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A general expression is derived for magnetic scattering of slow neutrons from oxygen gas which takes ac-
count of molecular rotation. The scattering derived on the basis of Meckler’s ground electronic wave function
for O, is discussed. The validity of the static or semiclassical approximation is considered. Values are given
for the total magnetic cross section in laboratory coordinates based on Meckler’s wave function. The
magnetic scattering does not appear to be sufficiently sensitive to changes in the wave function to distin-
guish in practice between different reasonable approximate wave functions.

I. INTRODUCTION

HE magnetic scattering of slow neutrons from
paramagnetic O has been considered as an ex-
perimental means of obtaining information about the
(valence) electron distribution of the molecule.!'?
Since the nuclear and magnetic scattering are independ-
ent, the experimental magnetic cross section may be
obtained by subtracting the calculated nuclear cross
section from the measured cross section. Halpern and
Appleton have calculated the total nuclear cross section.
In this paper a theoretical examination is made of the
magnetic scattering, and the total magnetic cross sec-
tion is calculated.

One might hope with either x-ray diffraction or
neutron magnetic diffraction to obtain an electron
distribution for the molecule from the Fourier trans-
form of a scattering amplitude. The electron distribu-
tion measured is, of course, different for the two types
of diffraction. In both cases one is immediately disap-
pointed by the loss of information caused by molecular
thermal rotational and translational motion. Neutrons
of a monochromatic beam incident on a sample of gas
see molecules with a variety of velocities, angular veloc-
ities, positions, and orientations (classically speaking).
Assuming negligible correlation between molecules, the
resultant scattering is given by averaging the cross
section of one molecule with respect to these parameters.
The situation is similar for an x-ray beam incident on
the gas. An important distinction arises, however, from
the difference in velocities of the incident particles. The
speed of light is so great relative to molecular velocities
and angular velocities, that a molecule appears to a
photon to be stationary both in position and orienta-
tion as the photon passes by. Not so for a neutron of
wavelength 1 angstrom whose speed is only 1.32X1075
that of light. This added complication in the neutron
case may be viewed as follows.

The ratio « of the time of transit of a neutron across
a molecule to the period of molecular rotation gives a
measure of how much the molecule rotates during the
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neutron’s passage. By use of the equi-partition theorem
for rotational motion, « is found to be about % for O,
gas at room temperature and incident neutrons of wave-
length \=5 A, a typical value in the range (1IN <20 A)
of experimental interest. This value of « indicates that
the static (or semiclassical) approximation commonly
used in x-ray scattering theory for treating the effects of
molecular rotation may not be applicable to slow neu-
tron scattering. The static approximation has been found
satisfactory®* under some circumstances for the nuclear
scattering of slow neutrons from molecules. Here we are
concerned with its validity for the magnetic scattering.
The effect of translational motion of the molecules may
be viewed in a similar way. The ratio of the root-mean-
square molecular speed to the neutron speed gives a
measure of the neutron-molecule relative velocities;
for room temperature this ratio is 0.12x(A). The trans-
lational motion of the molecules may thus also be ex-
pected to have an important bearing on the cross
section.

The above qualitative discussion is from a classical
viewpoint. Consider now the wave functions describing
the molecule required for the quantum-mechanical treat-
ment. We shall assume the molecule is in its ground elec-
tronic and vibrational levels. (For the gas at room
temperature, the Boltzmann factor for the first excited
vibrational level is 4X107%) We neglect the zero-
point vibration. The rotational levels are given by
1.44K(K+1) ecm™, only odd-K levels being occupied
because of the Bose statistics of the nuclei. The
p-type tripling®® of these levels arising from the
spin-spin and spin-orbit terms in the Hamiltonian
and the coupling of the spin with the rotational
motion will be neglected. With this assumption the
electronic and rotational motion become independent
(except, of course, insofar as the electrons rotate
with the molecule as a whole), and the electron spin
of the molecule becomes free in orientation. Some
of the above assumptions are considered again in Sec.
IV. The molecular wave function may then be expressed
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as a product of an electronic, a vibrational, and a
rotational wave function, the first determined in the
Born-Oppenheimer approximation for equilibrium inter-
nuclear distance R=1.21 A, the second represented by a
0 function of the internuclear distance, and the third
by normalized spherical harmonics with the internuclear
orientation as argument. The electronic wave function
is a 3%,~, and will be considered in more detail in Sec.
III.

