
P H YSI CAL REVIEW VOLUME 97, NUM 8ER 1 JANUARY 1, 1955

Infrared Lattice Absorption in Ionic and Honmpolar Crystals*

AND

ELIAs HURsTEIN, Crystul Brunch, Euvul Reseurch Luborutory, Wushington, D. C.
(Received July 12, 1954)

The evidence, from the photoelastic properties of alkali halides
and MgO, and from the deviations from the Cauchy relation
among the elastic constants in these crystals, for the existence of
an appreciable deformation of the charge distribution about the
atoms during lattice vibration, is discussed. The deformation of
the charge distribution is suggested as a possible alternative ex-
planation to that of anharmonic forces for the auxiliary bands in
the infrared absorption and reflection spectra of the alkali halides
and MgO. It is suggested, on the other hand, that the infrared
absorption spectra of pure homopolar crystals, such as diamond,
silicon, and germanium in which a linear moment is absent, must
involve the deformation of the charge distribution during vibra-
tion, since anharmonic forces alone cannot account for any infrared
absorption in the absence of a linear moment.

The deformation of the charge distribution in a crystal during
vibration is shown to lead to a second order electric moment

(quadratic in the displacements) as well as to a modification of the
first order moment. A qualitative understanding of the contribu-
tion of the second order moment to infrared absorption is obtained
with the help of a one-dimensional calculation.

An analysis is made of the infrared absorption in diamond,
silicon, and germanium. Part of the absorption is judged to be
intrinsic and to be reasonably explained by a second order electric
moment arising from charge deformation. The remainder seems
to vary with the specimen and is explained as an impurity-induced
first order moment. The second order electric moment can also be
used to explain the side bands in the absorption and reflection
spectra of the alkali halides. However, it fails to explain the ob-
served broadening of the main absorption line, indicating that
anharmonic forces are probably the principal mechanism in the
latter phenomenon.

l. INTRODUCTION

'HE absorption of infrared light by an ionic cubic
diatomic crystal would be expected, according

to elementary theory, to yield a single band associated
with the optical mode of essentially zero propagation
constant. Observations of Czerny, ' Barnes, ' and others'
on alkali halide crystals indicated, however, the
presence of side bands on the short wavelength side of
the main absorption or reflection band. Attempts at
explaining these side bands by Born and Slackman, '
Blackman, ' and Sarnes, Srattain, and Seitz, 4 were
based on the presence of anharmonic terms (e.g.,
cubic) in the potential energy associated with lattice
vibrations. Since these terms are dificult to calculate
from fundamental considerations they were introduced
phenomenologically. The location of the bands couM
reasonably be explained by regarding them as com-
bination bands.

Recently, Born' in his work on pyroelectricity, and
Burstein et ul. ' in explaining the infrared properties of
MgO, have suggested that the side bands may be due
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search, Air Research and Development Command, and in part by
the Ofhce of Naval Research.' M. Czerny, Z. Physik 65, 600 (1930); R. B. Barnes and M.
Czerny, Z. Physik 72, 447 (1931);R. B. Barnes, Z. Physik 75, 723
(1932); K, Korth, Nachr. Akad. Wiss. Gottingen, Math. -phys.
Kl., 576 (1932); C. H. Cartwright and M. Czerny, Z. Physik 85,
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to second order terms in the electric moment rather
than to third order terms in the potential energy. Fur-
thermore, in hompolar materials like diamond, silicon,
and germanium where the linear terms in the electric
moment are absent, Burstein and Oberly7 have sug-
gested that the intrinsic lattice absorption must be
explained on the basis of a second order electric moment,
since an harmonicity alone provides no mechanism for
absorption.

The purpose of the present paper is: (1) to review the
experimental evidence for second order electric moment
terms; (2) to define the concepts more precisely by
formulating the transition probabilities on a quantum
mechanical basis; and (3) to illustrate the qualitative
nature of the results to be expected by performing a
one-dimensional calculation.

2. EXPERIMENTAL BACKGROUND

Polar Crystals

The reflection spectra for a series of alkali halides and
for MgO are given in Fig. 1. These spectra exhibit a
main peak and a secondary side peak at a shorter wave-
length. As can be seen from Table I, the relative width
of the main peak. decreases in the order LiF, MgO,
NaF, XaC1, KCl. The relative heights of the secondary
to the major peak also decrease in exactly the same
order. A similar trend is found in these crystals for the
deviation from the Cauchy relations (C44/Cis) —1 and
for the strain polarizability constant )ts (see Table I).

The deviation from the Cauchy relations in a classical
treatment implies a deviation from central forces.
Lowdin, ~ in a quantum-mechanical treatment using free

' E. Burstein and J. J. Oberly, Phys. Rev. 78, 642 (1950).
s Per Olav Lowdin, J. Chem. Phys. 18, 365 (1950).
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spherical-ion wave functions, was able to show that
some Cauchy relation deviations could be obtained
from the non-orthogonality terms arising in his Heitler-
London treatment. However the deviations he obtained
did not follow the trend exhibited in Table I.It therefore
seems necessary to take account of the deformation of
the ionic wave functions to explain the experimental
results. (Such a deformation and its changes during
vibration will lead to terms in the electric moment of
second order in the displacement, as well as to a modi-
6cation of the "e6'ective charge" in the 6rst order
terms. )

The strain polarizability A, o represents the fractional
change in molar polarizability with fractional change in
density. The existence of a strain polarizability also
suggests the existence of charge deformation, and its
magnitude is also a measure of the extent of charge
deformation with strain. As a consequence, both the
Cauchy deviations and the strain polarizability repre-
sent a measure of the charge deformation that will

occur during lattice vibrations.
The experimental evidence therefore indicates a cor-

relation between the peak widths and side-band inten-
sities with a measure of the size of the second order
terms in the electric moment. As we shall show later in
this paper, second order moments can give rise to com-
bination bands and the latter may constitute the
mechanism for the side-band absorption.

Ke can visualize the mechanism for absorption in-

volving second order terms in the electric moment by
considering the eQ'ect of compressional modes on a
rocksalt lattice. A compressional mode produces a
shift in the effective charges on the ions, but no moment.
If in addition an optical vibration is present, a second
order contribution to the electric moment will be made
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FIG. 1. Infrared reBection spectra of alkali halides and
magnesium oxide.

TAsLE I. Infrared reRection peaks.

Crystal

MgO
LiF
NaF
NaCI
KCI

Fractional
Major band Minor

peak(p) width peak(pc)

22~
26"

53b
63"

0.43
0.46
0.34
0.28
0.18

16
17
25
39
46

Height
ratio

0.7
0.85
0.56
0.32
0.25

Xo

14e
0.7'
~ ~ ~

06'
0 6o

C44——1
C12

0.4d
0.3'
0.2f

0 1e,d

0 Qe, d

a See reference 6.
b H. W. Hohls, Ann. Physik 29, 433 (1937).
& E. Burstein and P. I . Smith, Proc. Indian Acad. Sci. 28, 377 (1948).
d M. A. Durand, Phys. Rev. 50, 449 (1936).
+ H. Huntington, Phys. Rev. V2, 321 (1947).
& Burstein, Smith, and Arenberg, Phys. Rev. 82, 314 (1951).

by the vibration of the charge increments. This con-
tribution is proportional to the product of the ampli-
tudes of both the acoustical and optical modes, and
results in absorption at the sum and di6'erence fre-
quencies. Because of the high density of short-wave-
length modes, a combination of short-wavelength
acoustical and optical modes will lead to side bands.

