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Considering the classical electric and magnetic interactions between atomic electrons and the nucleus,
we arrive at a representation of the hyperhne interactions in terms of a multipole expansion of the field
potentials. Treating these noncentral interactions in first order perturbation theory we can give the form
of the general interval structure and analyze for the multipole interaction constants using Racah coefficients.
Pertinent matrix elements for a single valence electron are calculated relativistical)y. Some second order
terms of the dipole and quadrupole interactions are calculated as they affect the interpretation of the 6rst
order octupole interaction. In this work we also take into account quantitatively the effect of some electronic
con6guration interaction. I"inally the values of nuclear magnetic octupole moments expected according to
different models are calculated and compared with the experimental data thus far collected. Generally the
measured octupole moments are in as good agreement with the values predicted by the single-particle shell
model as are the corresponding dipole moments.

INTRODUCTION
' 'HE recent very accurate measurements by

Jaccarino et al. ' on the hyperfine structure of the
ground state of I' 7 showed that the theory of dipole
and quadrupole interactions as previously developed
was insufhcient to describe the level structure to this
new high precision. In order to learn how finer details
of the level structure could be interpreted in terms of
higher nuclear moments, it was decided to review the
entire theory of hyperfine structure.

First, treating the nucleus as a stationary non-
relativistic quantum mechanical system, we derive a
multipole expansion for the electric and magnetic fields
produced by the nuclear charge and current distribu-
tions. In this development the electromagnetic po-
tentials are expressed in terms of scalar and vector
spherical harmonics. When these potentials are put
into the Dirac Hamiltonian for the electrons, the terms
of diGerent orders of symmetry can be identified as
tensor operators, so that one can write down the form
of the generalized "interval rule" in terms of Racah
coeScients. This analysis proves to have not only
formal, but also practical computational advantages
over the formulations given in the prior literature.

The interaction constant AI„- for each multipole order
k is the product of the nuclear moment of that order
and an electronic matrix element. The general electronic
matrix elements are evaluated for the case of a single
valence electron using the techniques of Racah' for the
spin-angular integrals, and fol1owing the method of
Casimir, ' Racah, 4 and Breit' for the radial integrals.

The magnitude of the hyper6ne interaction energies
decreases rapidly with order: the magnetic octupole
interaction is weaker than the magnetic dipole by
about l0 '. Thus in the perturbation theory second
order terms (mixing in excited electron states) in the
dipole and quadrupole interactions give contributions
which may appear as first order magnetic octupole
(and electric 2-pole) interactions. This effect is calcu-
lated using so far only the perturbation of the nearby
doublet level. In this work the dipole contribution of
s-electrons in mixed configurations is allowed for by
quantitative analysis depending on the measured dipole
interaction constants in both states of the doublet.

After all the electronic contributions have been
extracted from the observed octupole interaction con-
stant the value of the nuclear magnetic octupole mo-
ment is finally revealed. We have calculated the values
of these moments to be expected according to the
individual-particle shell model for the nucleus. The
results, for various single-particle orbits, are represented
on a diagram similar to the Schmidt plot for dipole
moments; and the octupole moments of the few nuclei

already investigated take approximately the same
positions on this new diagram as they do on the Schmidt
plot.

The measurement of higher nuclear moments may
also prove to be a valuable test of the Bohr-Mottelson
collective nuclear model. In their "strong-coupling"
scheme the observable magnitude of an octupole
moment is decreased from the single-particle value of
the simpler theory by a factor as small as 1/35.
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THE HYPERFINE STRUCTURE

In the absence of external Gelds an atom may be
8 described very accurately in terms of a compact

charged nucleus and an electron system arranged in
the central coulomb 6eld produced by the nucleus. If,
however, the electrons have some resultant angular
momentum J&0 and the nucleus also has a spin I&0,
there will be further interactions between the two
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systems, described as magnetic dipole, electric quadru-
pole, etc. We then denote by hyper6ne structure (hfs)
the diQ'erent energy eigenvalues associated with the
various total angular momentum states of the combined
systems characterized by the quantum number Ii:

lI —Jl &F&I+J.
The major part of the electron-nuclear (noncentral)

interaction is the magnetic dipole term which is
characteristically of the order of magnitude

gopx

where ns is the electron mass, M the proton mass, and
r, the radial coordinate of the electron from the nucleus.
This may be compared with the fine-structure (fs)
spacing of the electronic energy levels, which is of the
order

(I)/2mc)'Ze'(1/r, '),

where Z is the atomic number. The ratio of these two

hfs/fs m/MZ 10 4—10 ',

and the terms in the series (1) are the scalar products
of these two tensors, thus are invariants in the combined
space. ' We now wish to calculate the first order energy
expectation values of H~ in states described as having
J of the electron and I of the nucleus coupled to the
resultant F.

WI (IJ—F—lII, lIJF)=/7(IJFl T,(")~ T (") lIJF). (2)

These matrix elements are independent of the magnetic
quantum number M p, so it will be ignored. According
to a well-known theorem of Racah, ' the dependence
on F of each of the matrix elements in (2) can be
separated out as follows:

(DFl T.(» T.(»lIJI)=( 1)1+~—~W(IJIJ;Ff)
x(IIIT.(»III)(JII T.(»ll J&,

where W, the Racah coefBcient, is a known algebraic
function of its six arguments; and the double-barred
matrix elements, called the reduced matrix elements,
are independent of any magnetic quantum numbers
which may be assigned to the states indicated.

We shall write the hfs term energy as

is then a measure of the approximation to which we
may use the various orders of perturbation theory to
calculate the hfs levels. We shall start by considering
the hfs interactions in first order and later turn ouI'

attention to the eGect of second order terms on the
higher moments.

First, the noncentral interactions between electrons
and the nuclear particles, whatever these interactions
may be, will be expanded in a series of tensor operators.
The perturbation Hamiltonian H~ is written

5'i =pi A),M(IJ;F;k),

with the normalization

M(IJ; I+J; k) =1,
which gives directly

Ai ——(T,(»)JJ(T„(»)rr,

with the relation

(3a)

(3b)

(4)

II)—Q„T (», T (»

T,(~) is a tensor operator of rank k which operates in
the space of the electronic coordinates only; its rank
is dined by the fact that it commutes with the total
angular momentum operator of the same space, J, just
as do the spherical harmonics of order k. T„&~) operates
on the coordinates of the nucleons in the same manner;

Ai IJ(),, A2 ——1/4——b, A3=c.