Based on wave functions of this type we derive in
Sec. II a general expression for the Born approximation
cross section of O in center-of-mass coordinates for the
magnetic scattering, and also the corresponding cross
section formula in the static approximation. In Sec. III
we derive from Meckler’s ground level electronic wave
function” for O, a simple expression for the spin density
in terms of which the scattering is conveniently de-
scribed. In Sec. IV use of the static approximation is
justified for the magnetic scattering, and the insensi-
tivity of the scattering to the form of the 2pm, orbital
of the wave function is discussed. The total magnetic
cross section is evaluated in Sec. V.

II. MAGNETIC SCATTERING CROSS-SECTION
FORMULAS

A parallel beam of unpolarized slow neutrons of defi-
nite wavelength is assumed to be incident on a sample
of O, gas in thermal equilibrium. No correlation between
the molecules being assumed, the cross section for the
gas is the sum of the cross sections for the individual
molecules. Double scattering is negligible. The cross
section in center-of-mass coordinates for the magnetic
scattering of an unpolarized neutron beam may be
expressed in terms of the partial cross sections per initial
state of the molecule,

ava(0)=(K'/k)dY (v ,va) (I—ee)
(0 [Plva)* (0 | Plwa), (1)

corresponding to incident neutrons of wave vector k
scattered from a molecule initially in an energy level
E,. After scattering, the molecule is left with an energy
E; and the neutron with wave vector k’, with %'deter-
mined by conservation of energy: #2(k?—k%)/2m
=E,—E;, where m is the neutron-molecule reduced
mass. The momentum transferred to the molecule is
#(k—k’)=/hx=/ixe. The summation is over the degen-
erate states, denoted by », and », of the energy levels
E, and Ey; d, is the degeneracy of E,. oy, is given in (1)
in units of [ (m/m,) (g.€%/2mc?) I ; m, is the proton mass,
g» the neutron g factor. I is the unit dyadic. The mag-
netic scattering operator P in (1) is the sum of a spin
part P() and an orbital part® P®:

P (x)=3; exp(ix-1;)s;,

P® (%) =3 3{E(x-1)i+LE(x 1;)},

7 A. Meckler, J. Chem. Phys. 21, 1750 (1953).
8 The convenient form of the orbital operator given here is due
to G. T. Trammel, Phys. Rev. 92, 1387 (1953).
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where

E(x: r)=2f1)\ exp (k- 1)dA 3

—1 as x—0.

The position, spin, and orbital angular momentum
operators of the jth electron are denoted by r;, s;, and
1;. The cross section per initial state of a molecule with
energy E, is obtained by summing o3, over all levels E,
consistent with conservation of energy. This cross
section is then averaged over all initial states weighted
by the Boltzmann factor.

A typical molecular wave function, discussed in Sec.
I, will be denoted by Y M (wyyMs(X, X, -, X1d);
the rotational wave function® Y, is a normalized
spherical harmonic®® referred to a frame of reference
fixed in space; the unit vector u defines the orientation
of the internuclear axis. ¥,M#5 is the 3Z,~ ground elec-
tronic wave function with spin magnetic quantum
number M g; it is convenient to quantize the spin S
with respect to the space reference frame; X, denotes
the position and spin coordinates of the jth electron, the
prime indicating that the space coordinates are referred
to a reference frame fixed in the molecule. The degener-
acy indices » of (1) refer to M and M .