Homopolar Crystals

In this section we shall be concerned primarily with
homopolar crystals of diamond structure (e.g. , diamond,
silicon, germanium, and gray tin). The diamond struc-
ture consists of two identical interpenetrating face-
centered cubic lattices with one of these lattices dis-
placed relative to the other one-quarter of the distance
up the main body diagonal. Because of the crystal
symmetry (0&), the displacement of one sublattice
relative to another will not result in an electric moment.
The fundamental optical vibration is therefore infrared-
inactive, although it is Raman-active. Weak absorption
bands have been observed, however, in diamond, ' and
more recently in silicon' "and germanium. ' ""

The lattice vibration absorption bands in diamond
are shown in Fig. 2. Diamond crystals are found to fall
into two types which exhibit diGerent absorption
spectra. Type I diamonds exhibit absorption in two
regions: from 2 to 6p and from 8 to 13@. Type II
diamonds, on the other hand, exhibit absorption only
in the 2 to 6p region. The absorption in the 8 to 13@
region for Type I diamonds varies from specimen to
specimen and appears therefore to be an impurity or
structure sensitive property. The 2 to 6p absorption
does not vary from specimen to specimen nor from Type
I to Type II diamonds" " and therefore may be re-
garded as an intrinsic property of diamond.

The classi6cation of diamond into two types is based

s Robertson, Fox, and Martin, Trans. Roy. Soc. (London)
A232, 463 (1934).

» R. C. Lord, Phys. Rev. SS, 140 (1952)."H. B. Briggs, J. Opt. Soc. Anr. A42, 686 (1952); R. J. Collins
and H. Y. Fan, Phys. Rev. 86, 648 (1952).

'~ G. B. B. M. Sutherland and H. H. Willis, Trans. Faraday
Soc. 41, 289 (1945).

'3 K. G. Ramanathan, Proc. Indian. Acad. Sci. A24, 130 (1946).
'4 D. E. Blackwell and G. B. B. M. Sutherland, J. chim. phys.

46, 9 (1949).
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TAsLE II. Some properties in which Type I and Type II
diamonds differ.

Infrared absorption'

Ultraviolet absorption'
Photoconductivity'
Radiation counting
Anomalous x-ray spots'
Crystal texture

Type I

2 to 6p and
8 to 13@,

Below 3000A
Poor
Pool
Present
Perfect

Type II

Only 2 to 6p,

Below 2250A
Good
Good
Absent
Mosaic

' Robertson, Fox, and Martin, Trans. Roy. Soc. (London) A232, 463
(1934).

b R. Hofstadter, Phys. Rev. 73, 631 (1948);F. C. Champion, Proc. Phys.
Soc. (London) B65, 465 (1952).

e K. Lonsdale, Proc. Roy. Soc. (London) A179, 315 (1942).
d K. Lonsdale, Phys. Rev. 73, 1467 (1948).

on differences in physical properties' (see Table II).
The properties that distinguish the two types of diamond
are those which are commonly sensitive to impurities
and structure defects in other materials. Properties such
as lattice constant, refractive index, dielectric constant,
Raman spectra, and specific heat which are not struc-
ture-sensitive exhibit essentially no diGerences between
the two diamond types.

We believe that Type I diamonds have the same
fundamental octahedral structure as Type II diamonds,
but differ from the latter by the presence of impurities' '
or structure defects which are introduced during growth,
and whose concentration determines the extent to
which the properties of a given crystal differ from the
perfect octahedral structure.

Recent data, " obtained at the Naval Research
Laboratory, on the influence of impurities on the
growth and properties of a wide variety of crystals
indicate that certain types and concentrations of im-

purities reduce the mosaic structure of crystals and
make possible the growth of large, clear crystals which
could not otherwise be obtained. It is therefore probable
that it is precisely the presence of appropriate impurities
that enable near-perfect Type I diamonds to grow in
nature.

The infrared absorption bands from 8 to j.3p, in

Type I diamond occur in the region of the fundamental
optical vibration frequencies of the diamond lattice in

spite of the fact that absorption associated with the
"optical modes" of vibration are explicitly forbidden by
the selection rules associated with the octahedral sym-

metry of the diamond lattice. The presence of these
bands can be readily accounted for by impurities since

they destroy locally the center of symmetry of the
diamond structure and thereby permit an electromag-
netic coupling to the fundamental optical vibration
frequencies.

The 2 to 6-p, bands do not vary from specimen to
specimen and hence constitute intrinsic absorption,

~s Blackwell and Sutherland (reference 14) have also suggested
that impurities may play a role.

"Paul H. Egli and S. Zerfoss, Discussions Faraday Soc. No. 5,
61 (1949).
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Pro. 2. Infrared absorption spectra of Type I
and Type II diamond.

"Crawford, Walsh, and Locke, Phys. Rev. 75, 1607 (1949);
76, 580 (1949); J. Van Kranendonk and R. Byron Bird, Physica
17, 953 (1951);17, 968 (1951).

They cannot be explained on the basis of a irst order
(fundamental) lattice absorption, since the latter is
forbidden for the perfect diamond lattice. Furthermore
these bands occur at a higher frequency than the
fundamental optical vibration at 1332 cm '. Q'e suggest
that this 2 to 6-p intrinsic absorption is lattice absorp-
tion associated with two-phonon processes arising from
second-order terms in the electric moment produced by
charge deformation.

The customary mechanism for explaining summation
bands (in the alkali halide s), namely anharmonic
forces, is inadequate in diamond structures since anhar-
monic forces without charge deformation can produce
no electric moment of any order and hence no
absorption.

Second order electric moments are adequate to
explain the existence of summation bands without
bene6t of anharmonic terms, although the latter may
indeed be present and produce additional broadening
and/or side bands.

It may be of interest to note that a charge deforma-
tion mechanism has also been invoked to explain the
pressure dependent fundamental infrared absorption of
homonuclear molecules. "Although anharmonic forces
are present in such molecules, no vibrational absorption
is to be expected unless an electric moment is induced,
vis. , by collisions.

We can visualize the second-order terms in the electric
moment in a manner similar to that described in the
alkali halides: one vibrational mode induces charges on
the atoms (which would otherwise not be present). A
second mode simultaneously causes a vibration of the
induced charges thus producing an electric moment and
coupling to the radiation 6eld. Since a long-wavelength
acoustical or optical mode does not alter the effective
charges of the atoms on the two equivalent Bravais
lattices, we expect that such long-wavelength modes
mill be ineffective in producing second order moments.
On the other hand, short-wavelength modes introduce
asymmetric displacements within the two sublattices
and therefore produce charge deformations. Thus we
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may expect that the absorption will be produced pri- The "phased" transition electric moment M&, (x,v) is
marily by a pair of short-wavelength phonons. defined by:

3. THE TRANSITION PROBABILITY

Let the initial and final states of the crystal be denoted
by f;(r,x) and fr(r, x), where r is an abbreviation for
the electronic coordinates r~r2 r," and x is an
abbreviation for the nuclear positions x~x2 x~ ~ In
the presence of an incident electromagnetic field de-
scribed by the vector potential A(r), the perturbing
potential,

V= —P(e;/m;c)A(r;) p —g(Z~/M~c)A(x~) P~, (3.1)

determines the rate at which transitions occur. Here
e, = —e is the charge on the jth electron and Z& is the
charge on the 1th nucleus. Also M~ is the mass of the 1th
nucleus, p, = i%'r—;, P'= i%'x'—

For a system such as a crystal, whose size is large
compared to the wavelength, the customary electric
dipole approximation cannot be applied. Since we are
dealing, however, with valence or core electrons, we are
always concerned with Pl/ed bands. And such a deter-
minant of band functions can always be rewritten as a
determinant of localized orbitals. Finally, since we are
concerned with the matrix elements of one-body opera-
tors, the determinant may be replaced by the corre-
sponding Hartree product of localized orbitals. Thus
we may regard each electron r; as attached to a given
atom, of equilibrium position r; in the lattice. It is
then permissible to make the "dipole" approximation ..

exp(iv r;) —+exp(iv rP), (3.2)

g exp(iv r, )[e;p,/m, +Z;P;/M;]
~ 2xiv[g exp(iv rP) (e;r,+Z;x,)] (3.3).