The coefhcient M is given by the formula:

(4c)

(2J)
(Ti») (4b)

[(2J—k)!(2J+k+1)!g&

Our A's are related to the usual' hfs interaction con-
stants as follows:

(2I—k)! (2J—k)! (I+J—F)!(J—I+F)!(I J+F)!—
M(IJ;F;k)= [k!j'

{2I)! (I+J+F+1)!
(2I+2J+1—s)!

yP ( 1)wI+z-) (3)
s!(2I—0—z)!(2J—0—s)![(I+J—F—s) l (4+F—I—J+s) (]'

K=F(F+1)—I(I+1) J(J+1). —
' The heavy dot ~ will be used to denote the scalar product of two tensor operators,

P(k) P(» —g P (»P (»( t)P

vrhile the light dot ~ will denote the scalar product of two cartesian vectors,

V %=V,lV, +V„S'„+VglVg.

where the sum extends over all integral values of s for which no factorial has a negative argument.
It has been customary to express M in terms of the cosine factor,
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The formulas for the first four orders of M in terms of E are the following):

I
M(IJ;F;1)= E,2' (6a)

M(IJ;F;2) =- [E(E+1)-(4/3)I(I+1)j(j+1)],
(2I) (2I—1)(2J) (2J—1)

20
M(IJ;F;3)= [Es+4Es

(2I) (2I—1)(2I—2) (2J) (2J—1) (2J—2)

(6b)

+(4/5)E{ 3I(I+—1)j(j+1)+I(I+1)+J(J+1)+'3}—4I(I+1)J(j+1)], (6c)

70
M(IJ;F;4)= [E4+10Es

(2I) (2I—1) (2I—2) (2I—3) (2J) (2J—1) (2J—2) (2J—3)

+ (4/'7)E'{ —6I(I+1)J(J+1)+5I(I+1)+5J(j+1)+39}
+ (4/7)E{—34I(I+1)J(J+1)+12I(I+1)+12J(J+1)+18}

—(24/35)I(I+ 1)J(j+1){ 2I'(I+1—)J(J+1)+4I(I+1)+4J(J+1)+27}]. (6d)

It should be pointed out that formulas (6c, d) are
quite unwieldy for numerical evaluation and it is
frequently easier to work directly from (5). For ex-
ample, if 2J=k we have

M(IJ;F;2J)= (—1)I+J z

(2J)!(2I+2J+1)!(I—J+F)!
X (7a)

(2I)!(I+J+F+1)!(I+J F)!(J I+—F)!—
or if k=2J—1,

M (IJ F 2j' 1)= (—1)i+z —z

(2j'—1)!(2I+2J)!(I J+F)!—
X

(2I)!(I+J+F+1)!(I+J F)!(J I+F)!— —

X2[F(F+1)—I(I+1)+J']. (7b)

The following sum rule is also of help in checking
numerical work

QF(2F+1)M(IJ;F;k) =0 (k)0).

Aside from the physical content of the operators (1),
this analysis gives us the selection rule that the series
(3a) terminates at the term k=2J or 2I, whichever is
smaller. One then has 2J (or 2I) interaction constants
Ak to be solved for from the 2J (or 2I) measured
energy intervals. Because of an orthogonality sum of the
Racah coefficients one can solve (3a) analytically for
the Ay, .

[(2I) '(2J) ]'
Ak= (2k+1)

(2I—k)!(2I+k+1)!(2J—k)!(2J+k+1)!

Xgr (2F+1)M(IJ;F;k)Wg. (8)

ELECTROMAGNETIC POTENTIALS

AVe shall now describe the electric and magnetic
static interactions between the nuclear and electronic
systems in a multipole expansion.

The electrostatic potential set up in space by a
distribution of charges in the nucleus is

p(r')
V (r) = ds',

where p=e%'*g, g&,
%' is the density of electric charge

of all the nucleons; g~ is +1 for protons and zero for
neutrons. Now, expanding the Green's function in
terms of spherical harmonics,

where

~
4~

&2k+1

we have the desired multipole operators of the electric
interaction. The functions C'~) are tensor operators of
rank k with parity (—1)k.

The vector potential for the magnetic held set up by
the nuclear currents and spins is not quite so simple;
it will be expressed in terms of vector spherical har-
monics. ~ We choose the form

A =Pk„LC„ikl (|l,P)hk, „(r), (11)

1 Formula (6c) has been derived previously by Kramers LProc
Roy. Acad. Amsterdam 34, 965 (1931)g and Nierenberg LPhys.
Rev. 87, 225 (1952)g. See also Biedenharn, Blatt, and Rose
[Revs. Modern Phys. 24, 249 (1952)j for a general recursion
formula for these coeKcients.

~ J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc. , New York, 1952), Appendix B, p. 796.
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and by partial integrations we have the spin contri-
bution to (14).'k(k+1) 4&r

ks..(y) =——j (12)
d

Ps„LC„&s&(8,q) — r
r dr' r2 c —i t' p8

~~ y +1 ~—y'&y)—~'C„&"&*(8,9&)

Now using the orthogonality of the vector spherical k(k+1)"
harmonics over the unit sphere, ~ %*g,li„S+dv) (16)

where L= —irXgrad which assures the gauge divA=O. For the spin current term we use the identity
The operator L commutes with any function of y and
also with the Laplacian so that the equation VsA r Xcurl =gradr —(y8/8y+ 1)
= —(4rr/c) j becomes

4x
PLC„i j* t LC„,&' jul=8„.8„„. k(k+1), (13)

2k+1

we get

where again

ek
g &

~S—=Z'g-
28$gc

r-
r dr'

k(k+1)
hs, „(y)

r2

1 2k+1
LLCs'"'(8 1 )3* jul

c k(k+1)~

The Green's function for the left-hand side is

r kr —k—1

2k+1

so finally we have the solution

1 1
ks, „(y)=- LLy&'y& " 'C.'"'(8 ~)3* jd' (14)

c k(k+1)&

and the spin current

eA

j,=curl@*+;g„S;%.2'
The convection current should be a symmetrized
combination but it is easily shown that the two terms
give just the same contributions under the integral (14).

For the convection current term in (14) we can write

LL( )7* j.=srX&( )* j = —s&( )* (rXj.),
and get its contribution to (14) in the convenient form

i

k(k+1)~

with the shorthand notation:

ek
2gllsNL=+i gls Li

sfgc

The nuclear currents j consist of two parts: the con-
vection current

jc=e+ Qr gtiv8'~

Finally we can write the solution for the vector potential

—ZPg
A=+ LLC&"&(8,q))

s k(k+1)

~ y s 1 t QeL~yisC(s& (8i i)pl'
0

(2giL+ ~(k+1)g,S))@de'

+ylh Qot Qyi s—1C(s& (8i I)

(2giL —k~g ,S))@dr&' . (17)

In what follows we shall consider the nucleus as a
point source and use only that part of the potentials
corresponding to an observation point outside the
nuclear matter. The error made this way aGects only
the magnitude of interaction observed, not its multi-
polarity. This error, involved in the hfs anomaly is
appreciable only for 2~-pole magnetic interaction with
an electron in a state j=k/2, and then for various
orders the effect varies as 1/(k+1); for the dipole
(k=1) this effect is only a few percent in the heaviest
atoms.

We can now define the integrals occurring in (9) and
(17) as the general nuclear electric and magnetic
multipole moments:

f
Qss=e @*g&y'C„&'&(8,y)@dr&,

~
g, L+g,S (4ds, (1gb)

t' 2

k 1

There are surface terms left over from these partial integra-
tions but they exactly cancel each other.

s A. Bohr and V. F. Weisskopf, Phys. Rev. 77, 94 (1950).
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and write

V=gir ' 'C('i(8 p) Q

—z
A=Pi, r—"—'(LC("&(8 q)).M~

k

For the magnetic multipole we have the general matrix
elements

19a
1

e (—cV(,) ~
I lb(;„*(r (Lr ' 'C("l)P,.p„.de

ik

We also note that the operator Q& has parity (—1)"
while 3E& has parity (—1)~' so that the only static
electric moments are of even order and the only static
magnetic moments are of odd order if we assume that
the nuclear wave function has a well-defjned parity.

ELECTRONIC MATRIX ELEMENTS

+ f(( *(r (Lr ~ 'C(@)P,.;.„.de .

