning the nuclear charge distribution.
In particular, mu-mesonic x-ray studies, "fast electron
scattering, " and other experimental results"" which
are sensitive to the nuclear charge distribution, all

agree that the nuclear charge distribution is more com-
pact than had previously been believed to be the case.
For a nuclear charge distribution p(r)=ps for r(R
=rsA', and p(r) =0 for r)R, the radius R has clear
m.eaning and a best match to the above experiments

»Val. L. Fitch and James Rainwater, Phys. Rev. 92, 789
(1953); L. N. Cooper and E. M. Henley, Phys. Rev. 92, 801
(1953); John A. Wheeler, Phys. Rev. 92, 812 (1953); D. L. Hill
a,nd K. W. Ford, Phys; Rev. 94, 1617 and 1630 (1954}."F. Bitter and H. Feshbach, Phys. Rev. 92, 837 (1953);B. G.
Jancovici, Phys. Rev. 95, 389 (1954); D. C. Peaslee, Phys. Rev.
95, 717 (1954).

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

q(l. ,x)

3.238
1.595—3.218—11.339

-22.07—34.65—47.40—57.48—60.35

gives r0=1.0 to 1.2)&10—"cm for not too small A.
Elementary considerations of quantum mechanics
show that such a model cannot be strictly correct, and

TABLE II. Values of q(L,x) for L= —,'. (Eq. (43).g
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3
F&e(y) = —(siny —

y cosy)
3

-2

(A2)

which gives diffraction minima at y=4.49, 7.7, etc.
SchifP' in particular has considered the form of F&e(y)
in Born approximation for various simple analytic
forms for p(r). We note that F~e is of the form of the
square or a real amplitude term, and thus gives diGrac-
tion minima when the amplitude changes sign. For dis-
tributions sufFiciently peaked in the center and with a
gradual "tailing-off, " the amplitude may not change
sign and E&~ will be a smoothly decreasing function of
y. It is readily seen from Eq. (A1) that F~c(0)= 1 and,
by expanding the exponentials and using inversion
symmetry through r=0, that the leading term in the
decrease of F~e for small y depends on (r'). In this
connection it is interesting to note that the widely
used Williams' formula uses U(r&= (Zer/r)(1 e2"I")—
for which p(r)= (4po/3)(R/r)e '"'", and (r')=3R'/2.
Here pp is the charge density for a uniform nucleus of
radius E. Although Williams implied that this distribu-
tion closely approximates a uniform model, and it has
been taken by others' as corresponding to the uniform

model, it actually corresponds to a rather strongly
peaked distribution about r=0 with (r') larger by a
factor of 5/2 than for a uniform distribution, and thus a
correspondingly more rapid initial decrease of Ii~~ for
small y. For larger y it gives a uniform decrease of F&~
with y with an asymptotic form 16/y4-'for large y. In
the region of large y Eq. (A2), between minima, has
a steady decrease with y which can be estimated by neg-

lecting the siny term and setting
~
cosy( =1 to give an

p(r) must be a continuous function of r. In this case,
although- the di8erent experiments are not always sensi-
tive in the same manner to the shape of p(r) „ the e4INiea

lent uniform model rp is usually taken to be that value
which gives the same (r') as for the non-uniform p(r)
Prior to late 1953 the value of rp would have been con-
sidered to be "well known" and of magnitude 1.4 to
1.5X10 "cm. Thus all of the comparisons' ' between
the experimental and expected multiple-scattering dis-
tributions used this larger value of rp.

Until recently it has been customary to calculate
FN~ by using the Born approximation, which gives a
linear superposition of the scattering amplitudes of the
individual protons so the scattered intensity is of the
form

A'~(i~+, exp( —i4I r;) ~i)~'=Z'A'Five, (A1)

where A' is the scattering intensity of a single proton,
4I=k —ko represents the vector momentum change in
scattering, r; is the position coordinate of the jth proton
in the nucleus, and the evaluation is for the ground
state

~
i) of the nucleus. Thus (Five)' is just the Fourier

transform of the nuclear charge distribution. For a
uniform nuclear model, letting y= y/po, this gives

asymptotic form 9/y', which is below that for the
Williams distribution.