The e8ect of phase retardation is therefore taken into
account by adding the dipole moments of each atom
with an appropriate phase factor. With this modification
all of the formulas associated with electric dipole radia-
tion and absorption may be applied. The transition
from the initial 3orn-Oppenheimer state,

M~(x, v) =P, exp(iv r,')

Xj v'q*(r, x) (e;r;+Z;x,) q, (r,x)dr. (3.8)

~.(r») = V.(p+x, x) =X(p,x),

the electric moment can be written

M„(x,v) =P; exp(iv r 0)

(3.9)

X Z,""x;+ t x*(p,x)(e;p;)x(p, x)dy, (3.10)

where Z '" is the net charge of the nucleus plus all
electrons at the site j, i.e. it is the ionic charge in an
ionic crystal, or zero in a nonionic crystal. The moment
M„(0,v) is usually zero, and if not, is a static moment
of no consequence for optical transitions. We are con-
cerned, therefore, only with the part of M(x, v) that
depends on the nuclear positions x. For all of the core
electrons, however, p depends only on y;, so these yield
no contribution to the x dependence. We shall call
deformable those electrons whose wave function depend
on x as well as p. It is then permissible to regard x(p,x)
as the many-body wave function of all the deformable
electrons.

If we expand 7~(p, x) in powers of x= (x~,x2, ) and
set

For electronic transitions (bWa), the term in x; vanishes
because of orthogonality. We shall be concerned pri-
marily with pure vibrational transitions: b =a. In this
case, the nuclear charge Z; is of importance. It will,
however, be largely cancelled by the moments associ-
ated with the core electrons that move "rigidly" with
the nucleus, namely those electrons j for which the
wave function, g, (r,x) = p(r&, r2, ' ' ', x~,x~, ), is a
function only of g;= r;—x, . By introducing the change
of variable,

P, (r,x) = q. (r,x)X.„(x),

to the final state,

Pr(r, x) = q'(r, x)X~ (x),

(3 4)

(3.5)

j x*(p,x)e;p,x(p,x)dio=g B~' xi

+P xi Ci
'

x +, (3.11)

is accordingly described by an absorption cross section:"
the electric moment j3,10' can be written

e (Eaq ' 8m'v

o(v) = —
I

—
I f~.(v)

eEE) c
(3.6) M(x,v)=P exp(iv rP)[B~ x~+x~ C~ .x„], (3.12)

where2

I~(v) =Am„+„Xb„*(x)M~(x, v)X.„(x)dx B~——P; expLiv (r 0—rP)]B~'+Z~"",
(3.13)

C[ Q j exp[iv (rP—rP)]C~ .&.

Xb (Ea E, hv). (3.7)— —
J ch phy 20 1752 (t952) Fq (2 t) (23) ~e may interpret Bi as the effective charge on atom t,

ff for further discussion. with the lattice in its equilibrium position, and CE 'x
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as the charge induced at l due to displacement x of
atom m from its equilibrium position.

Note that in three dimensions, xz and M are vectors,
so that Bz is a dyad, and Cz is a triad.

a — a

Cz z'= C &(m —t).

(4 1)

(4.2)

The expansions (3.13) for Bz and Cz converge ex-
tremely rapidly since we may expect the displacement
of a nucleus introduces moments only on nearby atoms.
Furthermore, since the infrared wavelengths are large
compared to the lattice spacing, it is permissible to set
v 0 in (3.13) so that Bp and Cz z' are closely approxi-
mated by their static (v=0) values.

The static moment can now be written in the form

4. GENERAL INVARIANCE REQUIREMENTS

In this section, we shall be concerned with deriving
those relations obeyed by the expansion coeKcients Bz
and Cz of the electric moment that follow from general
invariance requirements. For this purpose it will usually
be convenient to work with the static moment M(x)
= M(x,0) whose transformation properties are known
to be those of an ordinary vector.

The requirement that a crystal be invariant against
lattice displacements may be expressed in the state-
ments that Bz&' is a function only of (j—/) and Cz~' is
a function only of the relative indices (j—l) and (t—m).
It follows from (3.13) then, that Bz is independent of t
and Cz is a function only of t—m. Of course, if there
are several atoms per unit cell, the type of atom denoted
by n or P, our statement would take the more com-
plicated form

S. THE ABSORPTION CONSTANT

The linear absorption constant, k(v), may be ob-
tained from the cross section for absorption of the
crystal (3.6) by dividing by the volume of the crystal:

n t'E, ) ' 87z'v I(v)
k(v) = (tVQ) '0 (v) = —

i
—i, (5.1)e(EJ z; iltQ

where g is the total number of cells and Q is the volume
of each. Using (3.7) and omitting unnecessary indices
(since b=zz), one gets

2

I(v) =Azz, Pt Xf*(x)M(x,v)X;(x)dx

X5(Er—E;—hz), (5.2)

where the electric moment from (3.12) and (4.1) takes
the form

M(x, v) =P exp(iv rzo)B'xz
Z, a

+ P exp(iv rzo)xz Cz & x ~. (5,3)
l,a, m, P

The vibrational wave functions X (x) are products
of harmonic oscillator wave functions, one for each
normal coordinate. The normal coordinates may be
obtained by solving the equations of motion associated
with the Hamiltonian:

8=-2 Q(pz )'/M +-,' Q xz Kz„~.xJ, (5.4)

where Kz s obeys the same general invariance require-
ments (4.2, 4.4, and 4.6) as Cz z'. A typical solution of
these equations may be written in the form

M(x)=g B'xz +P xz Cz s x z', (4.3) xz =b exp(ik rzo) exp( isn't), — (5.5)
l,a l,a

m, P

where x& is the displacement of the atom of type n in
cell 1 and

('„, zz =C,zz (4 4)

since any coefFicient of a quadratic form can be
symmetrized.

If the complete crystal is electrically neutral, the
electric moment is independent of the origin used to
calculate it, i.e., it is invariant against an arbitrary
displacement:

where b (k) and cu(k) are obtained by solving the set
of simultaneous equations:

pzz R &(k)bz'=M afb
where

R s(k) =P~ Kz ~ exp(ik (r '—rz')).

(5.6)

(5.7)

The number of solutions of (5.6) is equal to three
times the number of atoms per cell, in three dimensions.
These solutions are labelled by the index t (e.g. , longi-
tudinal acoustic) and can be made to obey the ortho-
normality requirement:

M(x+ d) =M(x).