(r. (L»—k—1C (k))y (r. L(» k (C—(k—)y) r—k—1C (k) (~.Ly) .

and also, by the Hermiticity of o" L,

We now investigate the interaction of a single
electron (charge —e) with the nuclear fields just
described. The electron wave function 0' obeys the
Dirac equation,

Ln (cp+eA)+pic' eV5@=EV—,

Now the functions P, p are eigenfunctions of the oper-
ator a" L belonging to the eigenvalues ((—1, (( 1—

(20) respectively; where (( is the Dirac quantum number

and for the zero order solutions in only the central part

of the electrostatic potential, V„we put 4=
I

(lb)

&4)
where P is the large component and P the small compo-
nent of the four-spinor C. Now, introducing quantum
numbers, we have the separations

p(,~=f(r)/r'(j(, m, p(&~= g(r)/ir(J(;„,

where

i =I+2

referred to the large component and K= K. We thus
get, for the reduced matrix elements of the magnetic
multipoles,

—(e/k) (Ilail[) (((+((')

'JJ(;~= P (-,'m, lm(l ', lcm) V(m—i(8,p)x,*m„

and g is a two-component spinor.
The interaction Hamiltonian is

which have the parity selection (f+f'+k odd). The
general reduced matrix elements of the C(+ can be
calculated best with the techniques of Racah. ' The
result is (using a formula of Schwinger")

Hr —e(V—V.)+e(r A——,

and we will need the general matrix elements

VeH(%'dv.

For the electric 2~-pole matrix element (k)0), these are

—e(Q&)
'

r " 'draff f'(2' m
I

C(~&
I

-,'(!'j'm')
0

+gg'(-,'l jul C(~l
I
-,'l' j'»»(')5.

Now the matrix elements of C&~) in the —,'Ljm scheme are
independent of the quantum numbers l except for the
parity selection (f+f'+k even). Hence for the reduced
matrix elements of electric multipoles we have

—e(IIQ~II) f r '(ff'+gg')«(2~ jllC'"'II@'j'). (2~)

j+j'+k even

k+1 j+j'+k odd

A(abc) = (a+b c)!(b+c a—)!(c+a b—)!&—
(a+b+c+1)!

For the first order hyperdne interactions only the
diagonal matrix elements are needed and we get for

ro J. Schwinger, Oe Amgr(la» Moraentmm (Nuclear Development
Associates, Inc. , White Plains, 1952), pp. 34, 35.
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the interaction constants:

(k—1) t!
Q„C l y h —1(f—s+gs)dy( 1)P/2

QI1

(2j).X,k even, )0; (26a)
(2j +k)!!(2j—k—1)!!

entirely to the electron density at the nucleus (y=0).
For orbits of larger /, however, the wave function is
concentrated farther out and is more slowly rising
near the origin so this approximation worsens. At small
value of r the major contribution to the potential is
from the nucleus. Setting V,=Ze/y and with the ap-
proximation of zero binding energy ! mcs —E~ &&V„we
get from (28) the solutions in terms of Bessel functions:

00 $11
Ai= MI, 4K — y p iffy( —1)~k tile

p

f=C$ ', ocJp,-~i(oc) (p+—a)Jp, (x)i,

g=CnZJpo(x),
(29)(k—1)!!

(2j)!

in terms of the specific nuclear moments

k odd, (26b) where x= (8Zy/ap)', p= (lc' —n'Z')' a =k'/syse n=e'/hc.
(2j+k+1)!!(2j—k)!! With these functions the radial integrals (26) can be

evaluated" to give the following results:

Q =(Q ') M =(M ') (27) y
—P—1(fs+g2) dy

The preceding analysis was for a single electron
bound to the nucleus. It is also correct to describe the
interaction of a single valence electron outside closed
sub-shells of other electrons. " For configurations such
as p', d' in L Scoupli—ng, or (3/2)', (5/2)' in j-j
coupling, where there is just one electron less than the
number needed to fill a shell, only very slight modifica-
tions are needed to give the correct matrix elements:
the even (electric multipole) interactions are just (—1)
times the values for a single electron while the odd
(magnetic multipole) ones are the same.

In the case of more complex electronic configurations
one must know the coupling scheme of the several
angular momenta involved; then the techniques of
Racah' show how to calculate the appropriate "pro-
jection" factors.

RADIAL INTEGRALS

With the separation of variables (21) the Dirac
equation (20) for the radial functions f and g reads

(d Ic) 1

]
—— !f= (yrcc'+E+eV, )g,

—
t.dy y) kc

(28)
(d Icy 1

(

—+- [g=—(srsc' —E—eV,)f.
t dy y) kc

For a many-electron atom the best solution consistent
with the assumption of the preceding footnote is
obtained from a Hartree-Fock treatment. However,
to obtain simple analytical results we make the assump-
tion, following Casimir, ' that the important contribu-
tion to the integrals (26) comes from the region of small
values of r. This should be an excellent approximation
for the cases j=l+-,'= k/2 (magnetic dipole in s*, state,
magnetic octupole in p; state, etc.) where the non-
relativistic treatment gives the interaction as due

"This assumes that one can write the total wave function for
all the electrons in the form of products where the coordinates of
the valence electron are separated from those of the core electrons.

tr 2Z) " (2k —2)!

& ap ) k!(k—1)!

Lk (2~+k) (2lc+k —1)—4n'Z'(3k —1)j
X (30)

(2p+ k) (2p+ k —1) ~ (2p —k)

k (2Z) "+' (2k —1)!
cp

2mc E. ap ) k!(k—1)!

(—k—2a)
X (31)

(2p+ k) (2p+ k—1) ~ ~ ~ (2p —k)

l(l+1) 1
O'——C" C'=

2.911 2HZ' ap
(32)

where 8 is the doublet splitting in cm ', and H is a
relativistic correction factor. More accurate approxi-
mations for the ratio ~C"/C'~ will be termed normal-
ization corrections and will be of concern in the fol-
lowing section. Casimir' gives the estimate

3Q Z

2l (l+ 1)rs*
(33)

's G. N. Watson, Theory of Bessel Jrscrecteols (Cambridge
'University Press, London, 1952), p. 403.

The normalization constant C, which gives the density
at the nucleus of the wave function of the outer valence
electron, is best evaluated in terms of the fine-structure
separation (for non-s electrons) between the states
j= l+-', and j= l—2, which have almost identical wave
functions for larger values of r. Here and subsequently
we shall use the notation of a single (') to identify a
quantity as relating to the state j=l+ ps, and a double
(") for the state j=l—-,'. The resulting identification
is' '
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involving the "eGective quantum number" n*. How-
ever, an explicit calculation by Breit for the case of
thallium (Z=81) gives a value !C"/C'l'=1.65 com-
pared to the 1.18 of (33).We shall use Casimir's formula
(33) for lighter nuclei (Z&50) for which these correc-
tions are not very large anyway. For the integrals of
greatest interest we shall write the results in the
following forms.

multiply by
(—1)rW (IJIJ;Fk) (2F+1),

and sum over Ii. This sum is mell known in the theory
of Racah coefficients and gives a result proportional to

W (IkiIk p)I'k) W (JkiJk p)J'k),

which is nonzero only if

lki —kpl &k&ki+kp.Magnetic dipole:

k $2Z) P p
~ofgdr =CP

2njc! ap j (2l+1)L~(2l+1)—1)

Thus in second order the square of the dipole term
can infiuence at most the quadrupole; the cross dipole-
quadrupole term can aGect up to the octupole; and
the square of the quadrupole term can reach to the
24-pole.

