THEORY

g)=|rf(r)|%. Now a formula for the magnetic
interaction equivalent to (A4) is

W,,.=—fH-Mdv,

where M is the nuclear magnetization density. Putting
in (A13) and performing one partial integration, we
have the effective evaluation of the electronic matrix
element (A7) for these special cases. Thus, for an s3
electron,

A1=3pg(0)M4; (A14)
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and for a p; electron,
As=— (4/35)pog (0) M s. (A15)

This last result is identical with the evaluation given by
Casimir and Karreman® in their original investigation
of the octupole interaction in iodine.

For the calculation of second order effects between
doublet states, the forms (A7), (A8) of the dipole and
quadrupole operators are used. Assuming that both
doublet states have identical radial wave functions,
the final result is just Eq. (42) with ¢=9=1.

2 H. B. G. Casimir and G. Karreman, Physica 9, 494 (1942).
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Van Vleck and Weisskopf and Frohlich have derived a micro-
wave line shape by studying the interruption by collisions of the
motion of a classical oscillator. They assume that after the
instantaneous impact the oscillator variables are distributed ac-
cording to a Boltzmann distribution appropriate to the value of the
applied field at collision. In contrast to the earlier theory of
Lorentz, they obtain the correct static polarization. The procedure
involves an assumption of very large velocity during collision.
This is criticized on the grounds that the duration of collision is
short compared to the resonant period and energy exchanges are of
the order of kT. We have derived a line-shape formula assuming
that the positions are unchanged after impact. Two extreme
models are studied. In one, the oscillators have a Maxwellian

1. INTRODUCTION

HE theoretical determination of the shape of a
spectral line, broadened by interactions between

the radiating molecule and other systems, is an exceed-
ingly complicated problem. The general case involves a
study of the types of interaction possible, treatment of
the exchange of energy between internal degrees of
freedom and translational motions, questions of coher-
ence, of radiation, etc. In addition, for broad lines one
may encounter the characteristic complexities of many-
body problems. A clear understanding of the physical
processes involved has been gained only in certain
limiting cases. There, the consideration of simple models
has been useful in calling attention to the ingredients
which must enter into more general treatments. The
present paper deals with some models which shed light
on the processes responsible for the shapes of the

* Sponsored by the U. S. Office of Naval Research, the Army
Signal Corps, and the Air Force.

} Present address: Department of Physics, Syracuse University,
Syracuse, New York, where the writing of this paper was com-
pleted under an Air Force contract.

distribution of velocities after impact; the second is a Brownian
motion treatment. The resulting line shape in both cases is that of
a friction-damped oscillator. For collision frequency much less than
the resonant frequency, the polarization postulated by the above
authors is reached as a result of kinematic motion between colli-
sions, and the line shapes agree. However, to obtain equal line
widths and peak absorptions, the collision frequency is twice as
large for the present theory. For collision frequency comparable to
resonant frequency a less distorted line shape results. For testing
the theories, experiments on foreign-gas broadening in the micro-
wave region at pressures of the order of an atmosphere are re-
quired. Differences between the theories are small for conditions
accessible experimentally at present.

spectral lines in gases (chiefly rotational), in the
microwave region.

For microwave wavelengths, the energy #w,, corre-
sponding to a spectral line of angular frequency wy, is
usually small compared to the thermal energy 27. This
implies that collision-induced transitions between states
are important. Indeed, saturation measurements indi-
cate that most collisions involve energy exchanges
between the rotational and translational degrees of
freedom. If consideration is restricted to foreign-gas
broadening (thus excluding the long-range resonance
forces), the duration of collision is short compared to the
resonant period of the line. It is then useful to introduce
for each line a quantity 7, which measures the time
between those collisions involving exchanges of energy
between translational motions and the relevant internal
states. In treatments less schematic than the ones with
which we deal, 7 is computed in terms of the inter-
molecular forces. This question is not discussed here ; the
present work deals with the analysis of some kinetic-
statistical aspects of the line-broadening problem. It is
of course somewhat arbitrary to split up the problem in
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this manner; a complete treatment would, however, be
involved.

