
446 H. MORI NACA

states is small. ' A time-dependent perturbation causes
the transition of the isotopic spin state, and if II, is the
Coulomb interaction and hcv=E1 —E2 is the diGerence
in energy between the mixing states, the amplitude of
mixing is

H, singlet

a(t) =
Aced

H,t H, t
— =——(when t«27r/(v)

k r T
"L.A. Radicati, Proc. Phys. Soc. (London) A66, 139 (1953);

A67, 39 (1954).

Here I'= h/T, where T is the life of the decaying state;
if this is much larger than H„decay takes place before
mixing proceeds. F is of order 1 Mev or more and B,
is probably a fraction of one Mev. Hence the isotopic
spin purity is not aGected by close-lying intermixable
levels, which would cause considerable mixing in the
case of a stationary perturbation.

Further studies on this subject are in progress.
The author is grateful to Dr. D. J. Zaffarano for his

constant encouragement. He also wishes to thank Dr.
L. Katz for making the latest data available to him,
and Drs. D. C. Peaslee and G. Takeda for discussions.
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The binding energy of Li' is calculated by using a wave function of the exponential type with a central
Yukawa interaction, both neutral and symmetric exchange characters being considered. The neutral
interaction leads to a large excess binding energy whereas the symmetric case gives much too small a value,
for a particular set of nuclear parameters. The contribution to the energy from the central part of the
neutral and symmetric types of Pease-Feshbach interaction is also determined.

1. INTRODUCTION
' 'N this paper, the energy of the ground state of Li
~ ~ is determined by using a wave function of the
exponential type for a central Vukawa interaction, both
the neutral and symmetric cases being considered. The
contribution to the energy of the central part, of the
Pease-Feshbach" type of interaction —neutral and
symmetric —is also evaluated. The justification for
dealing only with the central part of the interaction at
this stage arises from the treatment of H' and He4,
where it is necessary to construct as good a wave
function as possible for the S-state, ' before taking into
account the tensor part of the interaction.

It has previously been established that a two-body
interaction, involving a mixture of central and tensor
forces with a Yukawa well-shape, can give, for a set of
nuclear parameters which its the low-energy two-body
data, reasonable values for the binding energies of both
the triton" and the alpha particle. ' Since the results
for the two-body problem are independent of the
exchange nature of the forces and the three- and four-
body energy values differ very little if a neutral or
symmetric interaction is used, it is of importance to
determine whether the effect of both neutral and
symmetric interactions of the above type is the same
for the lightest bound p-shell nucleus, Li'.

' R. L. Pease and H. Feshbach, Phys. Rev. 81, 142 (1951).' R. L. Pease and H. Feshbach, Phys. Rev. 88, 945 (1952).' J. Irving, Proc. Phys. Soc. (London) A66, 17 (1953).

If the nuclear interaction is assumed to be of the
two-body type, saturation requirements for heavy
nuclei indicate that the interaction is of a symmetric
character. Kronheimer4 has in fact shown that the
exchange nature of the interaction is evident in the
case of the light nucleus Se'. Using single-particle
Gauss wave functions and taking only the lowest state
('P) of highest orbital symmetry of the (1s)'(2p)'
configuration, he has obtained an excess binding energy
with the neutral Pease-Feshbach type of interaction.
For the charge-symmetric interaction on the other
hand, the (1s)'(2p)' term does not describe a bound
state. Edwards' has found, in the case of the Se'
nucleus, that for a symmetric central interaction with
a Gauss well-shape the system is not bound. Morpurgo, '
using a similar interaction, has calculated the energy of
Li', treating the system as composed of a deuteron and
an alpha particle. He 6nds that the energy is a minimum
when the deuteron is at infinity, that is, the system is
not bound.

Other calculations on the binding energy of Li' have
been carried out by Inglis, 7 Margenau, ' and Tyrrell, '
using a central two-body Gauss interaction, and by

4 E. H. Kronheimer, Phys. Rev. 90, 1003 (1953).
~ S. F. Edwards, Proc. Cambridge Phil. Soc. 48, 652 {1952).

G. Morpurgo, Nuovo. cimento 10, 473 (1953).' D. Inglis, Phys. Rev. 51, 531 (1937).
8 H. Margenau and K. Carroll, Phys. Rev. 54, 705 (1938).
9 W. Tyrrell, Jr., Phys. Rev. 56, 250 (1939).
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Humblet' for a Yukawa interaction. Feingold" has
calculated the level spacing in Li' using a central tensor
interaction of the Gaussian type. He obtains qualitative
agreement with the experimental values for the spacing,
but he has not shown that his wave function gives a
reasonable value for the binding energy vf the Li'
nucleus. Finally, Morita and Tamura" have, independ-
ently of the authors, calculated the binding energy of
Li' with the same exponential wave function for the
neutral interaction only, using an elegant adaptation
of the method of Jahn and Van Wieringen. "