The detailed phase shift calculations of Yennie,
Ravenhall, and Wilson, using various assumed p(r),
show that the shaPe of Five(y) is energy-dePendent
and significantly diGerent from the Born approxima-
tion value for high-Z materials. In particular, the
scattering amplitude is a complex number which circles
the value zero in the complex plane when "changing
sign. "Thus the "diGraction minima" are largely miss-
ing, or are greatly reduced in magnitude compared to
the Born approximation results. This feature is also
apparent in the experimental results and had led to an
initial "Born approximation interpretation" that p(r)
must resemble an exponential distribution. The inter-
pretation favored at the time of this writing is that
p(r) can be fairly constant for values of r containing
most of the charge distribution, with a gradual dropping
oG at the "surface. "

In view of the above results, and with the considera-
tion that we wish to choose a form for F~~ which will
not underestimate the expected multiple scattering due
to the known electromagnetic interaction of mu mesons
with protons in examining the results of experiments
investigating possible "anomalous scattering, "we have
chosen the following form for F~~. For y=0, 1, 2, 3 we
choose P~~= 1.00, 0.82, 0.50, and 0.15 to approximate
Eq. (A2) after the effect of the first diffraction minimum
is "removed. " A smooth curve through these points is
then joined smoothly to F&a=12/y4 for y&4, this
being between the Williams formula and the value ob-
tained above for a uniform distribution. In principle
this should be applied to the cross section for total
angle scattering rather than for projected angle scatter-
ing as we do here. The consequences of this approxima-
tion are discussed following the discussion of 8~1.

The calculation of the inelastic scattering is quite
dificult to perform exactly. Amaldi, Fidecaro, and
Mariani" have carried out detailed calculations of the
inelastic and elastic scattering expected, using a par-
ticular independent particle nuclear model. For incident
particles of very high kinetic energy and cp 100 Mev,
a Born approximation treatment similar to that used
in the theory of x-ray scattering by atoms should be
reasonably accurate and gives the result, as for x-rays, "
that F~r=Z '(1 F~c) times the for—m factor for the
scattering by a single proton. This last factor must be
included if the proton is not effectively a point charge
(due, say, to meson-cloud effects). Amaldi ei a/. 44 have
particularly emphasized this point and have calculated
the expected eGect of the proton "size" on the basis of a

.simple model. Experimeritally, however, it seems that
the proton charge distribution should be -treated--~s
being confined to. a surprisingly small volume on the

'4 Amaldi, Fidecaro, and Mariani, Knovo-eimento 7, 553 (1950).
'N See A. H. Compton and S; K, -Allison, X-ruysin Theoryued

Eloper~eat {D.Van Nostrand and Company, Inc. , New, York,
j.935), Chap. 3.
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basis of electron scattering experiments, " and, by
inference, from the interpretation" of the experiments
on the neutron-electron interaction. The experiments
show that the proton form factor is essentially unity for
op~200 Mev and at angles ~90', so we take it to be
essentially unity for cpio values considered in this paper.
For large enough values of cpio this factor will eventually
become important and require consideration.

If the single-proton form factor is set equal to unity,
the above expression for Ii&1 can be understood by
analogy with x-ray scattering where the "inelastic"
scattering corresponds to modified Compton elastic
scattering, where the recoil momentum is taken up by
a single (moving) electron rather than by the atom as a
whole. The 6nal states of importance correspond to
recoil electron momenta centered about the photon
momentum transfer, modified by the initial electron
momentum distribution, which is given by the Fourier
transform of the ground state wave function of the
atom. For charged particles of kinetic energy and
cp»100 Mev, and for y»1, the final states of im
portance should be attainable with moderate energy
loss, so the expression for the total scattering intensity
in a given direction can be written with fair accuracy
by summing over-all final states, keeping q, for a given
angle, the same as in the elastic case.

Z'PFNc+Fivr J
~ Zf I (f I Z i exp ( iq' ri) I i) I

'
=As(iIP exp(iq r„)P exp( —iq r )Is) (A3)

by closure. For an independent particle model Eq. (A1)
and Eq. (A3) lead to the above quoted result for Fivr.
Thus we set

5:iv=F~o+Fiv =F~o+Z '(1 Fiv ) (A—4)

