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Magnetic Scattering of Slow Neutrons from 0, Gas*
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A general expression is derived for magnetic scattering of slow neutrons from oxygen gas which takes ac-
count of molecular rotation. The scattering derived on the basis of Meckler's ground electronic wave function
for 02 is discussed. The validity of the static or semiclassical approximation is considered. Values are given
for the total magnetic cross section in laboratory coordinates based on Meckler's wave function. The
magnetic scattering does not appear to be sufBciently sensitive to changes in the wave function to distin-
guish in practice between different reasonable approximate wave functions.

I. INTRODUCTION

'HE magnetic scattering of slow neutrons from
paramagnetic 02 has been considered as an ex-

perimental means of obtaining information about the
(valence) electron distribution of the molecule. "
Since the nuclear and magnetic scattering are independ-
ent, the experimental magnetic cross section may be
obtained by subtracting the calculated nuclear cross
section from the measured cross section. Halpern and
Appleton have calculated the total nuclear cross section.
In this paper a theoretical examination is made of the
magnetic scattering, and the total magnetic cross sec-
tion is calculated.

One might hope with either x-ray diGraction or
neutron magnetic di6raction to obtain an electron
distribution for the molecule from the Fourier trans-
form of a scattering amplitude. The electron distribu-
tion measured is, of course, diferent for the two types
of di6raction. In both cases one is immediately disap-
pointed by the loss of information caused by molecular
thermal rotational and translational motion. Neutrons
of a monochromatic beam incident on a sample of gas
see molecules with a variety of velocities, angular veloc-
ities, positions, and orientations (classically speaking).
Assuming negligible correlation between molecules, the
resultant scattering is given by averaging the cross
section of one molecule with respect to these parameters.
The situation is similar for an x-ray beam incident on
the gas. An important distinction arises, however, from
the difference in velocities of the incident particles. The
speed of light is so great relative to molecular velocities
and angular velocities, that a molecule appears to a
photon to be stationary both in position and orienta-
tion as the photon passes by. Not so for a neutron of
wavelength i angstrom whose speed is only 1.32X10 '
that of light. This added complication in the neutron
case may be viewed as follows.

The ratio n of the time of transit of a neutron across
a molecule to the period of molecular rotation gives a
measure of how much the molecule rotates during the

neutron's passage. By use of the equi-partition theorem
for rotational motion, n is found to be about ~~ for 02
gas at room temperature and incident neutrons of wave-
length X=5 A, a typical value in the range (1 &X&20 A)
of experimental interest. This value of n indicates that
the static (or semiclassical) approximation commonly
used in x-ray scattering theory for treating the sects of
molecular rotation may not be applicable to slow neu-
tron scattering. The static approximation has been found
satisfactorys 4 under some circumstances for the nuclear
scattering of slow neutrons from molecules. Here we are
concerned with its validity for the magnetic scattering.
The effect of translational motion of the molecules may
be viewed in a similar way. The ratio of the root-mean-
square molecular speed to the neutron speed gives a
measure of the neutron-molecule relative velocities;
for room temperature this ratio is 0.12K(A). The trans-
lational motion of the molecules may thus also be ex-

pected to have an important bearing on the cross
section.

The above qualitative discussion is from a classical
viewpoint. Consider now the wave functions describing
the molecule required for the quantum-mechanical treat-
ment. We shall assume the molecule is in its ground elec-
tronic and vibrational levels. (For the gas at room
temperature, the Boltzmann factor for the first excited
vibrational level is 4&&10 '.) We neglect the zero-

point vibration. The rotational levels are given by
1.44K(X+1) cm ', only odd-X levels being occupied
because of the Bose statistics of the nuclei. The
p-type tripling ' of these levels arising from the
spin-spin and spin-orbit terms in the Hamiltonian
and the coupling of the spin with the rotational
motion will be neglected. With this assumption the
electronic and rotational motion become independent
(except, of course, insofar as the electrons rotate
with the molecule as a whole), and the electron spin
of the molecule becomes free in orientation. Some
of the above assumptions are considered again in Sec.
IV. The molecular wave function may then be expressed
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as a product of an electronic, a vibrational, and a
rotational wave function, the first determined in the
Born-Oppenheimer approximation for equilibrium inter-
nuclear distance E.= 1.2I A, the second represented by a
8 function of the internuclear distance, and the third
by normalized spherical harmonics with the internuclear
orientation as argument. The electronic wave function
is a 'Z, , and will be considered in more detail in Sec.
III.