The components of the vectors in (2) are ordinarily
defined with respect to the space frame. To evaluate the
matrix elements of (1) it is convenient to express the
r; and I; with respect to the molecular frame. Using the
invariance of a scalar product under rotation of coor-
dinate reference frame: x-r=«"-r'and e- PP =¢’- P2’
we may express the matrix element (J'’M'M ' | P2 (k)|
XJMM ) in terms of

f(L),(K')=5(Ms’,Ms)f¢eM‘s*(X')

XAl EW -t/ +1/E(x - 1/)}
Xy Ms(XNdX,, (4)

where the integral is over the electron coordinates and
includes summation over spins; £(©" is independent of
M 5. 13 vanishes for a = state, and as a consequence
the orbital interaction leads to no scattering. It is well
known that the average orbital angular momentum
vanishes for an orbitally nondegenerate level. The usual
proof, based on time reversal symmetry, may be gener-
alized to show that f(¥’ vanishes: denoting the Her-
mitian conjugate by f, we have

Ii=l=—1*; [exp(ix-1)]t

=exp(—-—1:1<~ r)z ]:exp(¢1< 1')]*,

9 The total orbital angular momentum quantum number is
commonly denoted by K. See, e.g., reference 6.

©E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1951).
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and hence

P (1) 1= P (— 1) = — PW) (w)*.

Upon dropping the primes for simplicity in (4), £’ (')
becomes

£ () =5(M &', M s) f PIPD (X,
=—MM¢M@]@J@%@MWX@

and, since ¥, can be chosen real, it follows that £
vanishes.

The matrix elements of the spin scattering operator
may be treated similarly in terms of the integral

Joaes £y explint xfysgusax.

The operator P(® obeys vector type commutation rela-
tions'® with respect to S=3;s;; i.e., [P.®,S, |=1hP.,
etc. Consequently, the integral may be reduced to

(SMSI ] S l SMS){ f\//es* Zj exp(ix’- l'j')sz\[/eSdXe'/S .

Equation (1) may now be simplified by introducing the
latter and using the relation

> (I—ee): (M |S|Ms)*(Ms'|S|Ms)

Mg\ Mg
=25(S+1) (2S+1).
Thus, 3 )( )

orr()=[2S+1) 27+ 1)1 (%'/k)
X > (I—ee)

MMM M
(MM | PO (k) | TMM s)*
X' MM | PO ()| TMMg)
=3S(S+1) (27 +1)7 (' /k)
X 560N, ©)
where B

f(“l) = f‘/’«‘is* Zi €xp (iK, : rf’)sfz‘peSdXe//S (63,)

—1 as «x—0.

The integral of ¢,5* exp(ix’-1;)s; .5 over all electron
coordinates (including spin) except r;’ is independent of
j, because of the antisymmetry of ¥, in the electron
coordinates. This allows f(x’) to be expressed as a
Fourier transform,

f()= f exp (i’ - v)p(r')dr’, (6b)
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of a normalized spin density
P(rl)ENf¢eS*(XI,X2/,X3" -, X16)

st‘//es(Xl;X2I,X3,' ot ’Xlﬁ’)dqu2l' ) Xmﬁ’/S) (73‘)
do denoting summation over spin; fp(r')dr’=1. The
quantity p, and consequently f, has the symmetry of
the molecule. In evaluating the matrix elements of (5)

it is convenient to expand f(x’) in spherical harmonics:

f(u’)=lZ::0 (21Dt A () Pi(e’-w'), (6¢)

where 4,;(x) is given by
Al(x)EfPl(e’-u’)f(x’)de'/élril (8a)
- j .J' (k") Py(@’ -1 [r)p(x)d7’;  (8b)

or, if the spin density (7a) is expanded in spherical
harmonics

p(r’)=li:30 L(2+1)/4x]oi(r) Po(u’ - x'/7"),  (7D)
by

0

()= f o . (80)

Let ®! denote a rotation which sends the space
frame into the molecular frame. We choose the z axis of
the molecular frame along u and the z axis of the space
frame along e; the coordinates of e and u’ are then the
same, namely (0,0,1) in Cartesian coordinates. Sym-
bolically the coordinates of u may be described by
u=®'e and the coordinates of ¥'=«e’ by ¢’=®&u’, or,
since the coordinates of € and u’ are identical, by ¢/ = Re.
To facilitate the evaluation of the matrix elements

U'M'| f(¥)|TM)
- f V% (Rte) () V¥ (Gle)du (9)

of (5), in which the integration is over all solid angle, it
is desirable to have the same argument appearing in
each factor of the integrand. The azimuthal direction of
the x- (or y-) axis of the molecular frame may be chosen
arbitrarily because of the cylindrical symmetry of the
molecule. We make use of this freedom in defining ® ! as
a rotation about an axis perpendicular to the plane of
e and u. Then, if 6, ¢ are the spherical coordinates of
u= Re, 0, ¢ are the spherical coordinates of &’= Re.

