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It is shown that the only pure states of spin 1 having magnetic moments in agreement with the measured
upper limit for Bigm are (hei g, ggig) i and (hg/g, i/1/g)1 Th. e former is inconsistent with the results of an analy-
sis of the P spectrum of Bi'" with a linear combination of scalar and tensor interactions, while the latter is
consistent. It follows from the acceptance of the correctness of the latter that the relative sign of the scalar
and tensor coupling constants is positive.

1. INTRODUCTION

ARIOUS authors' ' have now shown that it is
extremely dificult to explain the non-allowed

shape of the P spectrum of Bi"'with a mixture of tensor
and pseudoscalar interactions and with the assumption
that the transition is 0—to 0+. On the other hand
Yamada' has demonstrated that it is possible to obtain
this shape, with a mixture of scalar and tensor inter-
actions, for the transition 1—to 0+. It thus appears
that the decay of Bi"' is a case of a first forbidden
transition with non-allowed shape of the type 1—to
0+. From a fitting of the theoretical to the observed
correction factor it is possible to obtain relations in-

volving the coupling constants of the interactions, Gq
and G~, and the various nuclear matrix elements con-
cerned. For most nuclei it is extremely dificult to
learn much about Gq and Gz from these relations be-
cause little is known about the relative magnitudes of
the nuclear matrix elements. However, the ratio of
1'Pe)&r to 1'Pr, one of the quantities needed for first
forbidden transitions, can be calculated very easily if
the initial and final states are spectroscopically pure.
The nucleus Bi"', having but one nucleon of each kind

apart from closed shells, is one of the nuclei most. likely
to satisfy this condition. In addition, it is believed that
for values of atomic number as high as that of bismuth

jj coupling is a good approximation. Ke shall proceed,
then, to find out what can be learned about G~ and G~
when it is assumed that the ground states of Bi" and
Po"' are spectroscopically pure.

Before one can calculate ratios of nuclear matrix
elements it is necessary to identify the configurations
concerned. The most useful piece of experimental in-

formation for this purpose is the demonstration, by
measurement of hyperfine structure, that the magnetic
moment of Bi'" is exceedingly small. ' King and Peaslee'

' H. Takebe, Progr. Theoret. Phys. Qapan) 10, 673 (1953).
g M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1315 (1954).
3 Alaga, Kofoed-Hansen, and Winther, Kgl. Danske Videnskab.

Selskab, Mat. -fys. Medd, 28, No. 3 (1953).
4 M. Yamada, Progr. Theoret. Phys. (Japan) 10, 252 (1953).
e Fred, Tomkins, and Barnes, Phys. Rev. 92, 1324 (1953).' R. W, King and D. C. Peasleet Phys. Rev. 94, 795 (1954).

have shown that the state (hg/g, gg/g)i satisfies this
condition. A great objection to their choice, however, is
that it is expected to lie above the state of spin 0 of the
same configuration. Pryce' has calculated the inter-
action energy, as a function of resultant angular
momentum, for jj-coupled neutron and proton, with
the assumption of forces of infinitesimal range. Such
calculations are very conveniently displayed on a
diagram of the sort used by de-Shalit. In this diagram
the ordinate is energy and the abscissa, o., is a measure
of the strength of the spin-spin forces in the interaction,
attractive or repulsive as rt is +1 or —1; reasonable
values of a are believed to lie in the interval 0 to 0.25.
The de-Shalit diagram for the configuration (hg/g gg/g)

is shown in Fig. 1(a). For all plausible values of n, the
state of spin 0 is far below that of spin 1.

In Sec. 2 the magnetic moments of all reasonable
ground states for Bi"' are calculated. Apart from
(kg/g', gg/g)i, the only other acceptable choice is (hg/g,

iii/g) i . The de-Shalit diagram for this configuration is
shown in Fig. 1(b). For most reasonable values of n
the state of spin 1 is lowest. The low-lying state of spin
10 may well be the long-lived o.-emitting isomer of
Bi'" found by Neumann et al.'