2. METHOD OF CALCULATION

Since Li' has spin 1, the ground state on the basis of
the shell model is taken to be '5», in the usual notation.
This state is represented by the wave function, of a
similar form to that introduced by Feingold,

4 (sS{)= ()S(34)n4A (56)+5(35)nsA (64)

+5(36)nsA (45))A (12)ns+LS(14){r4A (56)

+5(15)nsA (64)+5(16)nsA (45)jA(23)et

+LS(24)n4A (56)+5(25){rsA (64)

+5(26)nsA (45))A (31)ns}g=xg, (2.1)

in the two-body problem and by Pease and Feshbach
in the triton problem.

The variational formula,

where

E& W= @*Z@dr ~% Mr,
J

(2.4)

jP 6 6

H= — Q h~+Qa "U'(r;3)
2M '-I

x{——(r,—rt)

x,= (rs—rs)/V2,

xs= (1's+rs—rs —rt)/2,
(2.5)

x4——(2/V3) ((rs+r4)/2 —(rs+rs+rs+rt)/4},

and dr includes summation over the spins and spatial
integrations, is used to obtain an approximate value
W to the true energy E. Substituting the wave function
(2.1) and the interaction (2.3) in, (2.4), the spin matrix
elements are irst of all evaluated in the usual way.
This is tedious but straightforward. The space inte-
grations are then carried out, by means of the transfor-
mation of coordinates given by

xs ——(r4—rs)/v2,

X= (r{+rs+rs+rs+rs+rs)/6,

where particles j., 2, 3 are neutrons and 4, 5, 6 are
protons; S(ij)=ra; rg;, G being the center of mass of
the system; A(ij)=ng, —{r,P;, n and P denoting the
usual spin wave functions; {f) denotes the radial part of
the wave function, which is assumed to have the form from which

(2.2)
6

Qt r;3s=6(xts+xss+xs'+x4'+xss). (2.6)

The method of reducing the resulting spatial inte-
grals and their subsequent evaluation is described in
the Appendix. The formulas for 8" for the neutral and
symmetric interactions are now given.

Sg& being the normalizing factor for the complete wave
function (2.1) and n a variation parameter. The choice
(2.2) is suggested by the success of a wave function of
this type in accounting for the energy of He4. Feingold
assumes a Gaussian radial de endence.p

We consider the interaction of the form (a) Neutral Interaction (P = —1)
6

'0'{r;;)=PV {[{l—-'3)+o-'3{@;.e )] (3 P~ 13'{t;;)3)= 36Vo[exP{—c r„)/{,r„)]
){,'exp( —{{,r;;)/({{,r;,)}, (2.3)

where I'= —1 and g= g~ for the neutral case;
P=(T; T;)/3 and g=gs ——2—3gs{ for the symmetric
case. This interaction is of the same form as the central
part of the more general interaction involving the
tensor force, considered by Feshbach and Schwinger"

"J.Humblet, Physica 14, 285 (1948).
"A. M. Feingold, thesis, Princeton University, 1952 (unpub-

lished).
"M. Morita and T. Tamura, Tokyo University of Education

(private communication).
"H. A. Jahn and H. Van %ieringen, Proc. Roy. Soc. (London)

A209, 502 (1951).
"H. Feshbach and J. Schwinger, Phys. Rev. S4, 194 (1951).

Xf LS'(12)+65'(34)+85'(13)—12S(13)S(34)

—6S(34)S(35)—6S(13)S(14)+ 85 (14)5(35)

+4S(13)S(24) —2S(14)S(24)—45 (12)5(13)

+2S (12)S(34)+S (34)S(56)J+Zg)vt —3S'(34)

—2S'(13)+ 6S (13)5(34)+35 (34)S(35)

+ 2S (13)S(14)—65 (14)S(35)+S(13)S(24)

—5(14)5(24)1}. (2.7)

Using the transformation (2.5) and integrating over the
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angles, we then obtain the potential energy term, The kinetic and Coulomb energy terms are given by
(2.9) and (2.10), respectively.