11 The P; are Legendre polynomials; the j; are spherical Bessel
functions; de’ denotes the element of solid angle.
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From the properties of the spherical harmonics it
follows that

YJM((R'IC) = YJM(0,¢)
= (=)MY;M(0, p=m)= (—)MV;¥(Re),

so that the arguments in the factors of the integrand of
(9) may be made the same. The cross section o,y will
depend only on the magnitude of x. The average with
respect to molecular orientations associated with
(J'M'| f|JM) is equivalent to an average over the
orientations of x.

The summation in (5) may be carried out with the aid
of the spherical harmonic addition theorem

ZMYJM*(HI) YJM(II2)= (2J+1)Pj(lll'll2)/47l' (10)
to yield
oy () =35 (S+1) 2T +1) (¥'/k)

Xf Py (ur-ug) Pr(us-us) f*(xu)

Xf(Kllz)dlhdllz/ (47!')2 (11)
Since Pjy(u;-uy) is invariant under simultaneous rota-
tion of u; and u,, it follows from the orthegonality
theorem for the irreducible representations of the rota-
tion group that S Pr(ui-u)Pr(ui-us)¥ ™™ (u;s-e)
Y™ (uz- €)du;du, vanishes unless /=17 and m’=m, and is
independent of m for given /. This fact, together with
the addition theorem (10), allows one to evaluate in
terms of 1213 -

f Py (6) P () Pa()du=[2/ (20+1)1(7700| T Ti0)?

the type of integral obtained when (6c¢) is substituted
into (11). The result is

oy (K)=2S(S+1)(2J'+1) (' /F)
X3 (J'J00| J'TI0)42(). (12)
=0

Consider now two limiting cases for the cross section
corresponding to large and small values of the ratio «
(mentioned in Sec. I) of the transit time of the neutron
to the period of molecular rotation. The case o>>1 is
academic, but instructive: very cold neutrons are inci-
dent on a “gas” at very low temperature, and the mole-

12 See, e.g., Biedenharn, Blatt, and Rose, Revs. Modern Phys.
24, 249 (1952) for a discussion of the vector addition coefficients
(J1gamimz| j172gm), and a convenient computational formula. Note

that Py.Py= 2 (J'J00|J'JI0)2P;.
=0
13 M. Hamermesh and J. Schwinger, Phys. Rev. 69, 145 (1946)

give an analogous derivation for the neutron-nuclear scattering
from deuterium.
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cules are supposed to have no translational motion.
From a classical viewpoint a neutron sees many
orientations of a molecule during transit.

76)=f0)= [ expli: G0
- f exp(ix- )p(Qr)dr' = f exp (ix- p(Rr)dr

may be regarded as a scattering amplitude for a station-
ary molecule, so that | f(«') |2 gives the cross section (to
within a constant factor). For «>>1, then, the amplitude
should correspond to an f with the spin density p aver-
aged uniformly over all orientations of the molecule,
which is equivalent to averaging f(x) over all orienta-
tions of x; i.e., symbolically, the amplitude should be
(f(x)), and the cross section [(f)|2. The quantum
analog has the molecule initially in its lowest rotational
level, and an incident neutron has insufficient energy
for inelastic scattering; i.e., J’=J=0.-In agreement
with the classical picture, we obtain
co0() =3S(S+D N> =FS(S+DA(K). (13)
For a1, the static or semiclassical limiting case, each
neutron sees an instantaneous picture of the molecule
corresponding to a cross section |f(x’)|% but the
random orientations of the molecule require this to be
averaged so that for the gas the cross section is (| f|2).
In the quantum analog one envisages such large values
of k that #//k may be replaced by unity in ¢;+s. Then,
with the aid of the closure property for spherical

TaBLE I. Determinants of the symmetry states. The normalized
determinants 4, - - -, ¢y with M g=1 are defined by the molecular
orbitals on the principal diagonal; these consist of filled 1ss and
2so orbitals accounting for eight of the sixteen electrons, the re-
maining orbitals being specified by the table, a 4 or — entry
indicating that the space orbital is occupied by an electron with
-+ or — spin. The space orbitals are labeled both in standard
notation and in Meckler’s notation. Meckler lists the nine 32,
symmetry states as eigenfunctions of S, with eigenvalue Ms=0;
these yield the ¢, when operated on by (S;+4S,)/V2.