This leads to the requirements

(4 5) P b, (k)* M b, (k) =zz, z

Because R z'( —k) =R~(k)*, we can require that

(5 g)

PB =0, P Cz„t'=0, p C, .z'=0,
l,a

(4.6) bz (—k)=bz (k)*. (5 9)

the first of which states that any adjustment of the
equilibrium effective charges must be such as to preserve
the neutrality of the unit cell. The second requirement
is equivalent to the third because of (4.4).

xzl=tV & P qz, ,bp(k) exp(ik rz). (5.10)

The electric moment (5.3) can be expressed in terms
of normal coordinates q&, & by the transformation:



M. LAX AN 0 E. 8 URSTE I N

The linear part of the moment becomes

Mg=X&Q B bg (—v)q-v. t,
a, t

and the second order moment becomes

M2= Z q~+v, t *qr . tHg t',
f,', t, k

where

(5.11)

(5.12)

create two phonons, to create one and destroy one, or
to destroy two phonons. The last process is inconsistent
with conservation of energy. The first process will lead
to a "summation band" and the second process to a
"difference band. "

Upon inserting (5.13) and (5.16) into (5.2), the sum-
mation band yields the result

Ht tr'=P bt (k+v)* S t'(k) btg (k), (5.13) I(v) =Av Q
2or, (k+v) 2or, (—k)

S ~(k) =g Cg s exp[ik (r '—rg )]. (5.14)

Reality requirements on x~" imply that

(5.15)

The operator qk, ~ can be expressed in terms of con-
ventional "creation" and "destruction" operators, a~, &~

and gtr, , g, by the (canonical) transformation:

q, ,= [h/2ort(k)]l(a, , t+u r, , P), (5.16)

with all other commutators vanishing.
The linear part of M leads to a vibrational transition

in which one phonon is created or destroyed. On ab-
sorption, we need only consider the creation part of

q „t or [h/2got(v)]~av, gt so that (5.2) yields

I(v) =lV Pg~g. B'b, (—v) ~'[h/2ort(v)]

X [n(o) g (v))+1]Ig(hv —
hogg (v) ). (5.18)

Thus the absorption is a line spectrum. Since the optical
wavelength is large compared to the lattice constant,
v is small on the vibrational scale and the absorption
peak occurs essentially at hv hort(0). It is suKciently
accurate, therefore, to set the photon propagation
constant v 0 everywhere in (5.18).

We note that for any of the (three) acoustic modes,
b, (0) is independent of n. The absorption is then pro-
portional to P B~ which vanishes according to (4.6).
Thus the requirement of displacement invariance shows

that the acoustical modes make no contribution to the
first order electric moment absorption —a well-known

result.
In general, P B bt (0) represents the .electric

moment induced in one cell by the displacements bt (0)
associated with a normal mode of type t. The long-wave-

length optical modes are thus completely intra-cell
vibrations. The symmetry of these intra-cell vibrations
can then be examined as one would the vibrations of a
molecule to determine which normal modes are "opti-
cally active. "

The quadratic part of the electric moment Mg of
(5.12) leads to two-phonon transitions. Because of
(5.16) and (5.17), matrix elements are available to

where the operators a~, ~ obey the commutation rules,

(5.17)

X[n(, (k+ ))+1][n( (—k))+1]
Xgg(hr —

hor g (—k) —hor g (k+v)). (5.19)

The process "Av" over the initial states replaces the
initial occupation number n by its thermal equilibrium
value:

n(or) = [exp(hor/kT) —1]—'. (5.20)

Since v((k, we can set v 0 in (5.19).Roughly speaking,
the photon has zero momentum, so that the two
phonons are created with equal and opposite propaga-
tion constants, k and —k. A further simplification in
(5.19) can be made for nonpiezoelectric crystals by
noting that

(5.21)

At temperatures well below the Debye temperature,
kT« IEM and n« 1, so that only the spontaneous part
(in the Einstein sense) contributes to the emission of
phonons, the induced part being small since no phonons
are present before the absorption of light. In this limit-
ing case, the absorption is practically independent of
temperature. If kT Sar, the absorption increases with
increasing temperature.

The difference band has two contributions of the
form

I(v) = Q I 8, ,"
~

'
2orgi (4+v) 2org(k)

X [n(ort (k+ v))+1]n(org (k))

X&(hr —hort (k+v)+hogg(k)), (5.22)

I(v)= Z
2ort (—k —v) 2gdt( —k)

Xn(org (—k —v) )[n(ort( —k))+1]
Xlg(ht+hort (—k —v) —hgot(k)). (5.23)

If one sets v 0 and uses (5.21), these two contributions
are equal. At temperatures well below the Debye tem-
perature, n«1 for the optical modes. Thus the con-
tribution in which an optical phonon is absorbed will
be small. It is possible, however, to get an appreciable
contribution from the creation of an optical (or acous-
tic) phonon, and the destruction of a low energy acoustic
phonon. In this case n can be given its classical value
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kT/ha&, and the absorption associated with the dif-
ference band will be approximately proportional to the
temperature.

The extent to which a given pair of modes t' and i
will interact to give absorption is determined by the
coeKcient H, , This coe%cient may be readily inter-
preted using (5.13) and (5.14). If the electric moment
for an arbitrary displacement x is written in the sup-
pressed index form

M =xCx,

the coeKcient H, .&" is given by

H, .P=x, (k) C xg(k),

(5.24)

(5.25)

where x, (k) represents the displacements associated
with the normal mode b~ (k) exp(ik r). We can inter-
pret Q=C x, as the charge induced by the normal
mode x&, and H=x&" Q as the moment produced by
allowing the induced charge Q to vibrate in the mode
x& (k). A comparison between the symmetry properties
of C~ ~~ compared to the vibrational matrix K~„~~

will lead to selection rules for H«~.

0. ONE-DIMENSIONAL MODEL FOR
DIAMOND-TYPE LATTICES

The coeKcients C~,.s in the electric moment expan-
sion are not all independent when any crystal symmetry
is present. The symmetry requirements available to all
crystals have already been considered in Sec. 4. A
given crystal will in addition be characterized by a group
of symmetry operators 5 that transform the crystal into
itself. Under such a symmetry operation, the displace-
ment x gets replaced by Sx and the electric moment, as
a function of the displacements x, becomes

procedure to a one-dimensional model of the diamond
structure.

The diamond structure can be represented by a one-
dimensional chain with two identical atoms per unit
cell equidistant from the center of each cell (see Fig. 3).

The center of each cell is a center of symmetry. The
cell is labelled by the index l, and the left and right
hand atoms of any cell are labelled n= —1 and n=+1
respectively.

This model exhibits the inversion symmetry of the
three-dimensional diamond lattice but not the latter's
tetrahedral symmetry. The symmetry requirements on
the electric moment matrix C~„& derived from this
one-dimensional model remain valid in three dimen-
sions. The presence of tetrahedral symmetry simply
leads to additional requirements.

%e shall consider displacements only along the
chain, and we shall regard the electric moment M as a
vector that changes sign under inversion, i.e.,

3P=IM= —3f,
under the transformation

(6.3)

Ixi ———x )—. (6.4)

cfpplicaiion of (6.3) and (4.6u) demonstrates that the
linear part of M vanishes. For the quadratic part,

M=+ x,%(„~x &, (6.5)

IM=g( x) ")Cg s—(—x-&)-
=Q xg C g,

-~x„&. (6.6)

From (4.2),
(6.7)

SM(x) =M(Sx). (6 1) The requirement (6.3) then leads to the condition,

On the other hand, the electric moment must transform
as an ordinary vector under rotations, reQections, etc.,
so that we also have

SM (x) =M'(x), (6.2)

where M' is related to M by a rotation or reflection.
The requirement that (6.1) and (6.2) be consistent with
one another leads to a set of conditions on the coe%-
cients C~ ~. This consistency requirement can be applied
for each element of the group, but some of the condi-
tions obtained will be redundant. It is su%cient to use
the generating elements of the group.

One point should be kept in mind: not only does Sxp
perform some rotation or reaction of the components
of the vector xp, it also produces the same rotation or
reflection of the equilibrium position (n, l) from which

xp is the displacement, i.e., it converts xp to x &

where (P,nz) is the new position of equilibrium point

(~,t).
To illustrate the concepts involved, and to obtain

some qualitative conclusions, we shaH apply the above

CELL-I CELL 0

DIAIIJIOND LATTICE

CELL+I

C
0 I

CELL- I CELL ' 2

ltlo CI LATTICE

I n. 3. One-dimensional diamond and sodium chlorice lattices.