In Sec. 3 the shape of the P spectrum of Bi"' is
considered. This shape is explicable with the ratios of
matrix elements calculated for the assumption that
(hg/g, iii/g)i is the ground state of Bi"', but not for
those ratios corresponding to the assumption of (hg/g',

gg/g) i—for this ground state. Acceptance of the first
choice requires that Gz//G& be positive.

2. MAGNETIC MOMENTS

The magnetic moment of a system consisting of a
proton and a neutron whose angular momenta, j& and

j2, are coupled to a resultant J is desired. The orbital
angular momenta of the proton and neutron will be
represented by E& and l2 respectively. By the methods
of Racah" it is possible to show that the required

r M. H. L. Pryce, Proc. Phys. Soc. (London) A65, 773 (1952).
g A. de-Shalit, Phys. Rev. 91, 1479 (1953).
g Neumann, Howland; and Perlman, Phys. Rev. 77, 720 (1950)."G. Racah, Phys. Rev. 62, 438 (1942).
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where //, „(l&j&) and /I, „(4js) are the magnetic moments,
in the single-particle states indicated, of a proton and
of a neutron respectively. The "Schmidt model" values
of p~ and p,„will be used. "

The question of the choice of single-particle states
has been discussed by Pryce;7 several choices are
almost equally probable. For the proton the shell-
model suggests hg/s f7/s or possibly i&s/s, support for
h9~2 comes from the measured spin and magnetic mo-
ment of Bi"'. For the neutron we have ggj2, i~~~2, or
perhaps k~5~~, no spins of even-odd nuclei in this region
are known. In Table I the magnetic moments of all
states of spin 1 or 2 and of either parity which may be
formed from the suggested single-particle states are
listed.

Because the magnetic moments of all states of even
parity are large, the ground state of Bi" cannot have
even parity. The assignment 1+ would require a P
spectrum of allowed shape, contrary to observation,
but the assignment. 2+, with a second forbidden P-
transition, was at one time thought to explain the spec-
trum shape. " The only states with small magnetic
moments are those with an h9~2 proton; all other states
of odd parity have magnetic moments too large to be
considered. Because of the well-known discrepancy be-
tween calculated and observed nuclear magnetic mo-
ments, none of the cases in the first column can be
excluded, even if the magnetic moment is a little larger
than the observed upper limit. Fortunately the states
of spin 2 —may be rejected because their p spectra,
which have unique shape, are not in agreement with
experiment. Only the two states of spin I in the erst
column need be given further consideration.

"2

3. g SPECTRUM OF Bi"'

The experimental shape of the spectrum which we
shall use is that given by Langer and Price."From their
curve the experimental correction factor was obtained;
the maximum electron energy used was 3.29 relativistic
units. Expressions for the direct and cross terms of the
theoretical correction factor have been given by
Greuling" and Pursey" respectively. If it is assumed
that the interaction is of the form Gs5+GrT, then in
the correction factor there appear three diGerent matrix
elements, among which we write the following relations:

magnetic moment is

1 -~V+1)+j.(j.+1)-j./j.+1)
IJ= /. (itjt)

Z+1t 2j.g
J(~+1)+js(js+1)—jt(j~+ 1)

-p (lsjs),
2j2

(b)

Fto. 1. De-Shaiit diagrams (a) for the configuration (hgs; gags);
(b) for the con6guration (//91&, i/1/Q).

jr Po.=A(aZ/2p) PeXr and ~PoXr=is I Pr.
~

~

It is convenient to put x=Gs/(Gze). We shall assume
that A. and x are real; justihcation of this assumption

"J.M. Blatt and V. F. Weisskopf, Theoretical nuclear Physic&
(John. Wiley and'Sons, Inc. , New York, 1952).

12 E. J. Konopinski and G. E.. Uhlenbeck;. -Phys. Rev. 60, 308
(1941)."L.M. Langer. and H. C. Price, Phys. Rev. 76, 641 (1949).