Based on wave functions of this type we derive in
Sec. II a general expression for the Born approximation
cross section of 02 in center-of-mass coordinates for the
magnetic scattering, and also the corresponding cross
section formula in the static approximation. In Sec. III
we derive from Meckler's ground level electronic wave
function for O~ a simple expression for the spin density
in terms of which the scattering is conveniently de-
scribed. In Sec. IV use of the static approximation is
justified for the magnetic scattering, and the insensi-
tivity of the scattering to the form of the 2pm+ orbital
of the wave function is discussed. The total magnetic
cross section is evaluated in Sec. V.

II. MAGNETIC SCATTERING CROSS-SECTION
FORMULAS

A parallel beam of unpolarized slow neutrons of de6-
nite wavelength is assumed to be incident on a sample
of 02 gas in thermal equilibrium. No correlation between
the molecules being assumed, the cross section for the
gas is the sum of the cross sections for the individual
molecules. Double scattering is negligible. The cross
section in center-of-mass coordinates for the magnetic
scattering of an unpolarized neutron beam may be
expressed in terms of the partial cross sections per initial
state of the molecule,

a b.(x)= (k'/k) d.—'g (»', v.) (I—ee)

: (»'IP
I v.)*(»'IP

I ~.), (1)

(2a)

(2b)Pin&(x) =P,r'(E(x r;)1;+1;E(r. r;)),
r A. Meckler, J. Chem. Phys. 21, 1750 (1953).

The convenient form of the orbital operator given here is due
to G. T. Trammel, Phys Rev. 92, 138.7 (1953).

I

corresponding to incident neutrons of wave vector k
scattered from a molecule initially in an energy level
E . After scattering, the molecule is left with an energy
Eb and the neutron with wave vector k', with k'deter-
mined by conservation of energy: its(k" —k')/2m
=E —Eb, where m is the neutron-molecule reduced
mass. The momentum transferred to the molecule is
&rt(k —k') =. Ax= It&ce. The summation is over the degen-
erate states, denoted by v and vb', of the energy levels
E and Eb, d is the degeneracy of E,. bisogiven in (1)
in unitsof L(m/m„) (g„e'/2mc')$', m„ is the proton mass,
g„ the neutron g factor. I is the unit dyadic. The mag-
netic scattering operator P in (1) is the sum of a spin
part P «& and an orbital part' P & '.

Pi &(x)=P; exp(inc. r,)s;,

where
pl

E(x r) =2 )&. exp(ibad r)d)&.

—+1 as x—+0.

The position, spin, and orbital angular momentum
operators of the jth electron are denoted by r, , s;, and
I;. The cross section per initial state of a molecule with
energy E, is obtained by summing O-b, over all levels Eb
consistent with conservation of energy. This cross
section is then averaged over all initial states weighted
by the Boltzmann factor.

A typical molecular wave function, discussed in Sec.
I, will be denoted by YP(u)items(Xr', Xs', ,Xts');
the rotational wave function' I'g~ is a normalized
spherical harmonic" referred to a frame of reference
fixed in space; the unit vector u defines the orientation
of the internuclear axis. ik,~s is the sZ, ground elec-
tronic wave function with spin magnetic quantum
number Ms,' it is convenient to quantize the spin S
with respect to the space reference frame; X denotes
the position and spin coordinates of the jth electron, the
prime indicating that the space coordinates are referred
to a reference frame fixed in the molecule. The degener-
acy indices t of (1) refer to M and 3fs.

The components of the vectors in (2) are ordinarily
defined with respect to the space frame. To evaluate the
matrix elements of (1) it is convenient to express the
r, and 1; with respect to the molecular frame. Using the
invariance of a scalar product under rotation of coor-
dinatereferenceframe: x.r=x'. r'and e P& '=e' P& "
we may express the matrix element (J'3II'Ms'

I
P&~& (~) I

XJ3EMs) in terms of

f '(sc') =8(iA', ~s) t 1t,,t&rs*(X')