(6.g)

If we set n= —1, P= 1 in (6.8) and use (4.4), we learn
that

(6 9)
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for all m, l. If we set n= 1, P= 1 in (6.8) and use sym-
metry (4.2), we find that

If use is made of the orthogonality of the optical (o)
and acoustical (a) modes, it follows from (6.15) that

—I,—1 C ll C ll

If one uses the notation Ci "——C"(m —l), the only
independent coefficients that remain are C"(m) for
m=0, 1, 2, 3 . [Note that C"(m) is even in m.]

Displacement invariance (4.6b) then leads to one
additional constraint:

The absorption spectrum (5.19) may be simplified by
converting the sum over k to an integral:

(6.10)
/

H„&
f
=

f
H..~

f

=!lf-
J S(k)

/

=2 (1—coskd) Ci'(1)/3II (6,18)

Q C"(m) =C"(0)+2C"(1)+2C"(2)+ =0. (6.11)

Q~(N/'r) dy,
"0

(6.19)

The number of coefficients C~ & has therefore been
drastically reduced by symmetry requirements. A
further reduction can be made by requiring that inter-
actions extend no further than second nearest neighbors.
In this case C"(m) =0 for m) 1 and

where p=kd, and introducing the change of variable
x= (1-cosy):

Nk (' dx
I(v) =

4n.cu.'(0) i «o [x(2—x))&

C"(0)= —2C"(1), (6.12)
(n,+1)(ni +1)

X h(e f(x)), —(6.20)
g S gr X

so that only one independent coeffi cient remains!
These results (6.9) to (6.12) may be summarized by

writing the general matrix in the form

Ci e ——nb e[bi+i, +8( i, —2bi, )C"(1). (6.13)

N k iH( Pi' (n, +1)(n, +1) dx

4sco,'(0) i'i [x(2—x))& f, (x)f;(x) df, =r(,)
(6.21)

(6.22)e= kv/fuuo(0)Thus C &
~ is completely known excep t for a nor-

malizing constant.
o calcUlate the f d b t d th is a measure of the photon energy in units of the long-

quantities

S&(k)= 2(1 co—skd)C—"(1)nli e=S(k)nb e, (6.14)

Hi g" ——S(k)[b '(k)*b '(k) —b '(k)*b, '(k)), (6.15)

fi(x) =quoi(k)/~. (0)

f(*)=fi(x)+fi (*)

(6.23)

(6.24)

To illustrate this result more specifically, we shall
assume that the stiGness constant between two atoms
in the same cell is E, and that between a pair of ad-
jacent atoms in neighboring cells is E'=nE. Then the
two vibrational branches are given by

calculated from (5.14) and (5.13) with d as the lattice
constant.

To obtain selection rules on H~ &~, we need informa-
tion concerning the normal modes bp(k). The require-
ment that the potential energy remain invariant under
inversion leads to the conditions:

Ib '(k)
I
= lb''(k)1= (2~) '

where the mass dependence of the result follows from
the orthonormality condition (5.8). Combining (6.16)
with (6.15) we obtain the selection rule that

co.(0)= [2E(1+e)/M)&, (6.26)

M'e, '(k)
t

(6 16)
' = (E+E )

3Eor.'(k)
&[(E+E)'—2EE'(1—coskd)]~. (6.25)

(6.17)

In other words, there are no two-phon on con tribu tions
to infrared absorption with both phonons coming from
the same branch. In the one-dimensional case this
implies that one phonon is optical and the other phonon
acoustical. In three dimensions there will in addition be
the possibility of infrared absorption by optical phonons
from two distinct optical branches, or acoustical
phonons from two distinct acoustic branches.

f.(x) =2—&(1+[1—(2n /1x+n)']&}& (6.27)

f.(x) =2—'*(1—[1—(2nx)/(1+n)')l}**, (6.28)

'= ('+.)'("—1)'/(2a) (6.29)

In terms of the dimensionless photon energy ~, the
spectrum I(v) can now be rewritten in the form:

2Nk e[n (co.)+1)[n(co,)+1)
I(v) =—

i
H„i' (6.30)

mio, '(0) (e' —1)[(e eP) (e~ e)]&'
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where

n(or) = [exp(kor/kT) —1j—',

=or.(0)[1&e(2—e')&jl2 l.

IH I'= IC"(1)I'(1+~)'("—1)'/(~~)' (6 31)

er = (1—V'~)/(1+~)' (6 32)

c = (1+gn)/(1+n)&, (6.33)

(6.34)

(6.35)

so that the ions have equal and opposite charges even
in the presence of deformation. Thus the usual theory
of absorption due to the linear terms results, with the
ionic charge replaced by an "effective charge. " Such
an "eGective charge" has already been introduced
heuristically to explain the experimental results. "The
formula for the absorption has, indeed, already been
given: (5.18). It is simply necessary to insert the fact
that for the long-wavelength optical mode, the ampli-
tudes of the Na and Cl are out of phase and inversely
proportional to the respective masses''

An examination of the spectrum (6.30) indicates that
it covers the range 1~&~~&~ . The point e~ is outside
this range. The factor (e' —1)' emphasizes the high end
of the spectrum over the low end. In addition, the
factor (e —e) & exhibits an integrable singularity at the
top of the spectrum. This singularity arises because
cror/rlk vanishes for the highest propagation constant.
The nature of this singularity is similar to the one
which usually arises in the calculation of the density of
states (per unit frequency interval). In two dimensions
a log

~
e —e

~
singularity would be expected, and in three

dimensions a (e —s) i singularity would be expected. 'o

The singularity need not always occur at the maximum
of the spectrum. In general, its location depends on the
vanishing of V'r, kr (k). In most cases, however, the
maximum energy e will also be a relative maximum,
so that a singularity will frequently occur at the top of
the spectrum.

The ratio of the maximum energy to the minimum
energy, or to the long wave optical energy is simply e .
An examination of (6.27) shows that e ~&&2 and the
latter value is assumed when n= (E'/E) =1. The par-
ticular value V2 depends on our assumption of nearest
neighbor forces and cannot be expected to hold too
accurately in three dimensions. Furthermore, in a
three-dimensional polyatomic lattice, many pairs of
vibrational branches will interact. Each pair will give
a spectrum of finite width, with one or more peaks. The
complete spectrum will be a superposition of these
many contributions.

7. ONE-DIMENSIONAL MODEL FOR NaC1 TYPE
LATTICES

The NaCl type lattice can be represented by a one-
dimensional chain of equidistant atoms alternating Na,
Cl, Na, Cl, etc. (see Fig. 3). Let us choose one Na atom
as origin. That Na atom and its Cl neighbor to the
right will be the members of a cell 0. The displacement
of an arbitrary atom can be denoted by x&, where o.=0
for Na and 0.= 1 for Cl, and the integer 1 indicates the
cell index.

For NaCl, the linear term in the electric moment
makes the dominant contribution. With the help of
(4.6), however, the effective charge on the sodium ion
and that on the chlorine ion are related by 8'= —8'

"L van Hove, Phys. Rev. S9, 1189 (1953).

b,o/b. ' —(Mr/Mo). (7 1)

The condition IM= —M leads to the general require-
ment:

or

and

C &(l m+n —P) = —C&(m—l), —

C-(m) =0,

C"(—m) = —C"(m —1).