Ke shall now calculate the oG-diagonal matrix ele-
ments for the dipole and quadrupole operators from
the state in which the measurement is being made
(assumed to be j=l+-', ) to the near-by doublet level
of the electron (j=l——,').

For the dipole term the matrix element (always
diagonal in F) is, from (24),

W as j=l+-', . (34a)
Electric quadrupole:

00 ]2Zq' R
r '(fo'+go)dr=C (34b)

~o E ap) l(2l+1)(2l+2)

Magnetic octupole:

k (2Z) '
r 4fgdr=C

"o 2mc~ ao) W(IJIJ—1;F1)(—1)i+~ ~ '(ll!&i!!I)(—e) (g'+g")

r- (fY'+g'f")«(-:lJIICo'll-:tI-1)I tr10T
X

(2l+3) (2l+2) (2l+1) (2l) (2l—1)L~ (21+1)—33

W as j=l+-,'. (34c)
and from (25),

(plJ!!C&"[l-' /Jp—1)= L(2J+ 1)(2J—1)/4J]&;

also z'+x"=1.
The form of the Racah coefficient is

F and 8 are the same relativistic correction factors
given by Casimir'; T is the corresponding correction
factor for the octupole integral and is given by W(IJIJ 1;F1)(—1)—r+~ " '

p(I+J F)(J I+F)—(I J+—F+1)(I+—J+F+1)i &

2

(2j+4)!(2p —4)!
T—

(2j-3)!(2p+3)! (I+1)(2I+1)2I (2J+1) J'(2J 1)

All these factors, along with H, are plotted as functions and the nuclear term is
~ ~

(Ill~ III)=L(I+1)(2I+1)P3'~,
so that the entire matrix element is

So long as we consider only first order eGects of the
hfs interactions, the multipoles can be separated from
one another unambiguously by the orthogonality of
the "interval rules" for different orders (8). However
in second order we get the energy given by the square
of a. matrix element. Thus if, in second order, we
consider the matrix element from the state IJF to the
(different) state I'J'F of the hfs interactions of various
orders, we get a dependence on F which goes as the
Racah coeS.cient,

( 1)~W (I'J'IJ;Fk). —

—eMg t-"
r '(fY'+g'f")«L(I+ J F)(J I+—F)—

4IJ ~,
&& (I J+F+1)(I+J—+F+ 1)]&. (36)

The radial integral yields

r"
r '(fY'+g'f")«

J0
k 2Zy'

CICII
2mc E ap)

In the square of the matrix element there will be such
products as

—4I' (p'+ p"—1)
X

W(I'J'I J;Fki)W(I'J'IJ;Fkp),
1'(p"—p'+2)1'(p' —p"+2)1'(p'+ p"+2)

k t'2Zy ' G
and if we want to know what part of this looks like . =——O'C"
the first order term of an interaction of rank k, we 2~c ~ ao ~ l(2l+1)(2l+2)

(37)
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( 1)1+ -~-'(Illg2III)( —')rm m the stat'The ratio o isf th' to the diagonal term in t e s a e
j=l+~~ is

~ » '(fY'+g'f")« » 'f'g'«
Jo

(38)
C' / Il'

x ~ »-'(f'f"+gY')«(2~JII~"'Ilk' —1)

and, from (25),
3(2J+1)(2J—1) i &

(l1Jll&"'ll2~J —1)= I(. . . )
.

ole matrix element is, fromThe oB-diagonal quadrupo e m

(23)

W(IJI J—1;F2)(—1)1+~ ~ '

The form o t ef h Racah coeS.cient is

and the nuclear term is

(2I+3)(2I+1)(I+1)l ~

I(2I 1)

so the entire matrix element is

)

ms we can now write theCollecting all the terms, we can
second order energy as follows:

W p&@= (I+J F)(J I—+F)—
hE

3(I+J F) (J—I+F-F)(I J+F+-1)(I+J+F+1)
1 2I+3) (2I+1)(2I—1)I(I+1)(J+1)(J—1 (2J—1)(2J+1)(2I

—C2» '(f' "+ 'g")«DI+ J F)(J I+—F)—
Jo

)& (I J+F+1)—(I+J+F+1)]'*

XLF(F+1)—I(I+1)—I'+1]

(39)
8J(J+1)(J—1)I(2I—1)

The radial integral gives

» '(f'f"+gY')«

2Z ' 2I'(p'+ p"—2

II II)I + +3)~( +3)P(Ego (

)& (12Ln'Z'+ (p'+K') (p"+K")]+(p p —1

X p

3(p"+~")(P'+—P"+2) (P P +2))

r 2z)= ""l~ )I (»+1)(2)+2)

the diagonal integral l in theThe ratio of this to e
j=l+-,'state is

X (I J+F+1—) (I+J+F+1)
3 (F(F+1)—I(I+1)—I'+1)

2J(I—1)(2I—1)I(2I—1)

(42)
2IJ(2J+1)(2J—1)

2.8

2.6

2.4—

2.2—

2.0—

1.8

1.6—

1.4—

1.2

~ » '(f'f"+gY')« »
—3 (f&2 +g&2)«

0
CII S

(41)
C' E'

I I
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in terms of the first-order interaction constants in the
state j=/+ —', (we might also have referred to the state
j=/ ——,). DE is —8 (the fine-structure splitting) if the
j=/+ —', state is the lower state (in energy), or +8 if
j=l—-,'is lower.

J=/+ ,', -we get the ratios

(2J—1$

( J+1j (45a)

EFFECTS OF CONFIGURATION INTERACTION

We now go on to consider the eGect of some con-
figuration interaction of the sort discussed by Fermi
and Segre" and calculated in a particular case by
Koster. " For configurations s'/j (or s'/ 'j) we include
the possibility of one of the s electrons being raised to
a higher s-state s'. The wave function in I—S coupling
will be written —for both j=/+-,' and j= / ——,

' levels

4'; =rrs(s'(S =0)sL;)+ni(ss'(S=1)'L.)

/
(J-1)(2J-1)i1

& (J+1)(2J+1)~
(45b)

L(J+1)(»—1)j'
(2J+1)(2J—1)

The desired correction factor i is given by

(46)

Also the ratio of the off-diagonal to diagonal (J=/+-',
state) reduced dipole matrix elements of the / electron is

+ns(ss'(S=O)'Ly) (43)
(/Jll T '" ll/J')+&

«Jll Ti"'ll/J')
(47)

with normalization nss+nis+rrss=1, where S is the
resultant angular momentum of the two s electrons'
spins which then couples to the spin of the l electron
to give the doublet. In what follows we shall approxi-
mate only that nrs&(1 (Koster finds nrs=0. 001 for
gallium, Z=31).

For the wave function (43) the octupole and quadru-

pole matrix elements, as well as the fine-structure are
essentially the same (to order nP) as those one would

get from considering only the valence l electron alone.
We are interested in the eGect of the s-electrons in the
first and second order dipole interactions as these
inQuence the interpretation of the purely octupole
interaction from the hfs data. We shall find an explicit
evaluation for a correction factor which should be
multiplied into Ai in formula (42) just to take account
of the dipole interaction of these s electrons.