XQ;—,'fE(x' r )I +1,'E(x'. r, ')}

Xik,~s (X')dX,' (tl)

where the integral is over the electron coordinates and
includes summation over spins; f'n&' is independent of
Ms. f'z&' vanishes for a Z state, and as a consequence
the orbital interaction leads to no scattering. It is well
known that the average orbital angular momentum
vanishes for an orbitally nondegenerate level. The usual
proof, based on time reversal symmetry, may be gener-
alized to show that f&~&' vanishes: denoting the Her-
mitian conjugate by ~, we have

it=1= —1*; Lexp(ix r))t

= exp( ix r) = t—exp (ix r) j*,
9The total orbital angular momentum quantum number is

commonly denoted by E. See, e,g., reference 6.
E. U. Condon and G. H. Shortley, The Theory of Afomzc

SPectra (Cambridge University Press, London, 1951).
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and hence of a normalized spin density
p&~&(~)t=p&~&(—x) =—p&~&(x)*

r
Upon dropping the primes for simplicity in (4), f&~'(x') J
becomes

f& &( )=&&(M ',M ) "P,*P& '( )P.dX,

&&(M—s,Ms) P.P' '(&)P,*dX„

Xs,f. (X',Xm', X3 ~ ' pX18')dodX2 p dX&6 /S, (7a)

do. denoting summation over spin; J'p(r')dr'=1. The
quantity p, and consequently f, has the symmetry of
the molecule. In evaluating the matrix elements of (S)
it is convenient to expand f(x') in spherical harmonics:

and, since f, can be chosen real, it follows that f&~&

vanishes.
The matrix elements of the spin scattering operator

may be treated similarly in terms of the integral

f.~'" Q; exp(ix' r) s.,&,'r'dX, '
~J

The operator P&s& obeys vector type commutation rela-
tions" with respect to S=P;s, ; i.e., [P,&s&,S„)=ihP„
etc. Consequently, the integral may be reduced to

f(x') =P (21+1)i'A&(&&)P&(e' u'),
l=o

where A&(&&) is given by"

A g (&&)
=— P&(e' u') f(sc') de'/4m i '

4

t j&(Kr')P&(u'. r'/r') p(r')dr';

(6c)

(8a)

or, if the spin density (7a) is expanded in spherical

J

Equation (1) may now be simplified by introducing the
latter and using the relation

by

p(r') =P $(2l+1)/4&r)p&(r')P&(u'. r'/r'), (7b)
l~

(I—ee): (Ms'[S( Ms)*(Ms'( S ) Ms)

= 3S(S+1)(2S+1).

A &(&&)
= j &(&&r')p&(r') r"dr' (Sc)

Thus, Let (R ' denote a rotation which sends the space
frame into the molecular frame. We choose the s axis of
the molecular frame along u and the s axis of the space
frame along e; the coordinates of e and u' are then the
same, namely (0,0, 1) in Cartesian coordinates. Sym-

dinates of u may be described by
oordinates of x'=~e' by e'=(Ru', or,
es of e and u' are identical, by e'= (Re.
valuation of the matrix elements

0 z g (x) = L (2$+1)(2J+1)) '(k'/k)

X P (I—ee)

:P'M'M, '~ P«&( ) ~
JMM, )*

X (y M&Ms&
~

P&s& („)~
gMMs) since the coordinat

To facilitate the e
=-',S(S+1)(27+1) '(k'/k)

(J'M'( f(x') [ JM)
X P 1(J'M'If(~') I~M)12, (S)

where lrs '*(&R 'e) f(&Rx) Vs (&R 'e)du (9)

f(x') —= P,s* P; exp(ix' r, ')s;,P,sdX, '/S
(6a)

—+1 as x—+0.

(6b)

The integral of P,s' exp(ix' r )s;,P,s over all electron
coordinates (including spin) except r; is independent of

j, because of the antisymmetry of P, in the electron
coordinates. This allows f(v.') to be expressed as a
Fourier transform,

of (5), in which the integration is over all solid angle, it
is desirable to have the same argument appearing in
each factor of the integrand. The azimuthal direction of
the x- (or y-) axis of the molecular frame may be chosen
arbitrarily because of the cylindrical symmetry of the
molecule. We make use of this freedom in defining (R ' as
a rotation about an axis perpendicular to the plane of
e and u. Then, if 0, @ are the spherical coordinates of
u = &R 'e, &&, @Am are the spherical coordinates of e' = &Re.