Our considerations are in the spirit of previous work
by Van Vleck and Weisskopf! and also Frohlich.? These
treatments are most appropriate for foreign-gas broad-
ening when the nonradiating molecules are more numer-
ous than the radiating ones and form an inert reservoir.
It is then permissible to neglect effects which may occur
in a purely polar gas, and which have to do with definite
correlations between the radiations of two colliding
molecules. In addition, the problem of representing the
irreversible nature of the absorption process is made
simple by the presence of the nonradiating reservoir. In
practice correlation considerations probably lead to new
results only for highly compressed polar gases. The
probable effect of a collision on the state of the radiating
molecule is, in general, dependent on the mass ratio of
radiating and nonradiating molecules, the type of
interaction, the nature of the dynamic order of the reser-
voir molecules, etc. Study of these factors is important
for the understanding of the differences in the dielectric
behavior of compressed gases and liquids. Some of these
questions will be treated in a communication to follow.
For the present we limit ourselves to a criticism and
analysis of certain general features of previously pro-
posed models of the collision process. We discuss several
alternative approaches. One is a strong-collision model
which is perhaps appropriate when radiating and non-
radiating molecules have comparable masses, and when,
as in a gas, the dynamic ordering of the reservoir
molecules is unimportant. The second approach is a
Brownian motion treatment of a system of oscillators
which is perhaps more appropriate for radiating mole-
cules more massive than those forming the reservoir.
More general models can easily be constructed.

In the development of the mathematical theory it has
been useful to study the effects of collisions on the
absorption or emission of radiation by a classical charge
vibrating harmonically. With the help of the concept
“yirtual oscillator” it is possible to use the classical
formulas to find the quantum-mechanical result for a
general molecule. This procedure will be followed in the
present paper. A more direct quantum treatment, along
the lines of the work of Karplus and Schwinger,? will be
given later. If the absorption and dispersion of electro-
magnetic radiation is studied in the vicinity of a pure
rotation line, four quantities with the dimensions of a
frequency enter naturally. These are: the resonant fre-
quency »o of the line; the frequency » of the applied
field ; the collision frequency ».; and a quantity which is
the reciprocal of the duration of collision. The duration
of collision is approximately the spatial extent of the

1 J.H. Van Vleck and V. Weisskopf, Revs. Modern Phys. 17, 227
(1945).

2H. Frohlich, Nature 157, 478 (1946); Theory of Dielectrics
(Oxford University Press, London, 1949). A theory of substantially
the same form was presented earlier by R. Kronig, Physica 5, 65
(1938).

3R. Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948).
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interaction divided by the translational velocity, i.e., for
foreign-gas broadening, of the order of 102 sec. The
collision duration is thus short compared to the other
three periods for microwave rotational lines in the
centimeter range.

Van Vleck and Weisskopf! have discussed harmonic-
oscillator models where collisions are instantaneous, and
have derived a line-shape formula [ Eq. (22)] which has
found wide use in the interpretation of microwave
spectra. The line-shape formula has, however, not been
adequately checked by experiment when the line width
is comparable to the resonant frequency of the line, i.e.,
at pressures of the order of an atmosphere. Extensive
published results exist only for pure NH; and ND.. The
ammonia case is complicated by line shifts arising from
statistical broadening and inversion splitting, and does
not provide a test of the Van Vleck-Weisskopf line shape
under the conditions upon which the derivation is based.
It is therefore desirable that experiments be performed
on the line broadening of simple molecules (e.g., COS)
by foreign gases at pressures in the vicinity of an
atmosphere. The present paper deals with harmonic
oscillators and also makes the assumption of instan-
taneous collisions. It is believed that the model of the
collision process presented here is more realistic for gas
broadening. One is led to an alternative line-shape
formula which is simply the spectrum emitted by a
radiating oscillator moving under the influence of a
viscous resistance. The line shape agrees with that of
reference 1 when the collision frequency is small com-
pared to the resonant frequency. The discussion of
Sec. 4 indicates that the differences between the formu-
las in the high-pressure region may be measurable, in
spite of the contributions of neighboring lines.

2. ASSUMPTIONS OF EARLIER TREATMENTS

The theory of the absorption of energy by a har-
monically bound particle is well known. Let ¢ be the
charge and m the mass of the particle, wo the resonant
angular frequency, Eqe®! the external field and —mri
the friction force. Then the steady-state polarization
P(t) is given by Eq. (20c) with the resistance r=1/7.
There are three limiting cases of interest. If w tends to
zero, one finds the correct static polarization for a
system of V oscillators, i.e., P=Ne2E/mawq’. All reference
to 7 has disappeared; the static polarization is inde-
pendent of the rate and mechanism of approach to
equilibrium. A second case is # small compared to » and
wo; the well-known anomalous dispersjon and absorption
line shapes result. For » comparable to w and w, the
absorption line shape is asymmetrical and possesses a
high frequency tail; it is however symmetrical when
plotted against the logarithm of the frequency. A third
limit is obtained by setting the resonant frequency equal
to zero. One then obtains the simple theory of conduc-
tion and light absorption of electrons in metals or in the
ionosphere. To adapt this model to describe the rota-
tional lines of a molecule one assigns virtual oscillator
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quantities e;;, wj;, 7 to each transition from level 7 to
level j. At low foreign-gas pressures, i.e., 7;;<w;; and ,
the rotation lines are sharp, well separated, and
practically symmetrical. When 7;; is comparable to
and w;j, the line shape is asymmetric. For larger values
one encounters overlap of lines; finally, the instantane-
ous collision assumption becomes invalid.