First, with the total dipole operator written as a sum

of an operator Ti&" (of rank 1) acting on the valence /

electron and another T,(») acting on the s electrons,
the general reduced matrix element becomes (to order

nis«1)

(Jll Ti"'+T "'ll J') = (Jll Ti"'ll J')+~» ' (44)

we get

3f»6JJ—
eA, ' —[J/(J+1))A,"
8+[(J—1)/(J+ 1)j

~ (J+1)(2J+1)i 1

xl- )' (49a)

and from now on we will understand J=/+-'„J'=/ —-',

=J—1.
One must calculate AJJ by taking the discrepancy

between the observed interaction constant A»' and
that amount calculated for the valence l electron alone.
If the hfs is measured in the J'=l ——,

' state as well,

one can get a better check on 6 by solving the two
simultaneous equations of the form (44) with the
measured interaction constants A»' and 2»". Using

(45b) and the relation

(/J —1IIT,i &II/J —1)

~(J+1)(2J—1)y '
—

I 8(/Jll T "'ll/J)
I (J'—1)(2J+1)] (48)

pll Cll "2

where 6JJ. is a sum of matrix elements between various
terms of (43), all of the form

[(J—1)/J]A i'+A, "
~,(/JIIT, i 'll/J) =

8+[(J—1)/(J+ 1)]

(J(2J+1)q
&

x
I

— —I, (49b)
(J+1) )

~»™(Ss,'s/, Jll T."'IIS's, s/, J')
=W(is J—',J',/1) (2J+1)'*(2J'+1)'*(—1)/ ~l~

,'IIT,oillS' ) and, finally,

1 [J/(J+1)jA " 8A ' (2J/1)(2J ——1)
That is, without actually calculating 6» we have (49c)
gotten its dependence on J and J'. Now, putting $ Ai"+[(J—1)/J]Ai' J

's E. Fermi and E. Segre, Z. Physik 82, 729 (1933).
"G.F. Easter, Phys. Rev. 86, 148 (1952).

The calculations carried out here also find application
in the study of the Zeeman effect in hfs as used to
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hv= 3402 Mc/sec, b= 39.4 Mc/sec, gz = 1.70,

E '=1—00084

with the experimental value

1—0.0077&0.0017.
Iedilm":

Z=49, 8=66.5 10 Mc/sec, +*=1.53,

tC"/O'I'=1. 06, )=1.04, rf=1.11, 0=1.30,

i =1.84, Ai"/Ai=3. 12.gz (atomic beam =hfs)
E '= (50) In"'

gz(nuclear resonance) 6(2I+1)gzb
hi =11330 Mc/sec, b=450 Mc/sec, gz=1.22,

R '=1—00060where hv is the hfs interval in the p; state at zero field
and 8 is the 6ne-structure separation. Clendenin" has
done the calculation relativistically and he gets formula
(50) with the factor G/Ii" included in the second term.

What enters in (50) is just the off-diagonal matrix
element of the hfs interactions between the p; and p;
states times the matrix element of the electron's mag-
netic moment operator between the same two states.
There are three effects not considered by these other
authors which we can now include: the normalization
correction factor; the oB-diagonal quadrupole term;
the eGect of con6guration interaction on the off-diagonal
dipole term. Using (42) we get the result

and the experimental value is

1—0.0062&0.0005.

NUCLEAR MOMENTS

The nuclear moments are defined as the following
expectation values (evaluated in the state rrjz I). ——

Qs= I
eg~'C"'(ft, ~) I

E.

(52a)

for electric moments (k even);

measure directly the nuclear g factor. When an atom Ga":
of spin J= is(for I)si) is placed in a uniform magnetic
field II, there are according to the Breit-Rabi formula
pairs of lines arising from the hfs, the difference of
whose frequencies gives directly the quantity 2g&p&II.

Foley's has shown that for a p; electron state second-
order contributions involving the doublet pf level can
change the apparent value of gl—as compared with
the value measured directly by nuclear resonance
methods. His formula is

1837 he b
r) .

gzb 6(2I+1) f) I(2I—1)
(51)

t'
~s=I v~(Vr Cf l(e, p)) I g; L+g,S I I (52b)

P+1 ))zz

The quantity b is the usual quadrupole interaction
constant (b =4As) measured in the p; state and all other
factors in (51) are as earlier defined. The sign of the
correction term above is correct only when the p; state
is lower in energy than the p; state.

We shall compare the calculated and measured
values of this discrepancy for the ground states of
gallium and indium.

Gallilm":

Z=31, 8=24.810 Mc/sec, n*=1.51,

I
C"/C'I'= 1.02s, 8= 1.02, r) = 1.04, 8= 1.10s,

f= 1.58, A i"/A i' ——2.34.

Ga69 s

d, p = 2677 Mc/sec, b =62.5 Mc/sec, gz ——1.34,

E '=1—0.0078,

to be compared with the experimental value

1—0.0079~0.0023.

'5 H. M. Foley, Phys. Rev. 80, 288 (1950).
's W. W. Clendenin, Phys. Rev. 94, 1590 (1954).
'7 Data from G. E. Becker and P. Kusch, Phys. Rev. 73, 584

(1948), and reference 15.

for magnetic moments (k odd).
The magnetic multipole moments (52b) can also be

written in the form

Mg, ———~r'C&'& (f), p) divMde,

where M is the magnetization density (in the state
mz=I) defined as in Blatt and Weisskopf, r Chap. I.
These are related to the usually defined moments as
follows:

p, =M~, magnetic dipole moment;

Q= 2Qs, electric quadrupole moment;

and we shall define the magnetic octupole moment Q as

0= —M3.

It can be seen from the phase factors in Eqs. (26a, b)
that the moments of a given type, electric or magnetic,
have a natural oscillation in sign as one proceeds to
higher orders. The minus sign is introduced in the
definition of 0 so that a nucleus with a positive dipole
moment is most likely to have a positive octupole
moment as well.

"Data from sources quoted in reference 15 and others given
by P. Kusch in private communication.
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5'—

using (4b) and (54) we get

gi+(g. —gi)/2I, I=/+2;
p=MI=p~I (55)

gi (—C. f—i)/(2I+2), I=/ —2.

h

V

2-

the usual Schmidt values; and for the octupole

3 (2I—1)0=—My=+@~ &r')
2 (2I+4) (2I+2)

X
G

1
I 2T

X 69
0

/ -I/2

(I+2)L(I—l)g+g j,x
(I—1)L(I+5/2) gi —g 3,

I=/+-,';
(56)I=/ ——,'.

l

5/2
I

7/2
I

9/2
1

I I/2

FrG. 2. Magnetic octupole moments of odd-proton nuclei.

It is of interest to calculate the moments expected of
a single odd nucleon in an orbit of spin I. From (25)
and (4b), we get directly the electric moments

One can make a plot of these values of the single-
particle octupole moments very much like the Schmidt
plot for dipoles. In Fig. 2 are the lines for I=/+ ,' and-
I=/ (of th—e quantity

as a function of I(&~2)
w (~')

1 12I—1
Q2=&= —— eg~(")

2 2 2I+2

3 (2I—1)(2I—3)
Q4=- ei(~).

8 (2I+4) (2I+2)

(53a)

cV&(j "I=1)=MI.(j). (57)

for an odd proton (gi ——+1, g, =5.58); a. similar plot
can be drawn for an odd neutron (gi ——0, g, = —3.83).

For nuclear configurations of several equivalent
particles in the ground state I=j we get for the
magnetic multipole moments

For a nuclear configuration of n (odd) equivalent
nucleons in the expected ground state, we have the
relation

If (as in an odd-odd nucleus for example) we have a
configuration of two particles (or two separate groups
of particles) with separate spins ji and j2 coupled to a
resultant I, any multipole moment of the total system

(53c) is made up out of the moments of the two particles as
follows:

2j+1—2e
Q~(j"I=j)= . Q~(j)

2J—1

giving the moment of the several particles in terms of
the value for a single particle.