"The P7, are Legendre polynomials; the j& are spherical Bessel
functions; de' denotes the element of solid angle.
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From the properties of the spherical harmonics it
follows that

p' M((R—te) p' M(fI y)

so that the arguments in the factors of the integrand of
(9) may be made the same. The cross section oq J will

depend only on the magnitude of x. The average with
respect to molecular orientations associated with
(J'M') fI JM) is equivalent to an average over the
orientations of x.

The summation in (5) may be carried out with the aid
of the spherical harmonic addition theorem

Par VJ *(ut) Vg (us) = (2J+1)Pg(ur ua)/4~ (10)

to yield

o.g g (s) =—;S(S+1)(2J'+1)(k'/k)

r
X

J
PJ'(ut'ua)PJ(ul'us) f (&ur)

Xf(qua)durdus/(4ar)'. (11)

Since P~(ur ua) is invariant under simultaneous rota-
tion of u~ and u2, it follows from the orthogonality
theorem for the irreducible representations of the rota-
tion group that fPq. (ut ua)Pq(u, us) &~ "'*(ut e)
V~ (ua e)durdua vanishes unless l'= l and m'= m, and is
independent of m for given /. This fact, together with
the addition theorem (10), allows one to evaluate in
terms of ""

Pg. (Ia)PJ (Ia)Pi(fa)did= [2/(2l+1)](J'JOOi J'Jl0)'
—1

the type of integral obtained when (6c) is substituted
into (11).The result is

og g(r&) =-',S(S+1)(2J'+1)(k'/k)

XQ (J'JOOi J'Jl0)sAP(a). (12)
lM

cules are supposed to have no translational motion.
From a classical viewpoint a neutron sees many
orientations of,a molecule during transit.

ff(x') = f((Rac) = exp(ix (R 'r')p—(r')dv'

=Jf exp(ix r')p((Rr')dr'= exp(ix r)p((Rr)dr

may be regarded as a scattering amplitude for a station-
ary molecule, so that ( f(ac') (

a gives the cross section (to
within a constant factor). For a))1, then, the amplitude
should correspond to an f with the spin density p aver-
aged uniformly over all orientations of the molecule,
which is equivalent to averaging f(x) over all orienta-
tions of x, i.e., symbolically, the amplitude should be
(f(x)), and the cross section ~(f)~a. The quantum
analog has the molecule initially in its lowest rotational
level, and an incident neutron has insufhcient energy
for inelastic scattering; i.e., J'= J=O. In agreement
with the classical picture, we obtain

opp(~) = aS(S+1)i(f)i'= aS(S+1)As'(s). (13)

For n(&1, the static or semi c4ssica/ limiting case, each
neutron sees an instantaneous picture of the molecule
corresponding to a cross section

~
f(x')

~

', but the
random orientations of the molecule require this to be
averaged so that for the gas the cross section is ( ~ f (

').
In the quantum analog one envisages such large values
of k that k'/k may be replaced byunityin oJ.z. Then,
with the aid of the closure property for spherical

TABLE I. Determinants of the symmetry states. The normalized
determinants A, ~ ~, @y with M z= 1 are dered by the molecular
orbitals on the principal diagonal; these consist of 6lled 1so. and
2so orbitals accounting for eight of the sixteen electrons, the re-
maining orbitals being specified by the table, a + or —entry
indicating that the space orbital is occupied by an electron with
+ or —spin. The space orbitals are labeled both in standard
notation and in Meckler's notation. Meckler lists the nine 'Z~
symmetry states as eigenfunctions of 5, with eigenvalue 35+=0;
these yield the p„when operated on by (S,+iS„)/VX

Consider now two limiting cases for the cross section
corresponding to large and small values of the ratio 0.

(mentioned in Sec. I) of the transit time of the neutron
to the period of molecular rotation. The case n&)1 is
academic, but instructive: very cold neutrons are inci-
dent on a "gas" at very low temperature, and the mole-

"See, e.g. , Biedenharn, SIatt, and Rose, Revs. Modern Phys.
24, 249 (1952) for a discussion of the vector addition coeflicients
(jij2m&ma I j&jsjm), and a convenient computational formula. Note

that Pg Pg= 2 (J'JOOI J'J/0)sP&.
lM

'a M. Hamermesh and J. Schwinger, Phys. Rev. 69, 14S (1946)
give an analogous derivation for the neutron-nuclear scattering
from deuterium.

