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and other details of nucleus production can be found
in work by Steinberger and Bishop, ' Lax and Feshbach, '
Marshak, ' and Littauer and Walker. ' The s /s.+ ratios
measured here do not indicate any variation with
energy or angle. However, the result of Littauer and

s M. Lax and H. Feshbach, Phys. Rev. 81, 189 (1951).
s R. E. Marshak, M'esoN Physics (McGraw-Hill Book Company,

Inc. , New York, 1952), Chap. 3.' R. M. Lit tauer and D. Walker, Phys. Rev. 86, 838 (1952).

Walker' at 135' and 65-Mev meson energy (1.06&0.02)
indicates that such a variation exists. Other experi-
mental s. /rr+ ratios can be found in work by Peterson
e1 al. ,s Feld et al. ,

4 and Carothers. '
The author wishes to thank Thomas Jenkins,

Thomas Palfrey, and Professor Robert R. Wilson for
their contributions to these results.

s J. Carothers, Phys. Rev. 92, 538 (1953).

PH YSI CAL REVI EV7 VOLUME 97, NUM BER 2 JANUAR Y 15, 195$

Synchrotron Oscillations Induced by Radiation Fluctuations*
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Phase oscillations of electrons in a high-energy synchrotron are induced by the radiation of quanta.
These induced oscillations set a limit to the damping of electron bunches. This limiting bunch size is sufhcient
to influence the radial aperture and the radio-frequency voltage required at low beam intensities, and to
reduce energy loss by coherent radiation at high intensities.

I. INTRODUCTION

HE radiation of electromagnetic energy by high-
energy electrons in a synchrotron' ' not only

requires that the radio-frequency system supply energy
much in excess of that required for acceleration, but
also causes a damping of the phase oscillations in
normal guide fields. ''' According to the results of
3ohm and Foldy, ' in a synchrotron with a guide field
which increases linearly with time, phase oscillations
present at an energy Eo will have their amplitude
reduced by the factor exp[ —(E' Es')/Es'] at an-
energy E. The energy Ed may be several hundred Mev
for a 1.5-Bev synchrotron with typical design param-
eters. Such strong damping above Ed may lead to
electron bunches so small that energy loss due to
coherent radiation ~ would set a serious limit to the
maximum attainable beam intensity.

We present here a calculation which shows that the
radiation damping will not decrease the spread in phase
of an electron group below a certain minimum. This
minimum is determined by the statistical fluctuations
in the radiated energy loss—because of the emission of
quanta. The effect is, fortunately, sufBciently large to
preclude, in general, serious diAiculty from coherent
radiation.

*This work was supported in part by the U. S. Atomic Energy
Commission.' D. Iwanenko and L Pomeranchuk, Phys. Rev. 65, 343 (1944).

~ J. Schwinger, Phys. Rev. 70, 798 (1946).
s N. Frank, Phys. Rev. 70, 1/7 (1946).
4 L. Schiff, Rev. Sci. Instr. 17, 6 (1946).
~ D. Bohm and L. Foldy, Phys. Rev. 70, 249 (1946}.
I. Nodvick and D. Saxon, University of California at Los

Angeles Technical Report No. 21, May 1954; Phys. Rev. 96, 180
{1954).

r J. Schwinger (1945, unpublished).

We may use the following qualitative arguments to
' estimate the magnitude of the energy fluctuations

produced by photon emission from the circulating
electrons. The square of the energy Quctuation hE is
approximately equal to the product of the mean square
quantum energy e~' of the radiation and the average
number I of quanta emitted in one damping-time
interval of the energy (phase) oscillations. This average
number is ratio of the total energy radiated in one
damping period to the average quantum energy. Using
the relations of reference 5, we find

N=f(E/e )

where E is the electron energy and f is a number
which depends on the properties of the guide field and
will in general be = 1. We have then that

(~EIE)'=f(er/E).

From reference 13 the typical quantum energy may be
taken as

e,= (Itc/r) (E/mc')',

where r is the orbit radius. We have then that

(hE/E)'= f(h/mc) (1/r) (E/mc')'.

The oscillations in radius and phase are simply related
to the energy Quctuations.