The calculation of the magnetic multipole expectation
values (52b) is slightly more involved. With extensive
use of the Racah techniques we have derived the
following general formula for matrix elements of this
type in single-particle orbits; g is any function of r.

(j ij2Itnr=II Ti "'+T2 'Ij ij2Imz=I)

(2I+1)! L(2ji—k)!(2ji+k+1)!j&
L(2I—&) (2I+&+1).]'- (2ji).

x(jinni= jii Ti"'I jinni= jl)

&&~'(j Ij I'j &) ( 1)' " '+'—
L(2j2—k)!(2j2+k+1)!j&

(/l jii(&g~'") (ai&+g s) Ii/'l j')
= l(1—(—1)""')(gila/~( —1)" ~"L~(~+1)

—(U+k)+(—1)'+"+'(j'+ ))2((j+k)

+g.l ( )'+'+"L( )'+~—'~g/d (g/ —)((j+l)—
+ (—1)""'U'+ l))j)~Uj'&) (—1)"""'"'

(2j2).

x (j~~2= j2I T2'"
I j2~2= j2)

XW(qgf g;f,/)( 1) r+~ . (58)— —-

We can make one interesting and simple remark
concerning the interpretation of nuclear moments in
A. Bohr's asymmetric core model. In the strong-coupling
situation where the valence nucleons are aligned with
respect to a permanently distorted nuclear core we
must reduce all the moments by a projection factor PI,
which allows for the transformation of the necessary

U+i'+~) '

with s and 6( ) defined as in (25).
For the diagonal matrix elements in the state Jj//Il =I,

X,(54)(j+j' ~) '(j i'+~ 1)' (j' i+~ —1)"— — —
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operators into the body frame of the core. This projec- 1 I(2I—1)(I+2)
tion factor, in the nuclear ground state where the x
valence nucleon is aligned with the core axis, is given by ( + )( + )( I+3)

L(») 7
Pg= (2I+1)

(2I—k)!(2I+k+1)!
(59)

1 (2I—1) 1 (I—1)
s, (60b

2 (2I+1)(I+1) 2 (2I+1)

Ps= 1/35, I=3/2,
=5/42, I=5/2,

I(I—1)(2I—1)
It is interesting that the higher P& s can be quite A&=- x

small numbers if I is small (I~k/2). For the octupole, 10 (2I+3)(2I+1)(I+1)
for example, 1 (I—1)(2I—1) 1 (I—1)

y+— s. (60c
10 (2I+1)(I+1) 10 (2I+1)

while the smallest Pi is i~(for I= is) and the smallest
Ps is —,

' (for I=-,').
The contrast between the asymmetric core eGects in

quadrupole and octupole moments is further intensified
by the fact that while it is the large numerical charge of
the core which, in spite of the projection factor, creates
a large quadrupole moment, the total magnetization
of the core is only of the order of that produced by a
single particle. The conclusion is that if the strong-
coupling situation exists for nuclei with small spins
(3/2, 5/2) the octupole moment should be much smaller
than the expected single. particle value.

EXAMPLES: pgi2 ELECTRON

For an electron state with a single valence electron
in a p1 orbit, there will be (for I&~-s,) four hfs levels
with the M(IJ;Fk) coefficients (6), (7) given in Table I.

If we let x, y, s be the measured intervals between
the F=I+-,' —F=I'+-', ; F=I+,'F=I ,'; F=I-— ——
—F=I—~ levels respectively, then we get, for the
interaction constants (8), Wr 1=0; ~r i=s;
= (y+s); Wry( = (x+y+s)

9 I 3 (2I—1)(2I+3)
At= — x+—

.20 I+1 20 (I+1)(I+2)

9 (I 1) '(2I+4)—s, (60a)
20 (I+2) ~ (2I+1)

TABLE I. 3E(IJ;Ik) coeKcients.

We should subtract from the above formula for Ag
the amount due to the second'order corrections (4'2);
this comes to Lusing (8) to find the octupole-like part):

3 I—1
gA2'

AE 10 I
8 5

2I—1 6
(61)

with
16-',A,"/A, '—e

l =1+-
) 3Ag"/Ag'+1

(62)

The formula for A q in terms of the octupole moment is

or

16 TZ
Ag= ppQ

5 7 9H ap'2. 911

EI 3.36)&10 '7

Q=Ag
T 6Z

(63)

in units of Q—nuclear magneton cm', As—Mc/sec,
and 8—cm '.

For the ground state of iodine': m*=1.14

f127 ~

Z=53, 8= 7600 cm ', Ai'=3100 Mc/sec,

As'=286. 6 Mc/sec, iC"/C'i'=1. 10, )=1.05, t)=1.13.

No measurements have been made on the p; state
but it is expected that there will be considerably less
configuration interaction in the halogens than in the
corresponding Group III elements due to the tighter
binding of the s-electrons. We will thus assume l =1.
The formula for A~ with corrections is

k=1 k=2 k~3

I—3
Ii =I+-

3I

—(2I—1)(I+3)

I(2I 1)—2I+4
~ 3

2I

3I

(2I+3)(I—2) (2I+4) (2I+3)
+3

I(2I 1)—(2I)(2I—1)

Ii =I—-'
—3I—3 (2I+3)(I+1) (2I+4)(2I+3)(2I+2)

I(2I 1)—(2I)(2I—1)(2I—2)

A s= $5x—16y+14sj—0.00053 Mc/sec
5716 = (0.00287&0.00037—0.00053) Mc/sec,

where we have taken the square root of the sum of the
squares of the experimental errors in x, y, s (weighted
as above) as the total error. Using (63) with II= 1.07,
T=1.22, we get Oisin= (0.17&0.03)&&10 ~ nuclear
magneton cm'.

With the value for the radial integral taken roughly as

(r') = sszss= ss (0.135A1)'&(10 "cm'
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we get the value (0.62&0.10) on the octupole diagram
(~4r the expected single-particle value).

For the metastable p; state of indium 115, Kusch"
has remeasured the intervals with extreme accuracy.
Using the correction factors already worked out, we
get for A3.

7
A s

—— [6a—16y+ 11sj+0.00109 Mc/sec
2200

= (0.000011&0.000032+0.00109) Mc/sec.

With H=1.065 and T=1.19, the octupole moment is

Qrrs = (0.31&0.01)X10 "nuclear magneton cm'.

Approximating as above for (r'), we get the value
(2.1&0.1) on the octupole plot ( —,

' the single-particle
value).

Daly~ has remeasured the hfs of the p; state for the
two stable isotopes of gallium. The several correction
factors have already been quoted; we have

1
Ga": As —— [x—4y+Ss)+0.0000336 Mc/sec

400
= (50.2&3+33.6) X 10 Mc/sec,

1
Ga": As —— [a—4y+Ssj+0.0000285

400
= (85.8&3+28.5) X10 ' Mc/sec;

with II= 1.025, T= 1.065 we get the octupole moments

Ass = (0.107&0.004) X 10 '4 nuclear magneton cm".

&Vt= (0.146&0.004) X 10 '4 nuclear rnagneton cm'.

Estimating (r') as before, we get the values (0.58) for
Ga" and (0.77) for Gar' on the octupole plot.