2pay 2prut 2pmu™ 2pmgt 2pmwe” 2poy

$o b+ [ X+ X~ Xo
A -+ + + - +-
B +- + -+ + Hp
c +- 1 + - ¥ + -
D +- - ¥ + + + -
E + + -~ - % +- 4
F o4 I - Y- ¥
G+ +- + + - ~
H - +- o+ + R
I+ + - 4- - ¥
I+ S S - +
K+ + +-  f- 4+ ~
L - ¥ +-  +- F +
% +— +- 4- + +
6 +- + y- 4-
e - 4= + + -
o + + - £~ £
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harmonics
25 V2 (ar) Y (us)
=3"7(2T4+1)Ps(ur-ug)/4r=5(u1—uy),

the cross section per initial state for a molecule initially
in level E; becomes, from (5),

2 rorr()=3S(S+1)(] f(x) |,

independent of J.

(14)

III. THE SPIN DENSITY

The spin density™ p(r) of Egs. (7) contains all the
information about the ground electronic wave function
¥.S of the molecule relevant to the scattering problem.
More generally, a spin density may be used to express in
a convenient form matrix elements diagonal in .S of any
operator of the type® F=3 ;i(r;)s;: (SMs'|F|SMs)
=(SMs'|S|SMs) S h(x)p(r)dr. The spin scattering
operator (2a) corresponds to choosing /(r) =exp(ix-r).

The normal O, electronic level is a 32 ,~. Meckler?
approximates . for this level by a linear combination
of nine symmetry states of T ,~ symmetry, each a linear
combination of Slater determinants of (orthonormal)
molecular orbitals, the orbitals being approximated by
linear combinations of atomic orbitals. The molecular
space orbitals for each determinant are chosen from
the set

1504, 1504, 250,, 2504, 2p0,, 2pm=, 2prE, 2po,.

At normal internuclear distance the one-electron ener-
gies of the orbitals increase from left to right in the list.
We write Meckler’s ¥,5 as

‘P:i CuPu (i a’=1),

r=a r=a

(15)

where, in terms of the determinants specified in Table I,
the symmetry states ¢, are given by

¢a=3(A+B—C—D),
éy=3(B+C—A4—D),
¢y=2"YE+G—F—H+J+K—I—L),
¢1=2"4F+G—E—H+I+K—J—1L),
$i=2"YE+F—G—H+I+J—K—1L),

(16)

and the one-determinant symmetry states ¢., ¢a, ¢e,
and ¢;. The symmetry state ¢, which corresponds to
the molecular orbital solution, predominates at normal
internuclear distance (1—[c.|?=0.05). The set of
orbitals for ¢, gives the lowest value for the sum of one-
electron energies.

14 Henceforth we drop the primes and refer all coordinates to the
molecular frame.
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TasLE II. Values of the C’s of Egs. (17) as a function of inter-
nuclear distance for Meckler’s O, normal 32,~ electronic wave
function. The importance of the one-determinant molecular orbital
solution ¢, in Meckler’s wave function is indicated in the last row.
Note that Z;C;=1.

R(a.u.) 2.0 2.5 4.0 o
C: —0.0009 —0.0018 0.2212 1/4
Ce 0.0180 0.0394 0.2590 1/4
Cs 0.9816 0.9591 0.2980 1/4
Cs 0.0013 0.0033 0.2213 1/4
¢ 0.9700 0.9347 0.1902 1/8

In case, as here, ¢S is expressed as a linear combina-
tion of determinants of orthonormal orbitals, p(r) is a
quadratic form in the orbitals, the cross terms (overlap
terms) arising from products of determinants differing
by one orbital. No overlap terms appear in p for
Meckler’s ¢S, since all determinants involved differ by
at least two orbitals. This follows from the fact that the
1ss and 2so orbitals are always filled and no two space
orbitals outside the 1so and 2so are of the same sym-
metry ; changing the symmetry of only one space orbital
would change the symmetry of ¢,5.