'4 E. Greu1ing, Phys. Rev. 61, 568 (1942)."D. L. Pursey, Phil. Mag. 42, 1193 (1951).
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has been given by Longmire and Messiah. "For ease
in handling the cancellation of the large terms in the
correction factor, it is convenient to examine its de-
pendence on the two variables x and y, y being defined
bytherelationsy= —',(1+5)A—1—x and S=L1—(uZ)'J'*.
The correction factor C for the transition 1—to 0+ is
given by expression (1).

2

C =2Gs'(1+5)-'(uZ/2p)'Ds' r,

.3

TAsLE I. Magnetic moments of possible jj-coupled ground
states of Bi"~. In each compartment of the table are inserted the
spins, parities and calculated magnetic moments of certain states
formable from the single-particle states indicated.

XPro-
Neu-~tons

tron'

$11/2

0.080
2—, 0.16
1—,—0.36
2-, +0.34

f7/2

1—,—4.07
2—,—1.89

2—,—2.59

118/2

2+, 8.04
1+, 4.26
2+, 3.94
1—,—5.48
2—,—2.92

~ C. L, Longmire and A. M. L. Messiah, Phys. Rev. SB, 464
(1951).

'7 Rose, Perry, and Dismuke, Oak Ridge Laboratory Report
ORNL-1459, 1953 (unpublished).

where

D=ys+{'{—2yL(25+1)-'(1+x) (W—S'W ')

+ (1+S) (1—x)E/6 j—(1—S)(2S+1) 'ys

XL(25+3)W+SW 'g)+-'(1+5) |'s

Xt (Ft—Ps+Ps)x'+(2Fs —Fs)xy+Fsy'
+ (2mp Ps+F4+—2Fs)x+ (F4+2Fs)y

+ (Ps+Ps+Ps)+2(*——',)'I-tj,
Ft= (1+S)E'/6 —-', (25+1) '

XE(Sp'W ' —2u'Z'W)+mp,

Fs= (1+5)E'/12+-', (25+1) '

XE(SP'W—' —2u'Z'W)+ mp

Fs, s ——2uZ(1+S) '{-'EuZ(2S+1) '

XL(25+3)W+SW 'jeep,
F = (1—5)(1+S) '1o, $=2p/uZ

For the de.nitions of Lp, JVp, lVp, I y, and E see refer-
ence 12; esp, ep and lp are the coefficients of the zeroth,
6rst and second powers of p in the expansions of Mp,
/t'/p, and L,p (see reference 4). Values of I.t were taken
from the tables of Rose et at."The expression for D is
correct as far as the term in Ips. For x= ts expression (1)
reduces to Yamada's Eq. (13), except for some small
terms in p2. In discussing the shape of the spectrum
one need only consider D, the other factors in C being
independent of energy.

Ke next ask what values of x and y correspond to
correction factors of the observed form. To answer this
question we equate the theoretical and experimental

0 .i .2 .3 .4 .5 .6 .7 .8 .9 1.0 i.l 1.2

Fn. 2. The hatched area is the region of the x-y plane in which
the theoretical and observed correction factors are in agreement.
At any point between the hyperbolas labelled 1,57 and 1.61 the
ratio of the values of the correction factor at lV= 1.2mc' and 2mc'
is in agreement with experiment; between the ellipses marked 0.49
and 0.55 the ratio of the values of the correction factor at 3mc'
and 2mc' is in agreement with experiment. The point marked Q
corresponds to the correction factor found by Yamada, (see
reference 4) that marked to the one found by the author.