We present below more detailed calculations, in-

cluding also the eGects of harmonic accelerating fields
and noncircular guide fields. We consider specifically
only synchrotrons with constant-gradient ("weak-
focusing") guide fields.
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II. EQUATIONS OF MOTION

We consider a magnetic guide Geld composed of
circular sectors connected by field-free regions of total
length L. In the circular sectors the synchronous elec-
trons move with a radius r, and an angular velocity co,

determined by the (angular) frequency of the acceler-
ating system cats ——ko~,/X, where k is an integer (the
harmonic number), and X= 1+L/2rrr, . We take further
that the guide field at the synchronous orbit increases
linearly with time and that the field varies near r, as
(rlr. )

Following Blachman and Courant, we may write the
equations which determine the phase oscillations in
terms of small deviations from synchronous values as

hEIE, = (1—n) (Ar/r, );
hr/r, = —Are/o& = —('A'/k) (1/co,) (Cth/dt), (2)

O'P ke&, d E, dP
—+ —(hE) ~——=0,

dt' (1—e)X'E, dt E, dt
(3)

where E, is the constant rate of increase of the synchro-
nous energy.

The rate of change of the energy of the electron is
given by the power received from the radio-frequency
system and from the variation of Aux linking the orbit,
less the power lost by radiation.

(d/Ch)AE=P. (y,dy/dt) P', (dy/—dh, t) E., —(4)

where the t-dependence in I'~ represents the variations—due to quantum emission —in the rate of energy loss.
As the period of a phase oscillation is long compared to
a revolution period, we follow the usual procedure and
take for dE/Ch its average over one revolution.

The power received by the electron is then (correct
to first order terms)'

P (p,dp/dh) =P,+P,Ap cot/,
+ (P- E.) (~/k~. ) (de/—ch), (3)

where th, is the phase of the synchronous electron and

P, is the power received by it from. the radio-frequency
system. We have for convenience taken the Qux linking
the equilibrium orbit to be zero. Equation (9), below,
would remain unchanged in any case.

We represent the power radiated by the electron as
the sum of its average value over one revolution, which

varies only slowly with time, and a remaining term p(t)
which contains the rapid variations due to quantum
emission. We ignore the dependence of p(t) on drk/dt

where p is the phase angle of the electron with respect
to the accelerating field, and E is the energy of the
electron which is assumed to be much greater than mc'.

Differentiating and combining Eqs. (1), (2), we have

using instead the function pertinent to the synchronous
electron:

»(c4/dh, h) =(P (c4/ch))"+ p(h) (6)

The justification —and necessity —for such a procedure
in problems of this type is given by Chandrasekhar. "

The average power' ' is given by

(
h'dP~ 4~es) E y4 c

E dt) s, 3 r Emc') 2mr jL
where c is the velocity of light. We may expand this
for energies near E, and, using (1) and (2), obtain

where P„, is the average power loss (at the energy E,)
by the synchronous particle.

Combining Eqs. (3), (4), (5), (6), and (8), we have
the differential equation of the phase oscillations.

csy 1 dP
+[(3—4N)P„.+ (1—~)E,$

dt' (1—n,)E, dt
k G08

+— D' ~ cot4.~4 —p(t)]=o (9)
X' (1—n)E,

In Eq. (9) the coeKcients of @/dt and hp depend on

E, which varies slowly with time. We may treat the
coefficients as constant provided that the change in E,,
is small in one damping time constant (i.e. , a time

equal to the reciprocal of the coeKcient of ~/dt).
Since I'~, increases as E,4 such a treatment will be
valid for energies appreciably above a critical energy E,
defined by

P„(E,)= (1—rs) E,/(3 —4m). (10)

For energies below E„ the equation may be treated

by the methods of references 5 or 8, with which one
obtains the usual adiabatic damping of the phase
oscillations.