X {[9xt'+42xt'xss+267xs'/2 —199xssxss/2 j
—6g~[2xt'xs'+21xs' —17xs'xs'$}

('
Xexp pl p x'

l
%2Kcxt xlxs xs x4 xs

Xdxtdxsdxsdx4dxs (with P =2a+6)
5 1113 17

Vents {[369't+588JI,+ 504+,j9.$»4
—6g~[54A t+288t j), (2.8)

on reducing the multiple integrals. Here c=2v3n/a,
and A», 8», C» are single integrals which are given in
the Appendix.

The kinetic energy [App. (b)j reduces to

3Pisns/M = It'~,sc'/(4M) (2.9)

The Coulomb energy [Appendix (c)j becomes

(5'11 13 17e's,c)/2'r. (2.10)

(b) Symmetric Interaction $P= (T,"T,)/3j

3. RESULTS AND CONCLUSIONS

For the. central Yukawa interaction with 1/~. =1.17
X10 " cm, Vs ——67.3 Mev, and g~=0.155 (i.e., gs
= 1.535), we obtain

8'= —101Mev and E~,„i=4Mev, i.e., E= —97Mev

for the neutral case; and

8"=—4.5 Mev and E~,„»=2 Mev, i.e., E= —2.5 Mev

for the symmetric case. E(experimental) = —32.0 Mev.
It is evident that the neutral interaction leads to a

collapsed nucleus. The very small value for the energy
obtained for the symmetric interaction indicates that
the assumed form of the wave function is rather poor.
The introduction of a tensor force term into the two-

body interaction has the eGect of reducing the central
well depth and consequently the central force binding
energy. For the Pease-Feshbach interaction with

1/s. =1.184X10 "cm, Vs=46. 1 Mev, g= —0.004,
y= 0.54, 1/s~ ——1.67X10 "cm,

the central force contribution is

W= —17.7 Mev and Eo.„i=2.8 Mev,
i.e., E=—14.9 Mev,

= —36Ve[exp( —~.~»)/(~. its) j
X{[2S'(34)+S'(12)—45 (12)S(13)

+2S (12)S(34)+2S (14)S(15)+2S (13)S(23)
—4S(13)S(34)—2S(34)5(35)+S(34)5(56)j
+2gs[5'(34) —S(14)S(25)—2S(13)5(34)

+25(14)5(35)—S(34)5(35)

+5(13)5(23)1) (2 11)
Hence

X {[9xt'—30xt'xss+99xs'/2 —63xs xs'/2$

+2gs[—6xt'xs'+21xs' —17xs'xs'j)

s
' "

s s sXexp —pl Z *" I
—~~"»»xs'xssx4sxss

)
Xdxtdxsdxsdx4dxs (wtth P=2tr+6)

5 11 13 17
Voc"[(253~t 4208 t+504Ct)

9.$14

+6gs (182t—288 t) i. (2.12)

in the neutral case, but the symmetric form of this
interaction does not give a bound state.

The tensor force will, of course, contribute to the
binding energy. The work of Lyons and Feingold„" in

which the D state of maximum symmetry, involving a
mixture of configurations, is considered, indicates a
contribution 12 Mev to the binding energy. Other
D states will give additional binding so that the above
neutral central-tensor interaction probably gives excess
binding. The symmetric interaction, on the other hand,
will still yield little, if any, binding energy for the above
wave function. Morita and Tamura claim a 6t for the
Li' ground state energy with a neutral interaction, for
which the central depth is 49.3 Mev. Such an interaction
wi11 not only give an excess binding energy for the
triton and the alpha particle, but will also give an
excess for Li', if a D state of the same form as that of
Feingold is assumed. Morita and Tamura take the D
state from the (1s)'(2P)' coniguration alone and find

that it slightly reduces the total energy, in contrast
with the result of Feingold and Lyons. Moreover, the
work of Cohen" on the binding energy of He indicates
that the Pease-Feshbach interaction, of a symmetric

'~ D. H. Lyons and A. M. I"eingold, Phys. Rev. 95, 606 (1954).
"L. Cohen, thesisUnive, rsity of Manchester, 1953 (unpub-

lished).



ENERGY OF GROUND STATE OF Li'

character, with Vo ——42.7 Mev is the more correct for
a reasonable fit in the two-, three- and four-body
problems. It should be emphasized that calculations of
the Li' ground state energy should be carried out with
a symmetric interaction.

APPENDIX

(a) Normalization of the Wave Function

The normalization of the wave function involves
integrals of the form

Hence, using (4) with 22=5, we obtain

36n12+6
SB=

35m7

(b) Kinetic Energy

Using the transformation of coordinates given by
(2.5), the kinetic energy is

T= (I'/2M)Z {~*~(x4)}'dr

f(x12+x22+ +x„')
Jo

XX1 $2 2' ' X)z "dS)&2'

which, on using the transformation

where p is the radial, and y the orbital-spin part of
the wave function.