Our aim is to derive formulas for the polarization on
the basis of more realistic collision models and to discuss
the above cases. The principal result is that the simplest
collision models give the same results as the friction-
damped oscillator. For many molecules there is a range
of foreign-gas pressures where individual rotation lines
are still separable but where the theories predict differ-
ent line shapes. In addition, different predictions in the
region of strong overlap can in principle be compared
with experimental absorption measurements as a func-
tion of frequency, pressure, and temperature.

Lorentz attempted to describe the process of inter-
ruption by impacts in a more physical manner. While
his developments dealt with the optical region, the
assumption as to the effects of an instantaneous collision
can be adopted to the energy-transfer type of theory of
reference 1. The key assumption is that the oscillators
which suffer collisions at the same time are redistributed
with positions and velocities weighted according to a
Boltzmann distribution appropriate to the field-free
Hamiltonian Ho= p%/2m~+mw®x?/2, where p and x are
the momentum and position of an oscillator. Lorentz’s
expression for the polarization is Eq. (20a), which differs
from Eq. (20c) by the presence of the term 1/72 in the
denominator. For collision frequencies much less than w
and wo, the difference is negligible. However, as w—0 one
obtains the incorrect polarization P= N2 E/m (w4 1/72)
and, as we—0, one fails to obtain free-particle behavior.

The important work of Van Vleck and Weisskopf,!
and (independently) of Frohlich,? reopened the question
of the proper treatment of collisions. These authors
attempted to construct a theory which correctly de-
scribes line shapes in the microwave region where w, wo,
and 1/7 are comparable. To overcome the inadequacies
of the Lorentz theory, they assumed that after collision
at time ¢, the oscillator variables are distributed ac-
cording to a Boltzmann distribution appropriate to
the instantaneous Hamiltonian H (f) = p%/2m~+mew®x?/2
—eEgx coswt. This assumption leads to the polarization
of Eq. (20b), which is correct in the static limit. How-
ever, as wr—0 one does not obtain the polarization of a
free electron gas, as is the case with Eq. (20c). In fact,
the polarization tends to an infinite result. Van Vleck
and Weisskopf justified their line shape by finding the
quantum-mechanical adaptation of Eq. (20b) for the
case of permanent dipoles. In the limit of an infinite
moment of inertia, i.e., zero resonant frequency, they
obtained the Debye formula,

Nu?
P=—~—/ (1+iwT),
3kT
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where u is the permanent dipole moment of the mole-
cule. This was considered to be a necessary result of any
correct theory. The quantum-mechanical adaptation of
formula (20c) does not lead to this result. Formula
(20b) has the additional consequence that the absorp-
tion tends to the finite value wy*/wi?rc as w—> ; the
integrated absorption over all frequencies is therefore
infinite.

The experimental evidence for the Debye formula lies
in dielectric relaxation experiments on liquids. Extensive
measurements of the relaxation of dipoles in compressed
gases have not been published.* The two cases differ in
the nature of the dynamic order, and it is probably to
the compressed gas that the theories under consideration
most nearly refer. That the liquid and compressed gas
are profoundly different in their dynamical behavior can
be seen, for example, from the fact that the parameter =
(if related to static viscosity) has entirely different
dependences on temperature and pressure. Furthermore,
measurements® of supersonic absorption of compressed
gases and liquids near the critical temperature indicate
distinct mechanisms for the two cases. Thus we do not
consider the Debye law to be a necessary result. This
question will be discussed further from the theoretical
point of view in a later communication. It will be shown
that the Debye relaxation time is essentially different
from the time between collisions, .

A significant advance in the understanding of the
physical assumptions involved in the approaches leading
to Eq. (20b) was taken by Van Vleck and Margenau.®
They pointed out that work is done by the electro-
magnetic field on the oscillator during an adiabatic
collision (“impulsive work”). This is indeed necessary in
a theory in which collisions induce amplitude changes
since the peak amplitude after collision can differ from
that before only if work has been done during the
collision. The total energy absorbed from the field is the
sum of the work done between and during collisions.
However, a less satisfactory implication of the theory is
that the oscillator velocity is instantaneously infinite for
an infinitesimally short collision. This is necessary so
that the mean oscillator position jumps a finite amount
toreach the value appropriate to the assumed Boltzmann
distribution. The present calculation is based on the
conviction that this feature of the theories is not
reasonable. The following arguments lead to an alter-
native model.