ratios of the correction factors at W=1.2 and W=2.
Since D is a quadratic function of x and y, any such
relation between the values of the correction factor at
two different energies must give a conic section in the
x-y plane. The points in the x-y plane satisfying this
particular equation lie on an hyperbola. Because there
is some uncertairity in the measured ratio, we have
used two values, 1.57 and 1.61. The curves labelled
1.57 and 1.61 in Fig. 2 are the corresponding hyperbolas.
If a point (x,y) is to correspond to a correction factor
whose value at W= 1.2 is in correct ratio to its value at
W=2, it must lie in the region bounded by the two
hyperbolas. A second condition on x and y may be
obtained by equating theoretical and observed values
of the ratio of the correction factor at W =3 and W =2.
If the point (x,y) is to correspond to a correction factor
whose value at W=3 lies between 0.49 and 0.55 times
the value at W= 2, then this point must lie between the
two ellipses labelled 0.49 and 0.55. To satisfy both
conditions a point must lie in the hatched region of
Fig. 2. Not all points in this region need, however,
correspond to good correction factors; the correction
factor must be tested over the whole range of W.

The 6t found by Yamada4 corresponds to the point
(x=-', , y=0.219); the corresponding correction factor is
shown in Fig. 3. We have obtained an equally good
correction factor for the point (1,0.316), also shown in
Fig. 3. A reasonable fit is probably possible anywhere
in the hatched area.

In calculating correction factors the nuclear radius
was assumed to be 8.3&10 " cm. A slightly different
choice for this radius would not affect the positions of
the hyperbolae and ellipses of Fig. 2 very much; in
particular, we have shown that when. p lies between
4.7/10 " cm and 10.7X10—"cm the minimum value
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FIG. 3. Correction factor for the spectrum of Bi" . The experi-
mental curve is referred to as A, the 6t found by Yamada as 8,
that by the author as C.

of x attained by the ellipse labelled 0.55 is greater than
0.19.

4. DISCUSSION

Examination of Fig. 2 leads to the conclusion that
the theoretical correction factor will not explain the
observed spectrum unless x is greater than 0.35. This
limit will now be used to show that the assignment of
(hs/2 gs/2) 1—to the ground state of Bi"' is inconsistent
with its spectrum. Recall that a=Gs/(Gze). We are
assured by the work of Kofoed-Hansen and Winther"
and by that of Blatt" that ~G+/Gz

~
is not appreciably

greater than unity. It has been proved by Pursey'~ and

by Ahrens and Feenberg" that

=j (j +1)—j (j +1)—J,(t,+1)+4(1.+1).
In this formula l and j are the orbital and total angular
momentum quantum numbers of a single-particle state;
the subscripts p and ts refer to proton and neutron re-
spectively. Since for the configuration (hs/. ', gs/s) the
value of e is —10, the corresponding value of x cannot
possibly be as large as 0.35, and therefore this choice of
configuration cannot explain the P spectrum. For the
assumption (hs/s, sit/s), e is +1, and the observed
spectrum is obtainable for a wide range of values of
Gs/Gz above 0.35. Thus, if the ground state of Bi"' is
a pure state, then that pure state must be (hs/s, i gi/s) i
the state required by the spectrum analysis is the same
as that preferred by the energy-level calculation.

A comparison of values of A predicted with those

"O. Kofoed-Hansen and A. Winther, .Phys. Rev. 86, 428 (1952).
'e J. M, 81att, Phys. Rev. 89, 83 (1953).
~ T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952).

found by spectrum-fitting is useful. Rose and Osborn"
expect A. to lie in the range 1 to 3, with upper value
considered somewhat more plausible. Pursey" and
Ahrens and Feenberg" came to a similar conclusion.
The value of A obtained from fitting the spectrum of
Bi"' depends on the value of x assumed; for x=-,' we
find A=1.92 and for x=1 we find A=2.59. Since the
two values of A are in equally good agreement with
prediction, it is not possible to use them to determine
Gs/Gz. On the other hand, the agreement suggest. s
that the fit found for the spectrum is the correct one.