(7.3)

(7.4)

(7.5)

Thus the only independent coefficients are C"(0),
C '(1), C"(2), etc. Displacement invariance (4.6b) leads
to

P C (m)=0. (7.6)

However, (7.6) is automatically obeyed because of (7.5).
The 6nal limitation on the number of independent

constants can be made by limiting the interactions to
second nearest neighbors. But C"(1) is a third neighbo-
interaction. Thus C"(0) is the sole remaining inder
pendent coeScient:

C"(0)=C"(0), C"(—1)= —C"(0) (7.7)

Using (5.13) and (5.14) we obtain

S '(k) =Co'(0)[1—exp( —ig) j; S"(k) =S"(k) * (7.8)

H00~ =2C"(0)[(1—cosp) Re b,'(k)*b '(k)
+i sing Im b,'(k)*b '(k)$ (7 9)

H "=2C"(0)[(1—cosg) Re b,'(k)*b,'(k)
+i sing Im b,'(k)*b,'(k) j, (7.10)

H s=C"(0) (1—cosg) [b.'(k)*b '(k)+b.'(k)*b,'(k)j
+iC '(0) sin@[b, (k)*b,'(k) —b,'(k)*b, (k)j. (7.11)

so B. Szigeti, Trans. Faraday Soc. 45, 155 (1949); also, Rept.
Brit. Elect. Allied Industr. Research Assoc. (Ref. L/T 203).

» L. Brillouin, IVave 'I'roPagation ie Periodic Structures
(McGraw-Hill Book Company, , Inc. , ¹wYork, 1946).

Together with the normalization condition (5.8), (7.1)
and (5.18) determine the first order absorption.

The second order electric moment maybe investigated
by introducing an inversion through the Na atom at the
origin:

(7.2)
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~=~o/W, (7.14)

vrhere the upper and lower signs refer to the optical and
acoustical cases respectively.

It follows from (7.13) that the amplitudes b' and b'

are always in phase and hence can be chosen real. Thus
the second terms in (7.9) and (7.10) may be dropped.

We see from (7.9)—(7.11) that all of the coeKcients
H vanish for @=0.Thus long-wavelength modes of any
type are ineffective in producing an electric moment or
dipole absorption.

The only other value of @ that can lead to a singu-
larity or peak in the absorption is P=~ (the shortest
wavelength). However, an examination of (7.13) near
@=m shows that for the acoustic mode the light par-
ticle obeys b,'=0 whereas for the optical mode the
heavy particle obeys b,'=0. Thus b Ob, '=b,ob,'=0 and
H =H,. =0. Thus the double optical transition and
the double acoustical transition will show no strong
peak.

The mixed transition H„however takes the value

C"(0) (1—cosg)(1—n)
H &=

3E,+n (1+n'+2n cosP)»
2i sing—, (7.15)

which does not vanish at p=m. In addition,

dL-.(~)+-.8)j/"=0
at @=x, so that as in the diamond case a singularity
of the form (o —o)» will be observed in the spectrum.
With the vibration spectrum (7.12), the absorption is
still given by the diamond result (6.30) providing we

replace ~H„~' by the value appropriate to NaCI:

~C'(0) ~o (1—(P)o(oo—1)4

4M''cP (2—o')o'

+(41 +n)'( ' o1)'(o'——oP)(o '—o') (7.16)

To summarize then, the only important transition for
the NaC1 case is the mixed optical acoustical transition,
and its spectrum is qualitatively similar to the corre-
sponding spectrum for the diamond case. We note that
Eqs. (6.27)—(6.29) for diamond are directly applicable
to the NaCl model with the new definition of 0.. So too
are Eqs. (6.32)-(6.35).

If we interpret the observed side band in NaCl as
due to the acoustical optical transition at @=a, the

To illustrate these results more specifically we shall
assume nearest neighbor interactions only with stiGness
E. The frequencies and relative amplitudes are then
given by"

M(Ax"'=(Mo+Mz)a(Mo'+%i'+2MoMi cosy)»,
(7.12)

b'/b'=2 cos(-', p)/Li —n~(1+cP+2n cosP)»j, (7.13)

peak should be located at

.=o„=(1+gnj/(1+n)', (7.17)

measured in units of the main absorption frequency.
The function o„(n) has an absolute and a relative
maximum of V2 at O, =1 and is not sensitive to n over
a wide range. Since the observed ratio of sideband/main
band frequency is close to V2 for all of the alkali halides
the above suggested interpretation is plausible.

8. IMPURITY INDUCED LATTICE ABSORPTION

We have already considered in some detail the linear
and quadratic terms in the electric moment for perfect
lattices. If impurities are present, certain of the in-
variance requirements used to simplify or eliminate
terms in the electric moment expansion are no longer
valid. In this section we shall indicate qualitatively the
major changes brought about by abandoning these
invariance requirements.

If an impurity is introduced into the lattice that
modifies the electronic structure in its neighborhood,
the predominate eGect will be the introduction of a
polar character, i.e., linear terms in the electric moment,
in the immediate vicinity of the impurity. To see this
point we note that the crystal is no longer perfectly
periodic, or invariant against lattice displacements so
that (4.1) is no longer valid. The effective charge Bp
does depend on l. In addition it depends on the position
(P,m) at which the impurity is introduced. Thus an
additional term in the electric moment will be intro-
duced of the form

(M=PBg
f f xp exp(iv rP)
Emj

(8.1)

The coefficient D (k), that measures the extent to
which mode k will contribute to the electric moment,

(f ' (f &

is the Fourier transform of B4 ( I. If B4 ( ) is
(nzj 'mj

appreciable to a certain range of values of l m, D~~(k)—
will be appreciable for all k whose wavelengths are
comparable to, or longer than, the range associated
with l—m. Since these wavelengths for an optical
branch usually have only a small range of frequencies,
we may expect in the absence of damping eGects a

(p'
The e6'ective charges Bp~ ~

will depend on l tnand-
'mj

will decrease rapidly as l—m increases, since the presence
of an impurity will disturb the electronic structure only
locally. If (8.1) is re-expressed by using (5.10) in terms
of the normal coordinates, qA, .

M=X-»+4+„b, (k) D&(k+v)q~(k)
XexpLi(k+v) r„og, (8.2)

where

D~(k+v)=+4B~
~ ~

exp/i(k+v) (rP r)j (8.3)— .'
Em
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fairly sharp absorption maximum close to the funda-
mental optical vibration frequency.

If the presence of the impurity does not modify the
vibration properties of the lattice in the immediate
neighborhood of the impurity, an absorption peak
should occur at each of the maxima in the density of
optical modes (per unit energy). In such a case the ab-
sorption bands would provide a rough mapping of this
density of modes.

If on the other hand, the impurity distorts the lattice
in its vicinity, the vibrational spectrum will be modihed
near the impurity and a quasi-molecular viewpoint
toward the absorption can be adopted. In such cases
the observed frequencies will be shifted from those
determined by the density of modes of the normal
lattice.

(p)
If Bp~ ~

had an extremely long range, i.e., if it
qm)

were essentially independent of l, then we would redis-
cover in D t'(k+v) the usual selection rule 8(k+v, 0)
appropriate to a perfect crystal.

In addition to the impurity induced linear term (8.1),
corresponding additional terms will appear in the
second order electric moment. Since the concentration
of impurities is not large, these second order terms may
be dif5cult to observe in presence of the absorption
associated with the intrinsic second order terms.

9. COMPARISON BETWEEN THEORY AND
EXPERIMENT

The body of this paper has been concerned primarily
with charge deformation effects, the resulting second
order electric moments and the infrared absorption
associated with the latter. The infrared absorption is
also influenced by the presence of cubic terms in the
potential energy. In this section, we shall review the
experimental evidence briefly in the light of the present
theory and of Born and Blackman's' ' so as to assess
the relative importance of charge deformation and
anharmonic effects in various situations.

A. The Side Bands in the Alkali Halides

According to the treatment of Born and Blackman, '
Slackman, ' and Seitz, 4 the radiation couples to the linear
part of the electric moment, which would produce a single
band, but the anharmonicity introduces combination fre-
quencies in the vibration and hence also in the absorp-
tion. Blackman, who studied the alkali halides in detail,
predicted the location of the side bands by treating them
as summation bands. In the deformation theory the
second order terms in the electric moment also give rise
to summation bands. Thus both theories predict the
same location of the major side band.