If harmonic oscillators collide with the molecules of a
buffer medium, one may assume that the kinetic
energies after collision have a Maxwellian distribution,
since the buffer molecules have such a distribution. This
procedure is followed in all the theories dealt with here

4 Experiments by C. S. E. Phillips of the Laboratory for
Insulation Research, Massachusetts Institute of Technology, are
in progress.

5H. D. Parbrook and E. G. Richardson, Proc. Phys. Soc.
(London) B65, 437 (1952).

( °_]'.)H. Van Vleck and H. Margenau, Phys. Rev. 76, 1211
1949).
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(with the exception of the Brownian motion treatment
of Sec. 6). One tacitly assumes that the oscillator mass is
of the same order of magnitude as the mass of the buffer
molecules and that collisions are strong. Consider, on
the other hand, the distribution of positions after
collision. We shall argue that a reasonable assumption is
that the oscillator does not alter its position during a
collision.

A typical energy exchange is of the order of 27" If the
duration of the collision is written as 8/wo, where 8 is a
very small fraction, the distance the oscillator moves
during a collision is ~(kT/m)*3/w,. In thermal equi-
librium the mean square displacement of the oscillator
is given by mw®/2=kT or (%)%= (2kT/m)}/w,. At
collision the oscillator thus moves only a small fraction
of a typical amplitude. Furthermore, this distance is
independent of the field E,, so that there can be no
tendency to take up a distribution of positions de-
termined by the external field. The action of the applied
field during a collision can move the oscillator a distance
of the order of %(eEo/m)(B/wo)?. This is 82 times the
mean displacement in a static field E,. It therefore
appears that a more reasonable assumption is that the
oscillator position is unchanged as a result of collision.
The impacts, however, change the velocity instantane-
ously, implying infinite acceleration. There is impulsive
momentum change (forceXtime) and impulsive work
(forceX time X particle velocity). Changes in position
occur only between collisions as a result of the motion of
the particle under the influence of its binding force and
the external field. This picture is closely related to the
description of collisions in the kinetic theory of gases. In
the next section, we develop a mathematical theory
embodying this idea. One finds the formula (20c) for the
polarization. From the present point of view the reason
for the adequacy of the Van Vleck-Weisskopf and
Frohlich formulas when 1/7<wy and w is the following.
Consider a set of oscillators which have made collisions
at the same time. The motions will then be rigorously
determined by the initial conditions after collision and
by the equation of motion containing the binding force
and the external field. The electric field distorts the
oscillator motion. If 1/7<wy and w, and furthermore
wo>w, macroscopic quantities such as the polarization
have time to approach the value postulated by Van
Vleck-Weisskopf and Frohlich between collisions.” No
serious error is then made by assuming that the distribu-
tion in position is the Boltzmann distribution appropri-
ate to the instantaneous value of the applied field. When
1/7 is comparable to wy or w, and w>>w,, the assumption
is inadequate.

3. MATHEMATICAL FORMULATION FOR
HARMONIC-OSCILLATOR BROADENING

The one-dimensional harmonic oscillator is charac-
terized by a charge ¢, a mass m, and a resonant frequency

7 See reference 2, p. 63. The subsequent development, however»
does not make correct use of this insight.
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vo. The state of the oscillator at time ¢ is prescribed by its
position x and its velocity v. We deal with a distribution
function f(x,v,£),? which determines the statistical be-
havior of the system of oscillators. The physical
interpretation is that f(x,7,t)dxdv gives the number of
oscillators at time ¢ with velocities in the range v, v4-dv
and with positions between x and x-+dx. If the distribu-
tion function is known, it is possible to compute various
other quantities of physical interest. The total number
of molecules per unit volume (of ordinary, not x space)
is N, and is independent of time. The distribution
function is therefore always required to satisfy

N= f ]‘ f(x,0,8)dxdv.

The number of oscillators per unit volume at x and time
3, is :

M

o0
ni= [ fniin 2)
The mean electric polarization of the oscillators is
+o0
P(t)=e f f xf(x,0,8)dxdv. 3)

The mean momentum g(«,f) and kinetic energy k(x,!) at
x and ¢ are given, respectively, by

gd=m [ sfuds,

, i
k(x,t) =12n- f 22 f (x,,8)dv.