The values of„Ithe quantity 0/p&(r') for these four
nuclides are displayed in Fig. 2, and it is striking to
see the similarity between the distribution of points on
this diagram and that on the Schmidt plot for dipole
moments. Any strong conclusions about the quantita-
tive aspects of this comparison may as yet be unjusti-
fied, since the rough estimate

(r')= sE'R =1.35A'*X10—".cm

should. be replaced by the analytical evaluations of
some reasonable shell model. However, it is interesting
to compare the sizes of the octupole moments for the
isotopic pair Ga" ", The heavier nucleus has larger
dipole and octupole moments and smaller quadrupole
moment, thus is consistently closer to the pure single-
particle picture.
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Doctors V. Jaccarino, J. G. King and R. T. Daly for
making their experimental data known to him before

"P.Kusch, Phys. Rev. 94, 1799 (1954).
~ R. Y. Daly, Jr., and J. H. Holloway, Phys. Rev. 96, 539

(1954).

publication. It is also with pleasure that the advice and
encouragement received by him from Professors V. F.
Weisskopf and S. D. Drell are acknowledged. Much of
the author's familiarity with the problems and tech-
niques of the study of hyperfine structure has come
from numerous discussions with Doctor Vincent Jac-
carino and other members of Professor Zacharias'
Atomic Beam Laboratory.

APPENDIX I. DISCUSSION OF APPROXIMATIONS

In this section we shall discuss several approximations
made in the theoretical analysis of this paper in order
to arrive at an estimate of the accuracy of the terms
calculated.

A: The assumption that a many-electron atom can
be described as a core of closed shells plus a few valence
electrons is the essential starting point for any study of
atomic multiplet structure, fine structure and hyperfine
structure. The corrections to this model, termed con-
figuration interaction, include the admixture of excited
states for the core electrons, brought about through
the electrostatic interactions among all the electrons.
The calculations of Sternheimer" have attempted to
account for these eRects in the dipole and quadrupole
hyperfine interactions, the magnitude of his correction
factors being of the order of 10 percent. Notwith-
standing the difficulties of the labor involved, a calcu-
lation, similar to Sternheimer s, for the octupole inter-
action would be valuable.

3: In the evaluation of the radial integrals the use
of unshielded coulomb wave functions is an excellent
approximation for the octupole integral in a pi state;
but for the dipole and quadrupole integrals of (r ')
there may be a sizeable error, especially in the lighter
elements. As an example, integrating (r ') with a
Hartree wave function" for gallium from r =0 to
r=0.05as, one has only 50 percent of the entire (r ')
integral while the strength of the central potential is

already shielded by 20 percent. In calculating the
second-order corrections to the hyperfine structure,
only ratios of these (r ') integrals are needed, so the

major part of this error is eliminated. For the best
evaluation of these terms one might take values for $
and p somewhere between unity and the values given
in the text.

The uncertainty in the value of the normalization

constant C' is not easy to evaluate. It would be inter-

esting to check formulas (32) by carrying out the
numerical solution of the Dirac radial equations with

some reasonable approximation for the complex central
field in several atoms.

The discussions A and 8 relate to the problem of
getting the nuclear octupole moment from the corrected
interaction constant, and as a figure of merit for the
results used in the preceding section we suggest a value

of about 15 percent.

"R.Sternheimer, Phys. Rev. 84, 244 (1951).
~ Hartree, Hartree, and Manning, Phys. Rev. 59, 299 (1941).
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C: The accuracy of the second order calculation
involving the doublet state should be very good. The
error is probably no more than a couple of percent for
the terms relating to the valence t-electron (see 8 above)
and very likely no more for the s-electron correction
factor, all these quantities being derived from other
experimental numbers with only slight theoretical
correction. The only check on these several terms is in
the explanation of the gr-discrepancy in a p; state,
where at present the large experimental uncertainties
prevent a closer verification.

D: The biggest question in evaluating the second
order corrections is about the contributions of other
electronic levels besides the doublet state. One would
like to rely on the larger energy denominators, dE„,
associated with all other terms of the perturbation sum
to keep their contributions smaller by a factor 8/DE„
than the contribution of the doublet level alone, but
the total e6ect of the infinity of terms is not easily seen.

First, one can simplify the problem just a little with
the following results. One can show in general that the
octupole-like part of the (quadrupole)' term from a
general 'P; state (in L Scoupling) —to any other per-
turbing 'J g state is zero if one adds the contributions
of both doublet states J=L+i2and J=L ,'. The on—ly-
residual contribution of such terms would be due to the
slightly different energy denominators of the two
doublet states, thus an order of magnitude smaller
than any straightforward estimate.

The (quadrupole)' term is anyway smaller than the
cross dipole-quadrupole term and it is the latter one
that we must worry about now. One might think that
a useful estimate of this problem could be gotten from
a closure approximation. That is, one tries to represent
the second order sum as follows:

(A1)

average excitation energy AEA„ is some very high energy.
By way of justifying this last statement we cite the
example of a delta-function perturbation which requires
an infinite value of DEA, to make (A1) meaningful.
We thus believe that the closure approximation is
useless in our problem.

We will now try to carry out part of the second order
sum in an approximate manner. First, the matrix
element from a p-state to an f-state are exceedingly
small compared with the p-p matrix elements. The
octupole part of the dipole-quadrupole matrix product
from a p; state to a pi state is, from (61),

1I—1
A2A),

4 I
and the corresponding contribution from the pg

—p.;
matrix elements turns out to be

1I—1
+— A2Ai,

5 I (A2)

where all the finer correction factors have been ignored.
If we consider the two doublet levels of any perturbing
'J' state to have the same energy denominators, these
two terms cancel strongly, leaving only —,

' of the original
pa —p; term.

'tA'e must also take into account the poorer overlap of
the radial wave-functions as we proceed to higher
perturbing levels. For bound states of a single valence
electron Casimir gives the normalization constant C'
for any level as proportional to e* ', where e* is the
effective quantum number for that level. Comparing
the sum over all p-doublets up to zero energy with the
value found in the ground state doublet alone, we have
to evaluate

where i refers to the initial state, e the intermediate
states being summed over, and AEA, is an average
excitation energy for the particular problem.

For our problem, letting D and Q stand for the dipole
and quadrupole operators, the second factor on the
right-hand side of (A1) becomes the matrix element
(i IDQI i). The form of this operator is very much like
the form of the octupole operator except that the
product DQ has an extra factor e~/r, which after taking
the expectation value becomes a factor Ze'/a0. An
upper limit for the evaluation of (A1) is gotten by
setting DE„„=DE;~e /a0, which gives a result larger
by a factor Z than the first order octupole matrix
element.

It must be pointed out that equating AEA„ to AE;„
is an extremely bad approximation for our problem.
The reason for this is that our operators are very
strongly varying functions (r ') so that the correct

where e* here refers to the ground state. This number
is about 0.4 for e*=1.5 and 0.2 for m*=1. Combining
these several factors we may estimate the value of the
apparent octupole interaction due to all levels for the
single electron up to E=O as

—', (0.4)8/AE;„

times the correction obtained from the ground state
doublet alone. Values of hE; for several atoms are
1/300 for Al, 1/95 for Cl, 1/40 for Ga, 1/20 for Br,
1/13 for In, 1/9 for I, which result in corrections of
less than one percent for all these atoms.

In summary, the discussions C and D relating to the
accuracy of the second order corrections to the octupole
interactions are still quite crude and incomplete.
However in view of the optimistic results which these
discussions do suggest, we will guess an accuracy of
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about 5 percent for the corrections as calculated in
the preceding section.