Restricting ourselves to energies above E, we may
neglect in Eq. (9) the terms in E,. We have then

d'P/dt'+ pdg/dt+f1'iP= g (h),

4'=~4 =4 —4.,

0'=aP, cot/„

g(h) =aP(t),

8 N. Blachman and E. Courant, Rev. Sci. Instr. 20, 596 (1949).
L.J. Laslett kindly pointed out that in the original manuscript

the term in E, had been omitted from this equation. "S.Chandrasekhar, Revs. Modern Phys. 15, 1 (1943).
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III. FLUCTUATION EFFECTS Evaluating the definite integral, "we obtain

We now ignore any oscillations in phase which may
be present initially (and which would be rapidly
damped) and determine the phase oscillations which
arise due to the Quctuation in the energy loss as repre-
sented by g(t). We compute only the equilibrium value
of these oscillations. It may be expected that they will
reach this equilibrium value in a time about 1/p.

The driving function g(t) may be expressed as an
infinite sum, each term of which represents the emission
of a quantum of energy e; assumed to be emitted
instantaneously.

)" »'u(»)d»= (55/2'31)P„», .
0

Combining the results of (13), (14), and (18), and
recalling the definitions of (11), we obtain finally:

55%3 kc k tan4t, mc'
Av

2' e' X (3—4N) E,
(19)

where, in keeping with our approximations, we have
set I',=I'~, . We shall use this result later to compute
the energy loss due to coherent radiation by the electron
bunch.

It will be recalled that (19) is applicable for energies
greater than E, defined by (10). We may obtain an
ex licit expression for E„using )from (7)]

g(t) =a p»;4i(t —t;) —g.

The resulting phase oscillations will be given by

P(t) =a P»,II(t t~) —y„—

2c e'(E, $4

3 X rP & mc')
(2o)

3) r,' (1-u) . --:
jv S ~

mcs 2 c e' (3—4rt)
(21)

d$,2) u (»)d» I 4t2»2II2 (t)dt It is perhaps more convenient to express (21) in terms
of the net energy gain per turn,

p
where H(t) is the response to a unit impulse of the
system described by Eq. (11).

Let u(»)d» represent the number of quanta per unit
of time of energy between» and»+d». Applying
Campbell's theorem, " the contribution of these quanta
to the mean square Quctuation in phase is

if it is assumed that the quanta are emitted statistically
independently. "The total Quctuation in phase is

444Ep ——X (2srr, /c) E,.

2 g2 »'u(») d» IP (t)dt. (13)

'3 (1—ss) r, dEp '

mc' 4sr (3—4rs) rp mc'
(22)

The integral over t is conveniently expressed as

1 t+" da 1

2sr" „~Q'—o'+ipo ~' 20'p

The quantum distribution function u(») is related to
the power spectrum p(») of the radiation by»u(») =p(»).
Taking the power spectrum given by Schwinger, "

where ro is the classical electron radius. It may be
expected that for energies above E, the relative error
in (19) will be of the order of AEp/DE~, where DE„ is
the energy radiated in one turn.

The oscillations in radius associated with the Quctu-
ations in phase may also be of some interest. From
(2) we have

with

3'~' I'
u(») = — Kpt p(st) dstdx

87K 6c ~ ~ j&c
(15) The damping of the phase oscillations in one cycle is

very small. "We may, therefore, write

»,= (3/2) hos, (E,/mc')'.

The integral over» in Eq. (13) is then

(3 t /Sm')P&4»4 a Eptp(rt)drtdse.

((de'/dt)s)A„= Os(lt'P)A

We have then, for the mean square Quctuation in radius,

(
(~r)' 55 Itc 1 rp (E

r '
A, 2%3 e' (1—ss)(3—4N) r, &mes)

"See, e.g., S. 0. Rice, Bell System Tech. J. 23, 282 (1944).
'~ See appendix for further discussion of this point.
's J. Schwinger, Phys. Rev. 75, 1912 (1949)& Kqs. (11), (16).

'4 G. N. Watson, Besset PsssActsor4s (McMillan Company, New
York, 1945), p. 388.

"The logarithmic decrement is =(DEr/E, )& See, e.g. , refer-.
ence 5.
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IV. NUMERICAL EXAMPLES

Design parameters for a 1.5-8ev synchrotron might
be

r, =375 cm, k=4, X= 1.25,

AEO= 750 volts, n= 0.6.