The remaining point to be considered is the error
introduced when F~ is applied to the law for projected
(rather than total) angle scattering. For a do/dQ law
varying as y ", the projected angle single scattering
law is obtained by multiplying do/dQ by ioc(e), where

c(rs) = sr/2, 4/3, 16/15, 5s./16, and 32/35 for rs=4, 5, 7,
8, and 9 respectively Lc(e) =2Js "cos" 'pdioj. In
going from n=4 for Rutherford scattering to n=8,
which is obtained when the asymptotic form of Ii&~
multiplies the Rutherford scattering, c(rs) is reduced by
the factor of 5/8. This represents an extreme situation
since 5& is more slowly varying. We note that the
above eGect can approximately be taken into account
by choosing rp 10 percent larger than otherwise when

applying 5& to the law for projected angle scattering.
In the examples we choose rp=1.1)(10 " cm, corre-
sponding to re=1.0X10 "cm for do/dQ. In view of the
uncertainty concerning the exact form for the true

'6 J. A. McIntyre and R. Hofstader, Bull. Am. Phys. Soc. 29,
No. 6, 19 (1954); Hofstadter, McAllister, and Wiener, BulL Am.
Phys. Soc. 29, No. 6, 19 (1954).

"See L. I. Foldy, Phys. Rev. 87, 675 (1952) for a discussion of
this subject and for reference to earlier papers.

%sr(y), we consider this approximation to be adequate
for the present.

APPENDIX B. DISCUSSION OF THE EXPERIMENTS' '
ON MU-MESON SCATTERING

The interest of the authors in the multiple-scattering
theory was mainly stimulated by the possible conse-
quences of a strong anomalous mu-meson —nucleon in-
teraction on the interpretation of the mu-mesonic x-ray
experiments. " Cosmic-ray experiments on the scatter-
ing of fast mu mesons by nuclei suggested that some
anomalous scattering exists, but the interpretation of
the experiments are not completely unambiguous, and
there is considerable disagreement on the magnitude
and existence of the efI'ect. When these experiments
were analyzed, the expected multiple-scattering distri-
bution for an extended nucleus was obtained by various
approximations such as comparing the experimental
results with the predictions of the Moliere and Olbert
theories, or by using the Williams theory. In all cases
the old "large" nuclear size was used which gives (r')
twice that favored by recent experiments. Thus the
experiments were always analyzed on a basis that under-
estimated the Coulomb multiple scattering. Aside from
the results of the experiments discussed below, we note
that the mu-mesonic x-ray results indicate that any
anomalous energy independent nuclear potential for
the mu meson can in its effect at most be equivalent to a
slight change in the choice of the nuclear radius when
calculating the Coulomb interaction. This could not
explain any signi6cant portion of the anomalous
scattering reported in some of the experiments. Also,
experiments on the nuclear interaction by Armis et ul."
can be explained without invoking any anomalous in-
teraction. Such an "anomalous interaction" would have
to be strongly energy-dependent and thus only appear
strongly at high energies to explain the low-energy
experiments.

Amaldi and Fidecaro' investigated the large-angle
scattering of fast mu mesons in the energy bands 200
Mev to 320 Mev and )320 Mev, using a counter hodo-
scope. They compared the large-angle multiple scatter-
ing in iron and lead, emphasizing the iron results as
far as anomalous scattering is concerned. About 5X10'
incident mesons were counted and results for iron were
consistent with no anomalous interaction. In their
series 2 run on iron 249, 168 particles were incident and
3 scattered particles were observed in each energy band.
When an extra 200 g/cm' of bricks were placed above
the apparatus to decrease the number of protons etc. ,
204, 914 particles were incident with one scattered
count in the lower energy band and none in the higher
energy band. The latter numbers are about the expected
values for scattered protons, etc., with that amount of
61tering. They set an upper limit for "anomalous scat-
tering" of 4.5X10 "cm'/nucleon in the lower energy
band and 2.3X10 "crn'/nucleon in the upper energy

's Annie, Wilkins, and Miller, Phys. Rev. 94, 1038 (1954).
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band. These values assume isotropic scattering for the
anomalous part.

Whittemore and Shutt investigated the multiple
scattering of negative mu mesons in 5 cm of lead for
particles having 0.3 Bev ~& cp ~& 3.1 Bev using two cloud
chambers and a magnet for momentum analysis. Their
experimental points essentially fall on the Scott-
Snyder (Moliere) curve for cput& 13 Bev degrees, with
one point at 17 Bev degrees a factor of about two below
the Moliere curve (but with a large statistical un-
certainty). From Fig. 5 these points would also fall
above our theoretical curve. The principle difFiculty
in the interpretation of these results is the question of
the uncertainty that only mu mesons were involved.
It is of interest in this connection that the later experi-
ments were conducted underground, or, in one case,
using 1 meter of lead absorber above the cloud chamber
to assure greater beam purity. Also we should like to
point out that measurements" on the scattering of
cp 200 Mev m mesons on Pb show differential cross
sections for elastic plus inelastic scattering which are
always 0.1 barn or larger. By contrast, the elastic
scattering experiments using electrons of comparable
momentum give differential cross sections which are
~10—' barn at 120', a factor of 10' below the +-meson
cross section. This contrast is admittedly extreme, but
it emphasizes that one should not underestimate the
the possible importance of small percentages of beam
contamination in such experiments.