—0

We now construct the equation governing the be-
havior of the distribution function. f(x,,f) changes as a
result of purely kinematic action and because of
collisions. We write

a J af o
of, Of, 35 ¥
9t oJdx Odv o

. 4)

c

The term v9f/dx represents the kinematic drift in «
space, and the term ad f/dv, the drift in velocity space as
a result of the acceleration a. The expression 8f/5t|,
represents the effects of collisions on the distribution
function and will be discussed in detail later. To
compute the acceleration we note that the Hamiltonian
of the oscillator in an external electric field Eq cosw? is:

H ()= p*/2m~+mws?/2— exEq coswt. 6))
We find the acceleration

a=dp/mdi=— dH/mdx= —wx-+eE, coswl/m.
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The kinetic equation for the distribution function is
therefore

af of df eEocoswtdf of
—tr——wit—Ff—— —=—

(6)
dat  Odx dv m

o,

In the absence of an electric field the equilibrium
distribution is

fo=Cy exp[ — (mv2+muwex?)/2kT]; (N

T is the temperature of the reservoir and & is Boltzmann’s
constant. Since we require /" S fodxdv=N, we find

Co= Nwom/ZWkT. (8)

The equilibrium distribution in position is

no(x)=ffod'v=Nwo(m/27rkT)‘5 exp —”::;) 9)

If the electric field at time ¢, E, coswt, were frozen, the
equilibrium distribution which would be reached eventu-
ally is

fea=C exp[— (mv*+mwix®— 2eEox coswt)/2kT].  (10)

One again requires J°.J feqdxdv=N. We shall be con-
cerned with effects which are linear in the electric field
strength. To this approximation C=C,. More generally

¢ Eq? cos’wt
exp( )
ZkTW02
Let us now consider the collision term §£/8¢| .. Three

expressions will be studied here. They are:
(1) The Lorentz assumption,

of

ot

N 2xkT

C mwo

(1)

1
=——(f—fo); (12a)

c

(2) the instantaneous equilibrium assumption of Van
Vleck and Weisskopf and of Frohlich,®

of

ot

1
=——(f—feq); (12b)

c

(3) the assumption of the present report,

e () (57

¢
7 is a constant independent of velocity, representing the
time between collisions. We find from the kinetic equa-
tion for the above three cases that if f is normalized at

]; (12¢)

8 Frohlich uses the language of distribution functions, Van
Vleck and Weisskopf that of mean-free-path theory. The latter
follows the history of an individual particle and is intimately con-
nected with the characteristics of the partial differential equation
satisfied by the distribution function.
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any given time

oN f f of

ot ot
Thus the normalization condition is maintained by the
motions.

The physical content of the Lorentz assumption is
that collisions make the distribution relax in a time = to
the equilibrium in the absence of a field. The Lorentz
collision term is inadmissible since it leads to an incor-
rect equilibrium distribution for the case of a static
electric field. Collisions fail to maintain the correct
distribution. Assumption (2) yields the correct value of
the distribution function for static fields. Left and right
hand sides of the kinetic equation are separately equal
to zero when f= feq for static fields. The same state-
ment holds when assumption (3) is employed. The
physical content of assumption (2) is that collisions tend
to make the distribution relax in a time 7 to the equi-
librium value characteristic of the instantaneous field at
time £. This content can be expressed in another way.
The number of molecules ejected from the range x, x+dx
and v, v+4-dv is proportional to the number actually
present in this range at time ¢; this is the — f(x,9,£)/7
term. The number per second re-emitted into the range
is given by feq/r. The mathematical form of assumption
(3) is somewhat different from the others; it contains
the integral quantity #(x,f)=J fdv. Assumption (3)
states that the number per second reemitted into the
velocity range v, v+dv as a result of collisions has the
Maxwellian form. The number re-emitted into the spatial
region, x, x+-dx, is proportional to the total number in
that region before collisions.

The difference between assumption (3) and assump-
tions (1) and (2) may be seen by computing /°3f/5¢| .dv.
This expression represents the change per unit time in
the number of particles at «, ¢. It vanishes under as-
sumption (3) but not under assumptions (1) and (2).
The change per unit time due to collisions of both
kinetic energy and total energy is nonzero for all three
assumptions. This is indeed necessary to represent the
degradative nature of the absorption process.

dxdv=0.

c

4. THEORY OF ABSORPTION AND DISPERSION

We investigate only processes linear in the electric
field strength. Let us adopt complex notation and write

E=E, exp (iwt).

We introduce the dimensionless quantities ¢ (x,2,f)
and »(x,f) defined by

f=fo(1+¢), (13)
n=mno(1+7); (14)

¢ and v are proportional to the electric field strength and
are small compared to unity. If terms containing
products of ¢, », or E are neglected, one obtains the
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kinetic equation,

dp 1 0¢p d¢ eEy coswiv
—t— ot r——wpl—=———————
a T ox dv kT

(15)

A takes on the following values for the three assumptions
discussed above

(1) A=0, (16a)
(2) A= (1/7)(eEx/kT), (16b)
3 A=y/7. (16¢)

In the present section steady-state solutions will be
studied. ¢ and v are assumed to have the form
¢ =09 exp (twt), v=7v, exp(iwt). For the discussion of this
section we seek solutions of the form?