For these values the Ructuations will become significant
above E,=380 Mev [using (22)j and will become
dominant by about E,= 700 Mev.

The mean square fluctuation in phase will then be
given by

Q'2)A. =1080(mc'/E, ) tang, = (0.56 Bev/E, ) tang, .

For 1.5 Bev the root-mean-square angle is

(P)A„&=0.59(tang, )&.

Thus, an equilibrium phase angle of about m/6 is
required if electrons are not to be lost due to these
fluctuations. The maximum voltage of the radio-
frequency system must, therefore, exceed 200 kilovolts
(since hE„=120 kev for E,= 1.5 Bev).

The required radial aperture at high energies may
be determined from (23). For the parameters chosen
here,

(
(Dr)' t'E, ~' t' E,

=4.2X10-"1
I
=» 41—

f 2 (mc') (8 Bev)

For E,= 1.5 Bev the root-mean-square spread in radii is

((Ar)')~ ~ ——1.9X10 'r, =0 7cm. . (25)

The effective magnetic aperture must be many (=10)
times this value if loss of electrons is to be avoided.

V. COHERENT RADIATION

Several authors' ' ' have considered the increase in
the rate of energy loss, above that given by P~, due to
the coherent effects of all the electrons in a bunch.
Schiff' ' gives expressions for the case in which the
electrons are spread in a Gaussian distribution about
the equilibrium phase. Since the important contribution
to the coherent radiation comes from long wavelengths,
the results depend on the proximity of metallic surfaces.
If we assume that the mean square fluctuation in the
phase of a single electron represents the longitudinal
spread of a group of electrons, then the additional loss
in one revolution for each electron (due to coherent
radiation) is, in the absence of metallic shielding,

AE,.g
——3'«r'(2/3) (ro/~ )k&N(P)A &mc',

where S is the total number of electrons accelerated.
Using the results above [Eq. (24)] and taking g, =m/4,
we see that the coherent loss per electron is, at 1.5 Bev,

A,E„h——2.5)& 10 'X electron volts.

Typical intensities involve the acceleration of from
10 to 10" electrons. Even for E= 10' the coherent
energy loss is only 2500 ev, which is negligible in
comparison with the incoherent losses. "

If the electron orbits are within a vacuum chamber
which has conducting walls whose separation is less
than (r,/k)(P)A, ' (as would normally be) the coherent
loss is less than the above value. In a typical case the
shielded coherent loss is computed (following reference
6) to be less than 1/50 the nonshielded loss.

This work profitted from discussions with M. Bloch,
Leverett Davis, Jr., R. P. Feynman, R. V. Langmuir,
Using the results above [(24)g and taking g, =~/4,
Robert L. Walker, and Kenneth M. Watson. L. Jackson
Laslett kindly pointed out the existence of some numer-
ical errors in the original manuscript.

API ENDIX»

The justification for the addition of quantum recoil
effects to a "classical" system is contained essentially
in the work of Bloch and Nordsieck and others. "These
authors show that emissions of individual quanta from
a classical radiating system are statistically independent.

Since we are here interested in the fluctuations in
energy loss in a time interval much longer than time of
emission of a typical quantum, the uncertainty in the
definition of the electron energy is insignificant com-
pared with the calculated energy fluctuations.

Watson" points out that a complete quantum-
mechanical calculation can be performed by introducing
into the equation of the phase oscillation the interaction
of the electron with the radiation field. This results in
replacing g(t) in Eq. (11) by a(ev 8—ev (8)A,), where
v is the electron velocity, 8 is the radiation field

strength, and (8)~„ is its expectation value. An evaluation
of the quantum-mechanical expectation value of P then
yields the result obtained here for the time average.

'6 For intensities as large as 1012 electrons, spreading of the
bunch due to space-charge forces may begin to become significant.

'7 I am indebted to K. M. Watson for the illuminating dis-
cussions which led to the following remarks."F. Bloch a nd A. Nordsieck, Phys. Rev. 52, 54 (1937); W.
Pauli and M. Fierz, Nuovo cimento 15, 167 (1938); R. Glauber,
Phys. Rev. 84, 395 (1951).

'~ Kenneth M. Watson (private communication).