In Sec. 2 we discussed the ratio of the height of the
reQection side band to that of the corresponding main
reflection peak. This height decreased in the order LiF,
MgO, NaI, NaCl, and KCI. This order correlated with

changes in Cauchy relation deviations and with the
strain polarizability both of which may be related to
the charge deformation. Thus the side-band intensities
support a charge deformation hypothesis. Ke do not
mean to imply by these remarks that cubic terms in the
potential have no important inQuence on the absorption
or reflection spectrum, but that second order electric
moments must, on the experimental evidence, be
considered.

B. Fundamental Absorption in the Alkali Halides

The integrated strength of the fundamental absorp-
tion line depends on the effective charge 8 on the
ions. This effective charge may differ from e because
of the presence of some "homopolar bonding" in the
formation of the crystal. In addition, we have shown
that there mill be a dynamic contribution to 8 asso-
ciated with charge deformation, i.e., the displacement
of the center of charge of the electrons on an ion may
differ from the displacement of the corresponding
nucleus. The presence of cubic terms as such will not
yield any dynamic modification of the effective charge
on the ions. No attempt has as yet been made to esti-
mate the effective charge from the infrared absorption
intensity. Szigeti" has, however, been able to estimate
the effective charge on the ions using the static dielectric
constant, the refractive index and the fundamental
lattice absorption frequency. He obtains an effective
charge of the order of 0.9e for the alkali halides indicat-
ing that homopolar and dynamic contributions together
are of the order of 10 percent.

C. Broadening of Bands in the Alkali Halides

Second order electric moments can produce absorp-
tion near the main band by combining an optical phonon
with a low-energy acoustical phonon. (This process is
not too probable in the one-dimensional calculation. )
Such a two-phonon process occurs independently of
the main absorption, however, and will not change the
latter from an in6nitely sharp line. It merely super-
imposes a continuous background to the main line.

Anharmonicity has been shown by Blackman to
provide a logical explanation of the broadening of the
main absorption line into a band. Since the experi-
mental results exhibit a broad band, we can conclude
that an harmonic terms are appreciable in the alkali
halides.

The second order electric moment yields side bands
that are already a continuum. The breadths so obtained
are relatively insensitive to temperature (well below the
Debye temperature). Similar conclusions apply to the
side bands produced by anharmonic terms.

Since we have concluded that anharmonic broadening
is important for the main band, we can use the relative
width of the main band as a measure of the importance
of the cubic terms. There is a systematic correlation,
through the alkali halides, between the main band
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width and the side-band intensity (see Table I). A
mechanism based on anharmonicity as an explanation
of the side bands is therefore also consistent with the
trends in the data.

40- SI I35
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D. Diamond: Intrinsic Absorption

Anharmonic forces are undoubtedly present in the
diamond structure, but without the help of second order
electric moment terms they can yield no absorption.
The second order moment due to charge deformation is
therefore necessary to account for the absorption. Since
absorption resulting from a second order moment is
already a continuum consisting of sum and difference
bands, anharmonicity is not necessary to explain
broadening. The effect of anharmonicity is to produce
additional broadening and to produce higher order
side bands.

The prominent peaks in the intrinsic absorption of
diamond (see Fig. 2) at 3.98, 4.20, 4.59, 4.85, and 4.98ri
(2510, 2380, 2180, 2060, 2010 cm ') are within a factor
of 2 of the fundamental vibration at 1332 cm ' and
may reasonably be designated as summation bands
associated with two-phonon processes of the sort dis-
cussed in this paper. An accurate prediction of the
locations of these peaks requires a detailed analysis of
the vibration spectrum of the sort carried out by Smith. ~
In addition, a determination of the electric moment
coefFicients Cr~ & and the intensity factors

I Hr r" I' must
be made to determine which lines will appear in strength
and which will be forbidden. SimeraP' has made a
detailed analysis of the locations of the summation
bands based on the peaks in the vibration spectrum as
determined by Helen Smith. F. Herman and J. Cal-
loway (private communication) have made a corre-
sponding analysis for germanium, extending Helen
Smith's vibrational calculations by adding interactions
to third neighbors. Such analyses lead in general to a
great number of possible lines because there are six
vibrational branches which may combine in pairs at
many diGerent propagation constants. Simeral elimi-
nates lines by assuming that the selection rules for
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FIG. 4. Infrared absorption spectrum if high-purity
silicon due to lattice vibration.

sr Helen M. J. Smith, Trans. Roy. Soc. (London) A241, 105
(1948).

~ W. G. Simeral, thesisUniver, sity of Michigan (unpublished);
also presented as a technical report of the Engineering Research
Institute of Michigan.
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FIG. 5. Variations in the 26-micron lattice
vibration band in silicon.

E. Diamond: Impurity Absorption

According to our discussion in Sec. 8, linear terms in
the electric moment can contribute to lattice absorption
in the diamond structure if "impurities" are present.
The strongest band in the absorption spectrum of Type
I diamond at 1280 cm ' can indeed be interpreted as an
impurity-induced coupling of the radiation to the
fundamental optical vibrations of the diamond lattice.
The fact that this band has about 4 percent lower fre-
quency than the Raman frequency (1332 cm ') is in
agreement with Smith's result" (see her Fig. 6) that
maximum density of the optical modes occurs at 5 or 6
percent below the Raman frequency. From the observed
sharpness of this fundamental line we can conclude
that anharmonic forces are considerably less important
in diamond than in the alkali halides.

The barids in the region from 1000 to 1330 cm ' may
perhaps be regarded as a rough mapping of the density
of the optical vibrational modes in the diamond spec-
trum for low impurity densities. Distortion occurs
because of the presence of the weighting coeKcient
D ~(it) of (8.3) that favors long-wavelength modes.

J. F. Hirshberg, thesis in progress, Syracuse University (un-
published).

infrared absorption are complementary to the second
order Raman selection rules which were obtained by
Helen Smith. The major contribution of the present
paper, in this connection, is to indicate the basis on
which correct selection rules may be obtained. An
extension of the present analysis to the three-dimen-
sional diamond structure is now being made by
Hirshberg. "The selection rules that she has obtained
thus far indicate that Simeral's complementarity
assumption is not valid.

The weak intrinsic absorption lines at 3660 and 31.20
cm ' are in a region to be explained by three-phonon
processes. Such three-phonon processes could occur
through third order terms in the electric moment, or
the absorption could be produced by second order
electric moment terms in conjunction with anhar-
monicity effects.



I NF RARE 0 LATTI CE ABSORPTION

TABLE III. Elastic constants.

Crystal

Diamond
Silicon
Germanium

Debye
temperature

goK

1950o
658'
362g

Elastic constants'
C11 C12 C44

9.5d 4.3~ 3.9d
1.657' 0.639' 0.796'
1.288g 0.483g 0.671g

Calculated
Raman line b

Z-1(c) X-1(e)
cm ~ cm 1

1370' 1360
850 460
390 250

a All stiGnesses measured in units. of 10» dynes/cm2.
b First column X '(c) is Raman line calculated from elastic constants by

Helen Smith's method. Second column ) 1(8) is Debye temperature con-
verted to units of reciprocal centimeters.

e K. S. Pitzer, J. Chem. Phys. 6, 68 (1938).
~ S. Bhagavantam and J. Bhimasenachar, Proc. Roy. Soc. (London)

A187, 381 (1946). The value of C44 is questionable according to Helen
Smith.

& Experimental Raman line is at 1332 cm ~.
f N, Pearlman and P. H, Keesom, Phys. Rev. 88, 398 (1952); H. J.

McSkimin, J. Appl. Phys. 24, 988 (1953).
& P. H. Keesom and N. Pearlman, Phys. Rev. Ql, 1347 (1953).