The positiveness of the ratio Gs/Gr, which follows
from the positiveness of x and e, is not in agreement
with earlier determinations. ""Insofar as the work
of Peaslee is based on the spectrum of Bi"' it is in-
validated by the work of Rose and Osborn. ' We find
too that the first forbidden correction factor for GBS
+GrT used by this author does not agree with ex-
pression (1). The Japanese authors reach the same
conclusion as Peaslee from a study of almost the same
decaying nuclei, but without finding it necessary to
correct the nuclear matrix elements for the presence of
pseudoscalar forces. Of the four nuclei which Morita
ei al. consider, only Cs"' definitely requires a negative
value of GB/Gr. We believe that ratios of nuclear
matrix elements calculated with pure jj-coupled wave
functions are more likely to be correct for Bi"' than
for Cs"'. If it is accepted as certain that A must be
positive, then one of these four spectra, that of Fe",
actually requires a positive value for the ratio Gs/Gz.

The identification of the configuration of the ground
state of Bi"" enables one to make other shell-model
assignments. The transition Pb"' to Bi"' has logf/
equal to 5.51, calculated for a maximum electron energy
of 0.620 Mev" with the aid of tables of the Fermi
function. " A first forbidden transition with such a
small ft-value cannot correspond to cancellation of
terms in the correction factor as in Bi2". Such cancella-
tion, if we accept the assignment (h9/s sil/s)i to Bi"',
occurs for e=+1.The ground state of Bi'" is known to
be h9~2. The values of e for the two possible assignments
to Pb'", gs/s and iii/s, are —10 and +1 respectively.
The latter must be rejected. This means that the 127th
is in diferent states in Pb O9 and in Bi" . YVe expect,
therefore, that the i»~2 level in Pb"' should have a very
small excitation energy, and that the radial integral
fixing the magnitude of the neutron-proton interaction
energy' should be larger for the pair (hs/s, i»/s) than
for the pair (hs/s, gs/s). Since the h and i radial wave
functions are those which have no nodes and since the

s' M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1326 (1954).
~ D. C. Peaslee, Phys. Rev. 91, 144/ (1953).
"Morita, Fujita, and Yamada, Progr Theoret. Ph. ys (Japan).

10, 630 (1953).
24Hollander, Perlman, and Seaborg, Revs. Modern Phys, 25,

469 (&953).
"Tables for the Artalysis of Beta Spectra, Applied Mathematics

Series No. 13 (National Bureau of Standards, Washington, D. C.,
1952).
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g has a node, the required behavior of. the radial in-

tegral is not unreasonable.
Another P transition of interest is that of Pb'"(RaD)

into Bi"'. This decay goes, as far as is known, entirely
to an excited state of Bi'" at 47 kev. It is consistent
with the conclusions of the preceding paragraph to
make the assignment (hg/g, gg/g)g to this excited state.
The ft-value for this transition should, then, be very
near that for the decay of Pb"'. Using a maximum elec-
tron energy of 18 kev, "we find logft=5 49 T.his. same
assignment will also explain the absence of a transition
to the ground state of Bi"', for it requires that the
ground state of Pb"' be (;gg/g')Q. A transition from
this initial state to the ground state of Bi"' would
require a two-particle jump.

From a more detailed examination of the ft-values
of transitions between nuclei in the neighborhood of
Pb"' an estimate of the values of h. and of Gs/Gr can
be obtained. Because the ft-values for the transitions
Pb"' —+ Bi"' and Pb'"~ Bi"'* are almost equal, we
shall equate the expressions for the correction factors
corresponding to the two transitions. For the former
the correction factor is given by (1) with the addition
of the term corresponding to the matrix elementfrr r occurring in the tensor interaction. The correc-
tion factor for this matrix element was given by
Konopinski and Uhlenbeck;" we shall use only the
term of order p ', viz. ,

2

(nZ/2p)gGrg e r
1+S 4l

100 (1+S 1 Gs) '
1+

i
A —1+——

i
2.

99 i 2 10Grl
(2)

A similar pair of decaying nuclei are Tl'7 and Tl"'
for which the calculated logft-values are 5.16 and 5.18
respectively. In each case a p; neutron changes into
an s; proton; calculations of the Pryce type indicate
that the spin of the ground state of TP" is 0—.Equa-
tion (3) for the two Tl isotopes corresponds to Eq. (2)

"1nsch, Balfour, and Curran, Phys. Rev. SS, 805 (1952).
7 R. W. King and D. C. Peaslee, Phys. Rev. 94, 1284 (j.954).