¢=— (ax—+62) Eo exp (twt). an

The values of « and B are found on inserting the ex-
pression for ¢ in the kinetic equation and equating the
coefficients of x and v separately to zero. With the
chosen form of ¢ the value of » is

y= (qufodfv/ffgdv):—axEo exp(iwt). (18)

The three values of ¢ are

eEy o 1
W) ¢= kTe ’ (1/741w) 2+ we?
X[w&x—l— (—1-+iw)11:|, (19a)
T
eEo t 1
@ o= kTew (1/7+1w) >+ we?
1 iw
X[(w02-{——+——)x+iwv], (19b)
T
3) oDy [oca—tien] (19¢)
ET  wl—ow?tiw/T

The polarization is P=e /" S x fopdxdv and depends only
on the coefficient a. One finds

NeE, giwt
1) pP= ) (202)
m  (1/74+1iw)?+w?
N 2E 2+1 2+ y iwt
@ P= By [wo+1/7*+iw/7 e o)
mwo2 (1/T+’iw)2+w02
NeZED eiwt
@) pP= (20c)

m  wil—wtiw/T
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The complex dielectric constant ¢ may be written as
e=¢—i€e’. It is obtained from the formula e—1
=4rP/E. The absorption, a, is given by a=we"/c,
where ¢ is the velocity of light.

The expressions for €, ¢, a are (with w,2=47rNe*/m),

1) €—1=wyr(1/7>+wi—w?)/D, (21a)
¢'=w,?2w/7D, (21b)
a=2ww,/cTD; (21¢)

1
2) €—1= wpz[ (w02+—)
72
1 20?
X (wo2+-——w2) +~—}/w02D, (22a)
72 72
1
€' =w (woi’-l——;-f—wz) /woz‘rD,
T

1
a=wp2w2(w02+—+w2)/wozrcD,w
2
1.

where the denominator D is: D= (1/7+wd—w?)?

+4w?/7%;

(22b)

(22¢)

3) €—1=w2(wl—wd)/(wl—w)?+w?/72, (23a)
pkw
= / (wo—w?)+w?/72, (23b)
T
w i
a= / (wo?—w?)?+w?/72 (23c¢)
TC :

Let us now compare the predictions of the theories
(2) and (3). There is a variety of cases, the exact
situation depending on the relations between w, wo, and
1/7.

Consider, as a first case, the low-frequency wing of the
line. For w much less than both 1/7 and wo, the absorp-
tion according to (2), is

1
a=w Zw?/welrc (w&"—l———) .
2
T

According to (3), a=w,%?/crwet. The results agree if
1/7<wo. This has an important consequence if one is
considering the absorption in the microwave region at
high pressures, when there are appreciable contributions
from overlapping lines of high resonant frequency. For
most of these lines, 1/7<&wo, so that the contributions to
the absorption are the same for theories (2) and (3). Of
course, if the collision frequency is so great that it is
comparable to the frequency of the line of maximum
intensity [for a rotator of moment of inertia I, a fre.

( 1o T§1is line shape was derived by R. Kronig, Physica 5, 65
1938).
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quency of (k7/I)*] there will be important differences.
Theory (2) then predicts a considerably smaller ab-
sorption than does (3). In addition, at a fixed frequency
w, the increase in absorption as 1/7 increases is less rapid
according to (2) than according to (3). These effects are,
however, somewhat obscured by the increasing un-
trustworthiness of the instantaneous collision hypothesis.

As a second case, we examine the behavior in the
high-frequency wing of the line. Theory (2) yields, when
w>>1/7, wo, the finite absorption e=w,?/wsrc. Theory
(3) yields zero for the absorption. Thus, unless a cutoff
is introduced because of the failure of the instantaneous
collision assumption, theory (2) leads to an infinite
absorption when integrated over all frequencies. In
practice, observation of the high frequency tail of one of
the low lying rotation lines is difficult. Overlapping of
higher rotational lines is important at collision fre-
quencies of the order of we. It is only for such collision
frequencies that the predictions of theories (2) and (3)
differ significantly. Since the collision frequency may
not be strictly proportional to foreign-gas pressure, and
collision frequencies for higher lines differ in general
from those for the lower lines, it is probably no easy task
to find clearcut verifications of any theory.

A third case is 1/7<<w and wo. This will occur at low
pressures when one finds narrow lines. Confining oneself
to the body of the line, where wo*—w? is of the same order
of magnitude as 1/72, we find D~(w¢—w?)?+4w?/72
The absorption according to theory (2) is

w p22w

[ Clo—ay et/

wo TC

This has the same shape as Eq. (23c); however, to
obtain the same line width the collision frequency 1/7 of
assumption (3) must be taken as twice that entering in
assumption (2). This is an important point, since a
more detailed theory expresses the collision time 7 in
terms of molecular properties such as dipole moment,
quadrupole moment, polarizibility. To compare with
experiment one must obtain 7 from observed line widths.
It is then relevant whether the observed line width
should be identified with 1/7 or 2/7.