Since V'X=O, it follows that

becomes
Nr=Xr) f |)2) '' )'6) T= (i22/2M)p X2(7'x,y)2dr.

~-s J

)OD F09

f(»+N2+ +N.)2.J, J,
On carrying out the spin summations we obtain

where
XN 1e'&2e' &e"d.»d&2 .d& ) T= ()12/2M) 36 {S'(34)—2S(34)S(35)

P,= (a,—1)/2, r= 1, 2, , e.

The further transformation,

221+N2+ ~. ~1=y1y2 . y„, «=1, 2, , «1, (2)

yields, with elementary integration,

r(p, +1)".r(p.+1) t"
y1(ei+ +8n+m 1)f(y1)dy1

—(3)
2-r(p,+" +p„+~)~,

For the particular form

f(»'+. "+x-')=fb 1)= exp( —Py1'),

we have, from (3),

(2) el+'''+am (n +. . .+a +12)

EP) ( 2 )

Hence

since
T=352n2/M (6)

36 {S'(34)—2S(34)S(35)+S(34)S(15)}qPdv

is the normalization integral.

(c) Cou1omb Energy

+S(34)S(15)}(Vx,p)2dv.

Now, if p has the form (2.2), then

(V'y)2=6 2@2

l.e.)

f
T= (5'/2M) 36 {S'(34)—2S(34)S(35)

+S(34)S(15)}P'deX6n'

Now for Li',

8*I+)

The Coulomb energy is given by(a1+1
r (a„+1)

xrl I" rl
"

I. (4)
2 ) &o-1=3(+*I "/r 2I+&

=36e' {2S'(35)+S'(34)—S(35)S(36)

=36 [S2(34)—2S(34)S(35)+S(34)S(15)JqPdu

F00 00

=36(42r) 'Ãs
~

' exp[ —(2n/6) (x1'+J,
+x2 ) ](x1 xl x2 )xl dxl' ' 'x2 dx2= 1.

—2S(34)S(35)—2S (35)S(15)—S(34)S(14)

+S(35)S(16)+2S(35)S(14)}(g2/«22)du,

(7)

which gives, when one uses the preceding integrals,

Eo«1= (5' 11 ~ 13 17e2cz,)/217.
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(d) Potential Energy Using (10), with )2=5, the potential energy is deter-

e potential energy terms involve integrals of the mined and involves the integrals Al, B~, Cl where

follTl pl
(1—y')'y/(y+c) "dy,

t t f(x)2+ +x.2)g(x.)

Xx) ' x. "dx) dx„. {8)

When one uses the transformations (1) and (2), Eq.
(8) reduces to

r(p +1)r(p +1) r(p-- +1)
2"r(p)+ +p )+n —1)

(1—y') Y/(y+c) "dy
Jo

te 1

(1—y')'y'/(y+c) "dy
"o

(12)

(13)

with c=2VSn/», . Evaluating A), 8), C~ by elementary
methods, we obtain

where

4o
dy) f(yi)yi(P1+P2+ ~ ~ +Pn+n —1)

1

x~" dy2g(y)'(1 —y2)') (1—y2)'", (9)
0

P.= (~.—1)/2

(5 9.11 13.17 2')c"(1+c)"A)
= L109 395c'+504 126c'+ 1 103 040c'

+1 472 130c'+1 293 930c4+759 330c'

+288 288c'+64 350c+6435),

For the particular forms,

f(y)) =exp( —py~'),

g(y~'(1 —y2)') =e~p{—»'y)'(1 —y2)')/{»'y~'(1 —y2)'),

we obtain from (9), on carrying out. the integration
with respect to y»,

r{P,+1). . r(P„,+1)r{2(P,+ +P„+~)—1}J=
»'2" 'r (P1+ jP )+)4 1)—

y2P1+ +Pn 1+n 2(1 y2)Pn- —

X~&y2
[p+»1 (1 y2))1j[2(p1+ +pn+n) 1]—

(3 ~ 5 ~ 7 ~ 11.~ 13 ~ 17 ~ 24)c' (]+c) 8)
= [34 465c"+106203c'+147 213c'+123 735c4

+67 155c'+23 265c'+4719c+429),

(7 9 11 13 17.24)c)2(1+c))2C)

=$7293c'+13 788c'+12 303c4+6504c

+2115c'+396c+33j.
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