It is well known that only the matrix element J'rr r
contributes to transitions of the type 0+ —& 0—.As is
shown in the appendix, the correction factor corre-
sponding to this matrix element for the two-particle
system is exactly twice its value for the same particle

jump in the one-particle system. Methods for the
calculation of J'rr r and J'r in the single-particle

system are well known; convenient formulas are given

by King and Peaslee. "After cancellation of common
factors including the radial integrals, the equation
obtained by equating the correction factors for the
two transitions becomes

for the' two Pb isotopes.

4 t'1+S 1 Gs) g

1+-I
3E 2 2Gr&

(3)

If it may be assumed that A has roughly the same value
in the two cases, then (2) and (3) may be solved simul-
taneously. There are four solutions. Two of these
require jGs/Gr

~
to be greater than 3, contrary to the

evidence from allowed transitions. A third may be
excluded because of the smallness of the value of A,
~iz. , 0.025. For the remaining solution we have 4=2.2
and Gs/Gr ——0.23. This value of A, which is not very
sensitive to the approximations involved, is in good
agreement with the values obtained from fitting the
spectrum of Bi"'. The smallness of the value of Gs/Gr
found by this method is of little significance, because
the approximations introduce a very large uncertainty
in this value; even the sign of the ratio is not really
well determined.

4 0

R(1h)R(2g) r'dr, Ig R (1h)R (1i)r'dr;

the R's stand for normalized radial wave functions. It
may also be shown, by consideration of configuration
interaction in a system consisting of a jj-coupled proton
and neutron, that b/a has the same sign as —(a~ V

~ b),
where V is the interaction potential between the proton
and the neutron. Using the theory of Pryce, ' one may

5. POSSIBILITY OF CONFIGURATION MIXING

All the arguments and discussion in the preceding
parts of this paper are founded on the assumption that
the ground state of Bi'" is spectroscopically pure.
Though there is, we believe, evidence for the assump-
tion, it must be admitted that the possibility that this
ground state is a mixture of (hg/g, iii/g)r and (hg/g,

gg/g) i—cannot be excluded. Such a mixture is not in-
consistent with the spectrum shape. I et u and b refer
to (hg/g', iii/g)i and (hg/g gg/g)i respectively; we write
af,+hPg for the wave function of the ground state of
Bi"'. Instead of having x=Gs/Gr as we did for the
pure state lt„we now have x=(Gs/Gr)F for the
mixed state. The function F is (1+t) (1—10t) ', where
t is the ratio of b (f I r l b) to a(f

~

r
~
a); the letter f repre-

sents the final state (hg/g'; )g. If we are allowed com-
plate freedom in the choice of t, then E may take any
value, and nothing can be said about the ratio Gs/Gr.
If, on the other hand, it can be shown that t is negative,
then the only negative values for Ii lie in the range
—1/10 to 0; since these values are inconsistent with
what is known of the magnitudes of x and Gs/Gr, it
can then be said that G8/Gr must be positive. By well
known methods the expression for t can be reduced to
(3+6) 'bIi/aIg, where
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show that (tbj V~ b) has the same sign as

I3—
"o

R'(1h)R (2g)R (1i)rsdr.

Thus t is negative if I~, I~ and I& all have the same sign.
These integrals all do have the same sign when com-

puted with wave functions belonging to either a square
well of infinite depth or to an harmonic oscillator. It is

unlikely, therefore, that the sign of Gs/Gr is negative,
even if there is an appreciable admixture of fb in the
ground state of Bi'".