The result of inserting (15) into (7a) is, in terms of the
molecular space orbitals o,

p(1)=C1le(2pa,) |+ Ce| 0 (2pm.H) |2

+Cslo2pm ) |*+Culo(2po.) % (17a)
where
Ci=a+B+v—4,
Co=3|ca— 3|+ ca+c—atB+v+3,
Ci=3|cat|*+ e+ c+a—B+v+3,
Ci=a+pB—7v+5, (17b)

B=3%(—cotentci)?,
d=%(c,Fentci)

Note that > ,C;=1. The coefficients ¢, are given by
Meckler as a function of internuclear distance; corre-
sponding values of the coefficients C; are given in Table
II. At equilibrium distance the contribution of the 2ps
orbitals may be neglected, and we may write Co4Cs=1.
With the 2p, atomic orbitals at —R/2 and R/2 denoted
by ¢ and ¢’, and the overlap integral f'¢*¢'dr by A, the
spin density (17a, b) reduces to

a=g(c,—crtcy)?,

y=3%(cotcn—ci)?

p(D)=a(|¢|*+|e'|%)+b2¢*¢/, (18)
with
o 1+(2C;—1)A e (2C3— 1)+A. (18)
2(1—A?% 2(1—A%

These reduce to a=—b=1% for the molecular orbital
solution together with A=0. For C3=0.97 (interpolation
for R=2.28 from Table IT) and reasonable values of A,
a and —b may be larger by as much as about 30 percent.
(For Meckler’s Gaussian, Duncanson-Coulson’s hydro-
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0 1 2 3 4 5
r(atomic units)

F16. 1. R(r) for normalized atomic 25, orbitals R(r)V:*(6,4)
of the (a) Meckler-Gaussian (see reference 7), (b) hydrogenic (see
reference . 15) (Z=4.44), and (c) Hartree-Fock (see reference 16)
types.

genic,'® and Hartree-Fock!® orbitals, A is 0.125, 0.158,
and 0.244, respectively, at R=2.28 a.u.) The radial wave
functions for these orbitals are plotted in Fig. 1 for
comparison. If Hartree-Fock or other reasonable types
of atomic orbitals were used in Meckler’s calculation in
place of his Gaussian-type orbital, the ¢, might differ
somewhat, but it seems unlikely that the C’s of (17)
would change significantly.

IV. MAGNETIC CROSS SECTION IN
CENTER-OF-MASS COORDINATES

From a study of computed curves of the 4,(x), which
depend on the spin density through f(x), two main
conclusions may be drawn. First, the error in the cross
section associated with the static approximation may
generally be neglected. This is fortunate, since use of
the static approximation allows very great reduction in
the amount of computing required to obtain the cross
section. Second, the cross section is rather insensitive
to the form of the radial part of the oxygen 2p atomic
orbital. This is unfortunate in that it means the
scattering does not provide a sensitive probe for the
electron distribution of the molecule.

The validity of the static approximation (14) is based
on the smallness of the inelastic scattering relative to
the elastic scattering. (J'J00|J’JI0) vanishes for J'+J
+1 odd and for [J’—J|>I. From the inversion sym-
metry of the molecule it follows that 4; vanishes for !
odd, and hence only J’ and J for even |J'—J| are
involved. (This is independently a consequence of the
symmetry of the wave function under exchange of nuclei

15 W. E. Duncanson and C. A. Coulson, Proc. Roy. Soc. Edin-
burgh A62, 37 (1944).

16 Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London)
A238, 229 (1939). To calculate A we used the analytic fit of the
radial function for the oxygen S given by P. O. Léwdin, Phys.
Rev. 90, 120 (1953), together with formulas from C. C. J. Root-
haan, J. Chem. Phys. 19, 1445 (1951).
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F16. 2. A plot of (J’J00|J'JI0)? vs J. These functions are here
defined only for integral values J and J’. The smooth curves are
dra\;vn for clarity. The curves are labeled by (/,AJ) where AJ
=J'—J.