25 Chesley has carried out a spectrographic analysis of a wide
variety of diamonds and found the presence of an appreciable
number of impurities. F. G. Chesley, Am. Minerologist 27, 20
(1942).

2' We are indebted to Mrs. Bertha W. Henvis for the data given
in Fig. 5.

But the correspondence between the absorption and the
density of modes in Fig. 6 of Helen Smith's paper is
not too unreasonable considering the distortions involved.

Since the relative intensities of the 1010, 1190, and
1280 cm ' peaks change somewhat from specimen to
specimen, it is also possible that these peaks are asso-
ciated with diferent impurities. "

The peak at 1390 cm ' is so much sharper than the
other impurity bands and so much lower in integrated
strength that it may be due to an impurity whose
mechanical coupling to the lattice is weak. Other very
sharp impurity peaks have been observed by Blackwell
and Sutherland, " even in the intrinsic region. These
impurities are apparently not simple substitutional
impurities.

F. Silicon and Germanium

The conclusions given above apply to all diamond
structures, viz. , to silicon, germanium, and gray tin.
Infrared absorption measurements on a wide variety of
single crystal and polycrystalline specimens of silicon
and germanium have been reported. ' '~" There have
been no data as yet reported for gray tin.

The lattice absorption spectrum in silicon is given
in Figs. 4 and 5. Variations" have been observed from
specimen to specimen in the structure of the 625-cm '
and 1110-cm bands in silicon, thus indicating that
these bands may be due to impurities or imperfections.

In the absence of data for the fundamental Raman
frequency the classification of the observed bands into
fundamental and combination bands is somewhat am-
biguous. An estimate of the fundamental optical fre-
quency from the elastic constants by using Smith's"
procedure yields 850 cm '. For comparison, the Debye
temperature in the same units is 460 cm '. The impurity
induced band at 625 cm ' probably provides the most
reliable estimate of the Raman frequency. This would
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Fro. 6. Infrared absorption spectrum of relatively high-purity ger-
manium due to lattice vibration.

indicate that the bands at 770, 830, and 910 cm ' are
intrinsic summation bands. The band at 1110 cm '
which varies from specimen to specimen is possibly
due to the presence of oxygen impurities.

The lattice absorption spectrum in germanium is
shown in Fig. 6. Except for the occasional presence of
a band at 830 cm ' (not shown in the figure) due to
presence of impurities (analogous to the 1110 cm '
in silicon), the bands from 345 cm ' to 640 cm '
do not appear to vary significantly from specimen to
specimen even with the addition of appreciable amounts
of silicon as an impurity.

The Raman frequency for germanium has not yet
been measured directly. An estimate from the elastic
constants (see Table III) using Smith's" procedure is
390 cm '. The Debye frequency for comparison is 250
cm '. It would appear then, that the strong absorption
at 345 cm ' is close to the Raman frequency, and may
actually correspond to the fundamental optical vibra-
tion frequency of the germanium lattice. Since the
345-cm ' band has been observed in the purest speci-
mens of germanium, and does not vary significantly
with addition of 1 percent silicon, the present evidence
is against interpreting this band as an impurity band.

There is always the possibility that the Raman fre-

quency, when measured, will occur at a lower frequency
than the above estimate, and the 345-cm ' band might
then be an ordinary summation band.

Another possible explanation" for this band is the
high isotope content for germanium: Simerap' has sug-
gested that this high isotope concentration breaks down
the selection rule against a linear moment. However, in
the Born-Oppenheimer approximation the electronic
structure for a given configuration is unchanged by an
isotopic substitution, so that the electric moment and
its selection rules will be unaltered. The magnitude and
character of the vibrations in the neighborhood of the
isotope will, however, be altered by the change in mass.
Thus a pair of modes which at large distances from the
isotope impurity would not absorb, may have an ap-
preciable absorption near the impurity. This can lead,
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for example, to a combination band absorption with
frequency near the fundamental optical absorption,
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Collins and H. Y. Pan27 have recently reported measure-
ments on the infrared lattice absorption of germanium,
silicon, and diamond as a function of temperature.
They conclude that the observed absorption in silicon
and germanium and of Type II diamond is made pos-
sible by the thermal vibrations of the atoms. However,
they do not suggest any mechanism for the absorption.

"R.J. Collins and H. Y. Fan, Phys. Rev. 93, 674 (1954).
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Soft X-Ray Absorption of Evaporated Thin Films of Tellurittifn*
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The linear absorption coefficient of tellurium has been measured in the wavelength region 100A to 400A.
A double peak was observed at about 300A; it is due to transitions from the E&v and Xv levels to the
conduction band. A large peak at shorter wavelengths was also observed.

I. INTRODUCTION

HE energy levels of materials in the solid state are
broadened into bands by the interaction of the

overlapping atomic wave functions. The bands may be
considered to be composed of a very large number of
levels so close together that they may be described by a
continuous function 1V (E), where Ã(E)dE is the number
of energy levels between E and E+dE.

The absorption of light associated with an electronic
transition from some lower energy level to the levels
in the range E to E+dE is proportional to the function
X(E), and also to the transition probability, f(E).
Since f(E) depends on the exact wave functions, its
value is not known and, hence, measurement of the
absorption can give only a qualitative picture of .V (E).
Also to be considered is the fact that raising an electron
out of an inner level alters the charge of one ion so
that the observed energy level structure is that of a
slightly perturbed lattice.

The lower or x-ray levels are broadened due to radia-
tion damping and Auger transitions. These two eGects
have been studied by Prins. ' He showed that on a linear
energy scale the soft x-ray levels, which are about 100
volts below the valence band, are narrower than the
deeper-lying levels such as the E and I. levels. In
studying the structure of the conduction band it is
advantageous, therefore, to use the soft x-ray levels
rather than the deeper-lying levels.

The experimental resolving power required to reveal
a conduction band structure 0.1 volt wide is only about

*This research was supported by the U. S. Once of Naval
Research.

t Now with the Research Division, Photo Products Department,
E.I.du Pont de Nemours and Company, Inc. , Parlin, ¹wJersey.' J. A. Prins, Physica 2, 231 (1935).

1000 when using soft x-rays, but will be more than
a hundred times that much when using transitions from
the E levels. The soft x-ray region therefore overs ex-
perimental as well as theoretical advantage over the con-
ventional x-ray region.

II. EXPERIMENT

The vacuum spectrograph used in this research was
modeled after one used by Skinner and Johnston' and
has been described by Siegmund with certain modifica-
tions discussed by Carter. In brief, the instrument is a
grazing incidence mount of a two meter aluminum
grating with 30 000 lines/inch. The source, the grating
and the photographic plate holder are on the Rowland
circle. The angle of incidence is 85 .

A vacuum of 5)(10 ' mm Hg is maintained by means
of two oil diGusion pumps, one on the main chamber and
the other on the source chamber. The source is a spark
between copper or silver electrodes from a 0.15-pf con-
denser charged to about 30000 volts. This was eGec-
tively controlled by an air gap in series with the
internal spark. The plate holder, situated behind an
occulting diaphragm, was designed to be movable from
outside through an "0"ring seal. Five exposures could
be made on Eastman Kodak Spectroscopic Plates,
type SAR Extra-thin, size 2 in. )&10 in.

The wavelengths were determined from tables of
the copper spark spectrum prepared by Kruger and

2H. W. B. Skinner and J. E. Johnston, Proc. Roy, Soc.
(London) AI61, 420 (1937).

W. P. Siegmund, thesis, The University of Rochester Library,
1951 (unpublished); for a brief account of this work see Phys.
Rev. 85, 313-314 (1952).

4 D. E. Carter, thesis, The University of Rochester Library,
1954 (unpublished).