W, = t ~ dvidvo,aJ„,
and with the assumption that system 1 is outside
system 2 we get the multipole expansion

o 1C(o)dv ~ t
r& rkC(k)dv (A3)

APPENDIX II' SKETCH OF THE
NONRELATIVISTIC THEORY

For a nonrelativistic study, the hyperfine interactions
may be conveniently described directly in terms of the
two charge-current densities, without using the inter-
mediary fields. Thus for the electric interaction we
write the energy (to first order):

The magnetic terms are not yet in the desired form,
P* operator f. Using vector identities and carrying out
some partial integrations (see reference 6), one can
re-express the magnetization in terms of convection
and spin currents through the operators L and S. The
final result for the magnetic multipoles is

]—2
IJ pq~ ~~ x rc(P) g) g

k ) jr

( 2
X vr'C&'~ g,L g, . A8

(k+1 ~ rr

For single electron states ~lJ, the matrix elements
occurring in (A7) and (A8) can be evaluated by using
formulas (25) and (54) respectively. For the first four
orders the results are (gi ———1, g, = —2 for electron):

Then identifying p as e times the wave function product
P*f (A3) can be read as the product of two matrix
elements.

For the magnetic interaction between two current
systems, the interaction is

2l(l+1)
Ai IJu=IJ, o

—— (r ')Mi,
7+1

(2J—1)
Ao= 1/4f&= e' — (r—')e,

2 (21+2)

(A9)

(A10)

—1 f t'3i 3o
~m= ', dv~dv2.

c'~ & r~2
(A4)

8l (l 1)(l+1)(l—+2)
As=0= —pp (r ')Mo, (A11)

(2/+2) (2/+3) (25+4)

( divMi divMoS' = O'V] &82
J a

(AS)

However, because of the vector nature of the currents

j we cannot immediately make a multipole expansion
of this expression, (A4). We first express each current
density 3 in terms of a magnetization density M:

j=c curlM.

Then a series of partial integrations reduces (A4) to

3 (2j—1)(2J—3)
A4 ——d =—e'— (-)e,

8 (2J+2) (27+4)
(A12)

where we have used the nuclear moments as defined
in (18).

These formulas are invalid for the special case of
magnetic 2~ pole interaction in an electron state
J=l+-,'=k/2 —dipole in s; state, octupole in P,*state.
For these cases an alternative analysis is carried out
as follows. The vector potential,

provided the two systems 1 and 2 do not overlap
anywhere. Now we can make the usual expansion to
get

W =P ~~ divMir o 'C(~)dvi "divMqr"C(i)dvq. (A6)
oJ J

The analysis of the angular dependence of the hfs
interactions is just as before and we get for the inter-
action constants

1
I
j(1)

A(2) =— dvi,
C~ rg2

is easily evaluated for the electron in the state M&= J
considering the spin and convection current contribu-
tions to j in the usual way. Taking just the k(=2l+1)-
pole term we find that the magnetic field which it
represents can easily be written as the gradient of a
scalar. That is

A =e'(r ~'C(')gi)rr(r"C(")gi)rr

for electric multipole, k even;

Ao=(r ' 'C'"' divMi)rr(roC(o divMi)rr

for magnetic multipole, k odd.

(A7) H=curlA=grady,

2 (2l)!(2l+ 1)!(2l+ 2)!
q =—riog (0) (—1)' re(o), (A13)

l!l!(4l+3)!

where, if f(r) is the normalized radial wave function,
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g(r)= ~r 'f-(r)~'. Now a formula for the magnetic
interaction equivalent to (A4) is

and for a p,* electron,

2 s= —(4/35)tspg (0)ills. (A15)

A i=-'sttpg(0)Mi, . (A14)

where M is the nuclear magnetization density. Putting
in (A13) and performing one partial integration, we
have the effective evaluation of the electronic matrix
element (A7) for these special cases. Thus, for an sf
electron,

This last result is identical with the evaluation given by
Casimir and Karreman" in their original investigation
of the octupole interaction in iodine.

For the calculation of second order eBects between
doublet states, the forms (A7), (Ag) of the dipole and
quadrupole operators are used. Assuming that both
doublet states have identical radial wave functions,
the final result is just Eq. (42) with )=it=1.

"H. B. G. Casimir and G. Karreman, Physica 9, 494 (1942).
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Van Vleck and Weisskopf and Frohlich have derived a micro-
wave line shape by studying the interruption by collisions of the
motion of a classical oscillator. They assume that after the
instantaneous impact the oscillator variables are distributed ac-
cording to a Boltzmann distribution appropriate to the value of the
applied Geld at collision. In contrast to the earlier theory of
I orentz, they obtain the correct static polarization. The procedure
involves an assumption of very large velocity during collision.
This is criticized on the grounds that the duration of collision is
short compared to the resonant period and energy exchanges are of
the order of kT. We have derived a line-shape formula assuming
that the positions are unchanged after impact. Two extreme
models are studied. In one, the oscillators have a Maxwellian

distribution of velocities after impact; the second is a Brownian
motion treatment. The resulting line shape in both cases is that of
a friction-damped oscillator. For collision frequency much less than
the resonant frequency, the polarization postulated by the above
authors is reached as a result of kinematic motion between colli-
sions, and the line shapes agree. However, to obtain equal line
widths and peak absorptions, the collision frequency is twice as
large for the present theory. For collision frequency comparable to
resonant frequency a less distorted line shape results. For testing
the theories, experiments on foreign-gas broadening in the micro-
wave region at pressures of the order of an atmosphere are re-
quired. Differences between the theories are small for conditions
accessible experimentally at present.

l. INTRODUCTION

'HE theoretical determination of the shape of a
spectral line, broadened by interactions between

the radiating molecule and other systems, is an exceed-

ingly complicated problem. The general case involves a
study of the types of interaction possible, treatment of
the exchange of energy between internal degrees of
freedom and translational motions, questions of coher-
ence, of radiation, etc. In addition, for broad lines one

may encounter the characteristic complexities of many-
body problems. A clear understanding of the physical
processes involved has been gained only in certain
limiting cases. There, the consideration of simple models
has been useful in calling attention to the ingredients
which must enter into more general treatments. The
present paper deals with some models which shed light
on the processes responsible for the shapes of the

*Sponsored by the U. S. Once of Naval Research, the Army
Signal Corps, and the Air Force.

t Present address: Department of Physics, Syracuse University,
Syracuse, ¹wYork, where the writing of this paper was com-
pleted under an Air Force contract.

spectral lines in gases (chiefly rotational), in the
microwave region.

For microwave wavelengths, the energy kcoo, corre-
sponding to a spectral line of angular frequency coo, is
usually small compared to the thermal energy kT. This
implies that collision-induced transitions between states
are important. Indeed, saturation measurements indi-
cate that most collisions involve energy exchanges
between the rotational and translational degrees of
freedom. If consideration is restricted to foreign-gas
broadening (thus excluding the long-range resonance
forces), the duration of collision is short compared to the
resonant period of the line. It is then useful to introduce
for each line a quantity v-, which measures the time
between those collisions involving exchanges of energy
between translational motions and the relevant internal
states. In treatments less schematic than the ones with
which we deal, v is computed in terms of the inter-
molecular forces. This question is not discussed here; the
present work deals with, the analysis of some kinetic-
statistical aspects of the line-broadening problem. It is
of course somewhat arbitrary to split up the problem in