For the third case (narrow lines) the peak of the
absorption occurs at approximately w=wo on both
theories (2) and (3). Theory (2) predicts the maximum
absorption a(w=wo)=w,’r/2¢ while theory (3) yields
twice this value. If the collision frequency of (3) is
chosen to make the line widthi agree with that of (2) the
absolute intensities will also be the same. However,
comparing with the first case we see that the absorption
in the low-frequency wing will be twice as large for
theory (3).

Fourth, we consider the situation where w, wo, and
1/ are all of comparable magnitude. Formula (23c) has
the important properties that the peak of the absorption
always occurs at w=w, and that the absorption is
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symmetric if one plots against the natural logarithm of
the frequency. According to formula (22c) the position
of the maximum absorption shifts to higher frequencies
as 1/7 becomes comparable to wo. The position of
maximum absorption is given by

(we+1/7%)+[(wi+1/7%)*
+ (wo’+1/7%)* (3we*—
-1/

For 1/7=0.3wq, this shift is approximately 10 percent;
for 1/7=0.5wp it is 25 percent. The behavior of the
maximum of the line is perhaps the most promising way
of testing the theories. We must however notice that at
1/7=0.3w, the contributions of overlapping lines are
also of the order of 10 percent. To add to the difficulties
the contributions from the low-frequency wings of the
higher rotational lines for the values of 1/7 chosen, are
likely to be larger according to formula (23c). This also
leads to a shift towards the high frequency side. For
comparison of theory and experiment the situation is
more favorable for the third or fourth rotational line
rather than the first. The ratio of statistical weights of
the higher lines to the given line is then less, making the
effects of higher lines of less importance. At w=w, the
absorption according to Eq. (23c) is e=w,?r/c aside
from the effects of overlapping lines, it decreases with
foreign-gas pressure. Formula (22c) has an additional
factor which partially counteracts the decrease.
Finally, we examine the limit we&w and 1/7, ie.,
resonant frequency small compared to applied frequency
and collision frequency. Such a case is difficult to realize
for the rotation spectrum without the crucial interven-
tion of overlapping lines. For wo=0, assumption (3)
yields the complex dielectric constant e—1=w,?/ (iw/7)
—u?, which is characteristic of a free-electron gas. Both
the real part of the dielectric constant, and the absorp-
tion a=w,2/cr(w?+1/7%) are finite. The assumption (2)
of Van Vleck and Weisskopf, on the other hand, leads to

2 (). 2

Both expressions become infinite as we—0.

/)

Wmax

w()C

5. INITIAL VALUE PROBLEM

In the preceding section, we have investigated solu-
tions which are of the type ¢=— (ax+Bv)E(f). In
addition, the study has been restricted to the response to
a monochromatic applied field. Let us now briefly
examine, within the framework of solutions of this type,
initial value problems, e.g., the decay of the polarization
or distribution function to equilibrium. Writing

¢=A ()x+B()v,

one finds, on setting coefficients of x and v separately to

(24)
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zero,
d4 1
—+-A4—wiPB=A/x, (25a)
dt T
dB 1 eE(f)
—+-B+A= . (25b)
dt T kT

" Consider a problem in which the distribution is
Maxwellian at (<0, ie., $=0, so that A=B=0. At
t=0, a static field E(¥) is applied. Equation (15) has
unique solutions if the distribution function ¢(x,2,0) is
prescribed at ¢=0. Thus solutions of the form ¢=A4 (f)x
-+ B(#)v are appropriate for those problems in which the
initial distribution is also of this form. This is certainly
the case when ¢ (x,2,0)=0 at {=0. The solutions of the
problem are

2

M A(t)=kT(:§0:—01/T2){H 62—:0’{ (é_w(’)

Xe wot__ (z_‘_wo)e—iwot }:l’ (263,)
T

_ [1+{_(1+iwof>
kT (ed+1/2)L 2
(1—1wot)

B()

Xez'wot_.