if the molecule contains only one isotope.) Some values
of (J'J00|J'Ji0)? are plotted in Fig. 2. It follows that if
A,=0 for /520, i.e., if the spin density is spherically
symmetrical, the scattering is purely elastic. In this case
the static approximation is justified, since o=
8y7077, S0 that replacing '/ k by unity, as required in the
static approximation, has rigorously no effect on oys,
and including contributions ¢+ to the scattering from
transitions for which energy cannot be conserved, also
required by the static approximation, also has no effect.
The actual scattering approaches this ideal case. The
Ai(x) derived from Meckler’s ground electronic wave
function (15) are plotted in Fig. 3. Denoting the
maximum value of | 4;(x)| for givenlby | A ;| m, we may
use the smallness of (|4:]m/|4o|m)?=|4:].* as a cri-
terion for the validity of the static approximation; if
this ratio vanishes for all />0, we have the ideal case
discussed above. It may be seen from Table III that
this criterion is quite well satisfied. It is true that this
criterion is no longer satisfactory if values of « for which
|Ao(k)| ~|As|m are of particular interest, e.g., in
differential cross section measurements for sufficiently
large scattering angles and/or small incident wave
lengths; such cases, which involve smaller scattered
intensities (especially relative to the nuclear scattering),
are likely to be of less experimental interest in the near
future.

Another indication that use of the static approxi-
mation will lead to satisfactory results comes from a
comparison of {|f]|% and [(f)|? discussed in Sec. II.
These differ appreciably only as « approaches the tail
region (see Fig. 4), and since they represent two
limiting cases for the ratio «, one might expect inter-
mediate cases not to differ significantly. We may also
interpret [(f)|* as the rigorous scattering if 4,=0 for
1#0, and the difference between (| f]|% and [(f)|? as
taking approximate account of the nonvanishing of
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these A; for I5#0, i.e., the nonsphericity of the spin
density.

For the nuclear scattering one finds a partial cross sec-
tion®?® “o;.;”’ similar to (12). The x dependence of the
nuclear partial cross section is obtained by replacing
the electron spin density by the density of nuclear
matter, i.e.,, § functions at the equilibrium nuclear
positions (if vibration is ignored) : f(x) and 4,(x) reduce
simply to cos (x-R/2) and 3[ 14 (—)*]7:(kR/2). From
a comparison of the A4; for the magnetic and nuclear
scattering plotted in Fig. 3, it is apparent that the static
approximation has greater validity in the magnetic case.
There are two reasons for this. First, the spin density is
widely distributed radially so that its Fourier trans-
form falls off more rapidly with « than in the nuclear
case where the density is finite only on one spherical
shell. Second, the spin density is more spherically
distributed than the nuclear density, as indicated by
(7b) and (8c).

The A; were computed with a hydrogenic 24, atomic
orbital with effective nuclear charge! Z=4.44 in (18)

oSy
08

0.7f

osf .
‘o

" os- Ay (hydrogenic)
04}
0.3

o2y

o.lr

-0.2

Fic. 3. The coefficients 4;, =0, 2, 4, of Eqgs. (8) for Meckler’s
ground electronic wave function vs «R/2 are plotted together
with 71, I=0, 2, 4, the corresponding coefficients for the nuclear
scattering. The small effect on the magnetic scattering of replacing
the Gaussian 2p atomic orbital of Meckler’s wave function by a
hydrogenic orbital (Z=4.44) may be seen by comparing the 4¢’s
plotted for the two orbitals.
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replacing Meckler’s Gaussian orbital (but maintaining
C3=0.97). The 4, are very similar in form for the two
types of orbitals, both behaving roughly like damped
spherical Bessel functions (see Fig. 3), the damping
being in agreement with the extensive radial distribution
of the spin density. Table III indicates the relative
positions of the main peaks for each /. The Ay’s differ
by at most 0.03 for the two orbitals (see Fig. 3). It
appears unlikely that the cross sections determined
from these two orbitals could be experimentally dis-
tinguished at present. It may be of interest that the
contribution to 4, from the b or overlap part of (18) is
relatively small; it has the general shape of 4 itself, but
falls off from about —0.15 at k=0 crossing the axis at
about kR/2=3.5 and 7.