A
8
C
D
K
F
0
H
I
K
L
@c
4v
4e
4y

2P&u
4o

2Pfrta
Xo
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harmonics

Qs+MI"sM*(ut) I'sM(us)

=Ps(2J+1)I's(ut us)/4s =. b(ut —us),

TABLE II. Values of the C's of Eqs. (1'?) as a function of inter-
nuclear distance for Meckler's 02 normal 'Z~ electronic wave
function. The importance of the one-determinant molecular orbital
solution @,in Meckler s wave function is indicated in the last row,
Note that Z;C;=1.

Zz ozv(~) = sS(S+1)(lf(r) I'),

independent of J.
(14)

the cross section per initial state for a molecule initially
in level Es becomes, from (5),

R(a.u.)

CI
C2
C3
C4
G 2

2.0

—0.0009
0.0180
0.9816
0.0013
0.9700

2.5

—0.0018
0.0394
0.9591
0.0033
0.9347

4.0

0.2212
0.2590
0.2980
0.2213
0.1902

1/4
1/4
1/4
1/4
1/8

1soo, 1so, 2so'4, 2so„, 2poo, 2ps'„+, 2p7ro+, 2po„.

At normal internuclear distance the one-electron ener-
gies of the orbitals increase from left to right in the list.
We write Meckler's f,s as

'b

P=P c@ (P c'=1)
JM=S p,=S

(15)

where, in terms of the determinants specified in Table I,
the symmetry states @„are given by

', (A+B C D), -——
4th ,'(B+C A ——D), — —
P 4 2'(E+G F H——+J+K I—L—), ——
y, =2 :(I+G E HyI~K-J I.—), — ——

y, =2 &(E+F G H+I+J K —L)— — —

and the one-determinant symmetry states @„@&,@.,
and @f. The symmetry state @„which corresponds to
the molecular orbital solution, predominates at normal
internuclear distance (1—

I
c,

I

'= 0.05). The set of
orbitals for @,gives the lowest value for the sum of one-
electron energies.

"Henceforth we drop the primes and refer all coordinates to the
molecular frame.

III. THE SPIN DENSITY

The spin density" p(r) of Eqs. (7) contains all the
information about the ground electronic wave function
P,s of the molecule relevant to the scattering problem.
More generally, a spin density may be used to express in
a convenient form matrix elements diagonal in 5 of any
operator of the type" F=P;h (r,)s;: (SIt/Iz'

I
F

I
SMs)

= (ScVs'
I
S

I SMs) J'h(r) p(r) dr. The spin scattering
operator (2a) corresponds to choosing h(r) = exp(ix r).

The normal O~ electronic level is a 'Z, . Meckler
approximates f,s for this level by a linear combination
of nine symmetry states of 'Z, symmetry, each a linear
combination of Slater determinants of (orthonorrnal)
molecular orbitals, the orbitals being approximated by
linear combinations of atomic orbitals. The molecular
space orbitals for each determinant are chosen from
the set Ct=n+p+y —8,

c,=-, lc.—cbl +c, +c, n+p+y+6-,
cs ——-',

I c,+cbl'+c, '+c.'+n —P+y+6,
C4 ——n+ p —7+5,

n= —', (c,—cb+c,)', p=-,'( c,+ca+—c;)',

P = s (co+ C b
—C4), 5=S (Cz+ Cb+ C4) ~

(17b)

Note that Q,C,=1. The coefficients c„are given by
Meckler as a function of internuclear distance; corre-
sponding values of the coefficients C; are given in Table
II. At equilibrium distance the contribution of the 2po.

orbitals may be neglected, and we may write Cs+ Cs ——1.
With the 2p~ atomic orbitals at —R/2 and R/2 denoted
by P and P', and the overlap integral Jp*@'dr by 6', the
spin density (17a, b) reduces to

with
p(r) =~(lel'+ Ie'I')+»e*e', (18)

1y(2C,—1)a
C= b=—

2 (1—6')

(2Cs —1)+6
2 (1—4')

(18')

These reduce to a= —6=—,' for the molecular orbital
solution together with 6=0.For Cs ——0.97 (interpolation
for E.= 2.28 from Table II) and reasonable values of A,
a and —b may be larger by as much as about 30 percent.
(For Meckler's Gaussian, Duncanson-Coulson's hydro-

In case, as here, f,s is expressed as a linear combina-
tion of determinants of orthonormal orbitals, p(r) is a
quadratic form in the orbitals, the cross terms (overlap
terms) arising from products of determinants differing

by one orbital. No overlap terms appear in p for
Meckler's lt, s, since all determinants involved differ by
at least two orbitals. This follows from the fact that the
iso and 2so- orbitals are always filled and no two space
orbitals outside the 1sa and 2so- are of the same sym-
metry; changing the symmetry of only one space orbital
would change the symmetry of P,s.