¢ wot ] el ’] ; (26b)

6E()
2) A@)=—(1—coswot)e~ ", (27a)
kT
eEq sinwgt
Bl)=— et (27b)
kT  wo

e—t/2'r

3 40=""(1
3 (t)—“ﬁ ’+2(1/12~—4w02)%

1
X{ ==Lt (1 or)1]
-
i
xexp[+_<1-4woafa>%]
27
1
L 1+ (1 )]
T

Xexp[-—i(l—élwgzr’lﬁ] } ) ; (28)

et {exp[ (1/7°—4we®)¥/2]
eEo

—exp[ — (1/72—4w?)¥/2]
B()=— .
kT (1/ 72— deog?)t

(28b)
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It is seen that with the assumptions (1) and (2) the
distribution function and polarization tend to the final
values as e~ #/7exi0t je., with damped, oscillatory be-
havior. Assumption (3) leads to a dependence which is a
linear superposition of two exponentials. For 1/7<& 2w,
the decay is exactly as in assumption (2), i.e., as a
damped oscillation. [Again the collision frequency must
be taken as twice that of assumption (2).]If the collision
frequency is so large that 1/7> 2w, the decay is purely
exponential. For 1/7>>2w, one of the decay rates is
wolwor), which is much smaller than w,. The high
collision rate makes it difficult for the oscillator to
adjust to the new equilibrium position in space.

Initial value problems of a more general nature than
the one treated above may be studied by the method of
characteristics. Alternatively, the problem of solving the
kinetic Eq. (15) may be attacked by expanding the
distribution function in Hermite polynomials. After
performing a Laplace transformation with respect to the
time variable one is left with simple difference equations.
These may be treated by continued fraction methods.
We do not undertake this analysis, which yields the
exact distribution function, since the coefficient of x is
unaltered. Thus the simpler approach of Secs. (4) and
(5) yields the correct polarization.

6. GENERAL TREATMENTS OF OSCILLATOR
BROADENING

The collision model discussed in Secs. (4) and (5)
contains two separate assumptions. The first, and most
essential assumption was that the position coordinate of
an oscillator is unaltered by an instantaneous collision.
The second assumption was that the oscillator velocities
after impact were redistributed according to a Max-
wellian distribution. As mentioned earlier, the second
assumption does not hold for a general mass ratio of
radiating and nonradiating molecules. If the first as-
sumption is retained, one can write quite generally

of
8

= f F@ 2,0 A ,0)dv — f(v,,1) f AQ@)dv. (29)

A(v',v) is a transition probability which describes the
effects of collisions. It is independent of time and the
external field, a property which appears in keeping with
the inert reservoir character of the nonpolar foreign gas.
Our earlier assumption was

A= A() 1( m )* ( m?
v,0)=A ()=~ exp{ ——— ).
7 \2xkT P 2kT)

Keilson .and Storer!! have considered kernels of the
form

A(r,9)=@('—yv), with 0<y<1. (30)
Since
1 +o0 +o0
= [ aewi- [ ewx, oD
T —o0 —o0

11 T Keilson and J. E. Storer, Quart. Appl. Math. 10, 243 (1952).
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the collision time is independent of velocity, as has been
the case for the theories of earlier sections. The particu-
lar kernel studied by Keilson and Storer is

A ()= (1/7)(8/m)* exp[ —B (' —vv)*].

Correct equilibrium is obtained with 8(1—~2) =m/2kT.
The case where y=0 corresponds to the treatment of
Sec. (4). The limit y—1 is related to the Fokker-Planck
equation, for which

of

ot

(32)

B\ ——+—@f)

el w

c

Intermediate values of v exhibit some features of the
scattering of objects of different mass ratios. The
complete kinetic equation is obtained by combining
Eq. (6) with (33) or Eq. (29) with (32).

As in Secs. (4) and (5), we do not enter into a dis-
cussion of the complete solutions. We are interested in
the behavior of the polarization, which is e times the
first moment in x of the distribution

P=¢(x)= f }x fdxdy.

Equation (33) yields

and ffx%f c=0’ "
f f % cdxdv= —B'(3). (35)

Forming the x moment of the left-hand side of Eq. (6)
and combining with Eq. (34), we have

a
—(x)—(v)=0. (36)
at
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For the » moment one finds the equation

lé] N, eE(]
—(0)FwoXx)— coswi=—@3'(v). 37
ot m
The x moment then satisfies the equation
xy 0 NeE,
+B'—(x)+we{x) = coswt. (38)
o ot m

The polarization is the same as Eq. (20c) with g’'=1/7.
The more general Egs. (29) and (32) yield

f f x%—tf odxdv=0, (39)
f f % cdacd*u= (7:1)(11). (40)

One obtains the friction-damped oscillator behavior
again, with a mean time between collisions of 7/1—~.
The Fokker-Planck limit is obtained by letting y—1
and 7—0 in such a way that limit (y—1)/r=p8".

The results of the present section indicate that the line
shape (20c) is quite general if positions are unchanged
by collisions. However, the higher moments of the
distribution are sensitive to the particular model
chosen. The fact that the first moment (polarization)
has this behavior is peculiar to the harmonic oscillator.
Other systems, such as rigid dipoles, have polarizations
which depend on the precise nature of the velocity
exchanges on collision.
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