As an experimental means of distinguishing between
various reasonable types of molecular wave functions
of O., the scattering of neutrons proves to be of little
use. We see that even before the blurring effect of the
translational motion of the molecules is taken into ac-
count, the magnetic scattering differs very little for the
two types of 2p, orbitals assumed. Our original assump-
tions for the molecular wave function disregarded the
zero-point vibration (for which the rms fractional

KR
%5 AND kR

Fi16. 4. The spherical averages (| f|2) and [{f}|2 of fus kR/2 for
Meckler’s ground electronic wave function. Also plotted is the
form g of the total magnetic cross section in center-of-mass
coordinates vs kR.
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TaBLE III. The extreme values of 4; and the corresponding
arguments for /=0, 2, 4, 6, 8 derived (a) from Meckler’s Gaussian,
and (b) from hydrogenic (see reference 15) (Z=4.44)2p, atomic
orbitals.

1 (1] 2 6 8
@ (A1)exs 1.00 009 —0.017 —0.009 —0.002
8) (kR/2)exs 0.0 2 3.8 44 5
) (A1)exs 1.00  0.11 —0.005 —0.0072 —0.003
(kR/2)exs 0.0 2.2 3.2 4.8 6.5

change of internuclear distance is only 0.03), and also
the couplings of the electronic spin leading to fine
structure'” in the rotational levels. One would hardly
expect that if these were taken into account the change
in scattering, even in center-of-mass coordinates, would
be greater than that obtained if reasonable changes are
made in the 2p, orbitals.

V. TOTAL MAGNETIC CROSS SECTION

From the partial cross sections oy.;(k) of (12) one
could in principle compute the distribution in angle and
energy of the scattered neutrons in the laboratory
frame of reference.'® Here we shall be concerned with
the total cross section in the laboratory frame derived
from the static approximation expression (14) together
with Meckler’s wave function (15). In accordance with
the assumption of nearly elastic scattering involved in
the static approximation, we set k= 2k sin(6/2), where 0
is the scattering angle. By integrating (14) over all
solid angle, we obtain for the total cross section in
center-of-mass coordinates, in units of 2S(S+1)

17 The over-all fine structure splitting for each rotational level
of interest is about 2 cm™ corresponding to a neutron wavelength
of 15A. These splittings will not affect the scattering, at least to the
extent that the split levels are equally populated, and that
scattering corresponding to transitions among them may be
regarded as elastic.

18 For a detailed discussion of the required transformations see
reference 4.
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TABLE IV. Total magnetic cross section ¢ per molecule of oxy-
gen gas for neutrons of incident wavelength X. In the limit of in-
finite wavelength the relative motion of the neutrons and molecules
depends only on the molecular motion, and o/ approaches a limit
independent of A, which for 7’=20°C is 0.361 barn/angstrom.

10

A(angstroms) 1 2 3 4 5 7.5 15 20 30
0.130 0.490 0.981 1.516 2.015 3.054 3.96 5.76 7.52 11.09

o (barns)

X[ (m/myp) (g.62/2mc?) P=0.3650X 1072 cm?, the ex-
pression

o (k)= f (1 £()[2) sinddbdg = (2 /) f (IR

—4r as k0.

The required integration was carried out numerically
in terms of the more convenient integration variable
kR/2. The resulting function is plotted in Fig. 4. The
transformation of the cross section in center-of-mass
coordinates to laboratory coordinates is based on the
principle that the number of neutrons scattered per unit
time is independent of the Newtonian reference frame.
Averaging® over a distribution of molecular velocities
appropriate to a gas temperature of 20°C led to values
of the total cross section given in Table IV. The agree-
ment with experiment® is to within the experimental
error.

The author is indebted to Dr. H. Palevsky and Dr. L.
van Hove for several interesting discussions concerning
this work. A large part of the computation was done by
Miss Edith Moss. I am pleased to express my apprecia-
tion to others of the Solid-State and Molecular Theory
Group at M. I. T. and especially to Professor J. C. Slater
for the stimulating atmosphere I have enjoyed during
the course of this work.

19 The same procedure is used in references 12 and 1. In the

present case the integrals were carried out numerically.
2 H. Palevsky and R. M. Eisberg (to be published).