The result of inserting (15) into (7a) is, in terms of the
molecular space orbitals p,

f (r) =Ctl~(2pog) I'+Cslf (2p~-') I'

+Cs I1 (2p~') I'+C4I ~(2po-) I' (17a)
where
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TABLE III. The extreme values of A& and the corresponding
arguments for i=0, 2, 4, 6, g derived (a) from Meckler's Gaussian,
and (b) from hydrogenic (see reference 15) (Z=4.44)2p+ atomic
orbitals.

TABLE IV. Total magnetic cross section 0. per molecule of oxy-
gen gas for neutrons of incident wavelength 'A. In the limit of in-
finite wavelength the relative motion of the neutrons and molecules
depends only on the molecular motion, and 0/X approaches a limit
independent of X, which for 7=20'C is 0.361 barn/angstrom.

( )
(Ag),„t
(~R/2). t

(b) (&l)ext
(~2f/2), g

0 2

1.00 0.09
0.0 2

1.00 O.i 1
0.0 2.2

—0.017
3.8

—0.005
3.2

—0.009
4.4

—0.0072
4.8

8

—0.002
5

—0.003
6.5

X (angstrorns) 1 2 3 4 5 7.5 10 15 20 30
0. (barns) 0.130 0.490 0.981 1.516 2.015 3.054 3.96 5.76 7.52 11.09

XL(m/m~) (g~e'/2mc')$'=0. 3650X10 '4 cm' the ex-
pression

change of internuclear distance is only 0.03), and also
the couplings of the electronic spin leading to Qne

structure" in the rotational levels. One would hardly
expect that if these were taken into account the change
in scattering, even in center-of-mass coordinates, would
be greater than that obtained if reasonable changes are
made in the 2p~ orbitals.

V. TOTAL MAGNETIC CROSS SECTION

From the partial cross sections oqq(~) of (12) one
could in principle compute the distribution in angle and
energy of the scattered neutrons in the laboratory
frame of reference. "Here we shall be concerned with
the total cross section in the laboratory frame derived
from the static approximation expression (14) together
with Meckler's wave function (15). In accordance with
the assumption of nearly elastic scattering involved in
the static approximation, we set «=2k sin(8/2), where 0
is the scattering angle. By integrating (14) over all
solid angle, we obtain for the total cross section in
center-of-mass coordinates, in units of —s'S(5+ 1)

"The over-all fine structure splitting for each rotational level
of interest is about 2 cm ' corresponding to a neutron wavelength
of 15A. These splittings will not affect the scattering, at least to the
extent that the split levels are equally populated, and that
scattering corresponding to transitions among them may be
regarded as elastic.

"For a detailed discussion of the required transformations see
reference 4.

o.(k) =, (~ f(x) )') sin9ded&= (2'/k') ~ ([f~')~de
f

J J, (19)

—+4m as k—+0.

The required integration was carried out numerically
in terms of the more convenient integration variable
~R/2. The resulting function is plotted in Fig. 4. The
transformation of the cross section in center-of-mass
coordinates to laboratory coordinates is based on the
principle that the number of neutrons scattered per unit
time is independent of the Newtonian reference frame.
Averaging" over a distribution of molecular velocities
appropriate to a gas temperature of 20'C led to values
of the total cross section given in Table IV. The agree-
ment with experiment" is to within the experimental
error.

The author is indebted to Dr. H. Palevsky and Dr. L.
van Hove for several interesting discussions concerning
this work. A large part of the computation was done by
Miss Edith Moss. I am pleased to express my apprecia-
tion to others of the Solid-State and Molecular Theory
Group at M. I.T. and especially to Professor J. C. Slater
for the stimulating atmosphere I have enjoyed during
the course of this work.

"The same procedure is used in references 12 and 1. In the
present case the integrals were carried out numerically.

"H. Palevsky and R. M. Eisberg (to be published).