The evidence against there being an appreciable
amount of fb in this ground state is the nonexistence
of a transition to it from Pb"'. Though the transition
to the ground state has a forty. fold energy advantage
over the transition to the 47-kev level, the former has
not been observed; the upper limit on its intensity is
about a tenth of the intensity of the latter. How can
one explain why the transition to the excited state is

at least 400 times as strong as the transition to the
ground state? Some of the difference is certainly caused

by the selection rule which permits Je.r to be opera-
tive in the former and not in the latter, but the effect
of the other matrix elements is of roughly the same
magnitude, unless there is a cancellation of the large
terms in the correction factor. According to our analysis
of the spectrum of Bi"', this cancellation takes place
for some value of x greater than 0.35. If the ground
state of Pb"' is Pure (;gp)2')p, then only the com-

ponent pb in the wave function of Bi'" has nonzero
matrix elements, and x, therefore, is less than 0.1.
To produce the value of x corresponding to cancellation
one must form the wave function of Pb'" of just the
right proportions of (; ill~2')p and (;gp/2')p. Such a
coincidence is, we believe, unlikely. Furthermore, it is
not certain that the low ft-value for the decay of Pb"'
to Bi"'* is consistent with an appreciable amount of

(;ill(22) p in Pb"'.
A possible test of the amount of g b in the ground state

of Si"' is to be found in the measurement of the half-
life of the 47-kev state of Hi'". From a comparison of
the calculated' and measured" ratios of the numbers
of L~, L~i and LziI conversion electrons, it follows that
the 47-kev p radiation is undoubtedly 3f1. The usual
selection rules permit 3f1 transitions only between
states of the same con6guration. The half-life of the
47-kev state will be, then, inversely proportional to b'.
The Weisskopf" half-life for a 47-kev 311 transition,
corrected for an internal conversion coeKcient of about
20 and amended to include a better estimate of the
matrix element, is 0.3X10 "sec. If the nonappearance
of the Pb"' to Bi'" ground state transition is taken to
mean that 52&1/400, then the half-life of the 47-kev
state &1.2&(10 ' sec, which is perhaps just measurable.

ss Ge11man Grittlth, and Stanley, Phys Rev. SS, 944 .(1952).
22 L. Cranberg, Phys. Rev. 77, 155 (1950).

A shorter half-life will not necessarily mean that b' is
greater than 1/400, however, because the transition
may be caused by the sort of process suggested by
Austern and Sachs."

I should like to thank Dr. J.M. Kennedy for valuable
aid and advice, and Miss B. J. Sears for preparation
of the figures and for computational assistance.

A(2) =2(2jl+1)(2J2+1)

The arguments 1 and 2 refer to the one-particle and to
the two-particle systems respectively. For the special
case El=0, (6) becomes

f
J A(2) =2 A(1) 3J.2L,. (7)

Formulas (6) and (7) differ from the similar for-
mulas of Brysk" and of Rose and Osborn" in the pres-
ence of a 2 as a factor on the right-hand side. This
difference has its origin in the diferent definitions of
the Anal state,

~ N. Austern and R. G. Sachs, Phys. Rev. 81, 710 (1951).
s' H. Hrysk, Phys. Rev. 90, 365 (1953).

APPENDIX

A comparison of the matrix elements for the transi-
tion

(lljl) ~1 —+ (4j2' lljl)~2+0

with those for the transition

lljl ~ lsj 2+P

is desired. As is customary we shall use the symbol

~

J'A~2 to represent the sum over all possible Anal

states of the square of the matrix element of the opera-
tor A. In general A will be composed of a sum of terms
each one of which depends on the coordinates of only
one particle of the system. Each term is the product of
an operator on the isotopic spin wave function and of a
tensor operator of order L. The wave function of the
initial state of (4) is constructed precisely as was done
in reference 21. For the final state, however, we do not
choose an eigenfunction of the isotopic spin operator.
Instead we taken that combination of isotopic spin
eigenfunctions corresponding to isotopic spins 0 and 1

which ensures that the particle in the state l~j~ is
always a proton and that in the state l2j2 is always a
neutron. Such a wave function, rather than any eigen-
function of isotopic spin, we believe to be appropriate
to a proton-neutron system in a nucleus in the neigh-
borhood of Pb"'

Using the methods of Racah, " it is not dificult to
show that