The remaining experiments used greater absorber
thickness at sea level, or operated underground to
minimize beam contamination. They have the common
feature, however, that the momentum distribution of
the incident particles was not measured directly, but
was assumed known from other sources. Any error in
the assumed known momentum distribution would tend
to affect all of these experiments in a similar fashion.
The fact that the observed scattering distributions are
not given directly as a function of p p makes comparison
of their final curves with our calculated M(p) dificult.

George, Redding, and Trent measured the multiple
scattering of penetrating cosmic-ray particles in 2-cm
lead plates at 60 m.w.e. (meters water equivalent)
underground using a counter-triggered cloud chamber.
Three experimental arrangements were used for the
triggering counter telescope involving 0, 5, and 10 cm
lead below the cloud chamber. The particles were all
assumed to be p mesons and the momenta of the indi-
vidual particles were known only to be above the cutoff
values determined by the lead absorber thickness. The
analysis was made by assuming that the energy distri-
bution was Rat for E«SO=12 Bev. The experimental
distribution cV(p) was compared with one calculated
using a weighted average of Gaussian functions (one for
each energy) in accord with the above prescription for
the assumed energy distribution. No anomalous scatter-

"John O. Kessler and Leon M. Lederman, Phys. Rev, 94,
689 (1954).

ing was observed using 10crn of lead, but a small amount
of "anomalous scattering" appeared at larger angles
when 0 or 5 cm lead was used. They conclude that no
anomalous scattering is observed for kinetic energies

200 Mev, and some may exist for lower energies. It
is interesting to note that the curves for 0 and 5 cm of
lead show essentially the same excess over their theo-
retical curves whether point-nucleus scattering is
included or not. It would be desirable to have a direct
measurement of the momentum distribution of the
incident particles.

Leontic and Wolfendale used a multiplate cloud
chamber at sea level with a counter telescope that re-
quired that detected particles traverse 1 meter of lead
above the chamber, six 2-cm lead plates inside the
chamber, and 0, 5, or 10 cm of lead below the chamber.
It was assumed that the 1 meter of lead excluded all
but p, mesons from the measurements. The main an-
alysis compared the maximum scattering in any of the
center four plates with the rms angle for the four
plates. The analysis made the assumption that the basic
multiple-scattering law for any given particle should
effectively be a Gaussian at all angles if no anomalous
scattering were present. By an ingenious analysis they
showed that the results were inconsistent with this
assumption. A further analysis assumed that an
"anomalous scattering Gaussian" would be super-
imposed on the normal multiple scattering Gaussian in
some small fraction of the plate traversals. They then
obtained a best matching of parameters. Unfortunately,
the selection criterion for considered events was biased
in favor of selecting cases where "anomalous scattering"
(or the non-Gaussian multiple-scattering tail) occurred.
Dr. Wolfendale informs" us that a preliminary re-
examination suggests that the essential features of the
results will not be seriously altered on correcting this
bias factor. Ke have not seen the details of this re-
examination.

The measurements of Leontic and Wolfendale have
been extended by McDiarmid" using a different and
interesting analysis. The results seem to contradict
those of George, Redding, and Trent in that no anoma-
lous scattering is observed for low energies. At higher
energies the experimental results are between the
Moliere and Olbert multiple scattering curves for a
(partially) assumed distribution of incident particle
energies. The results are closer to the Moliere than to
the Olbert curves. We have not, however, performed the
detailed folding together of our final curve with their
derived momentum distributions as is necessary for a
quantitative comparison.

References to earlier papers will be found in the
articles discussed above.
"I.B.McDiarmid, (private communication). We wish to thank

Professor G. D. Rochester and Dr. A. W. %olfendale for corre-
sponding with us concerning the analysis of the experiments of
the Manchester group on p-meson scattering. The paper by
McDiarmid is scheduled for publication in the Philosophical
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