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Vibration Spectra and Specific Heats of Cubic Metals.
I. Theory and Application to Sodium
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A model for monovalent metals is proposed, on the basis of which the secular equations determining the
frequencies of the normal modes of vibration are derived for body-centered and face-centered cubic metals.
In contrast to the two force constants occurring in the usual treatments based on the Born-von Karman
model, each of these equations —one for each type of lattice —contains three force constants which may
be identified with the three independent elastic constants of a cubic metal. The limitations of the model are
discussed.

The frequency spectrum of sodium, and. hence its speci6c heat C& at constant volume, are calculated. It
is found that the agreement between the observed and calculated values of C& is more satisfactory in the
entire relevant temperature range, and especially at low temperatures, than that obtained by Bauer using
the customary two force-constant model.

I. INTRODUCTION

A LTHOUGH a proper theory for calculating the
frequencies co of the normal modes of vibration

of an ionic or homovalent crystal exists and has been
applied by several authors, ' the corresponding situation
with regard to metals is not so satisfactory. This is
because, whereas in the former types of crystals the
forces on the ions (atoms) can be described in terms of
an interaction potential function between the ions
(atoms), in the latter the interaction between the ions
and the valence electrons is of decisive importance.
Hence, in general, the forces on ions in a inetal are riot
describable in terms of an interaction potential function
between the ions alone, and this makes any rigorous
treatment of the problem dificult. It is customary,
therefore, to calculate the frequencies of normal modes
of vibration for metals on the-basis of the Born-von
Karman' model. One considers the interactions to be
significant only between the nearest and the next near-
est neighbors and assumes Hooke's law of forces. The
classical equations of motion for the ions are then set up
and solved with the aid of Born's cyclic boundary con-
ditions. These equations of motion naturally contain
two Hooke's constants, usually denoted in literature
by 0, and p, which respectively correspond to nearest
neighbor and next nearest neighbor interactions. The
force constants n and y are determined from the elastic
constants by comparing expressions (in terms of a
and y) for the velocities of long elastic waves with the
corresponding expressions of the elasticity theory.
Now for cubic crystals there are three elastic constants
cii, ci2, and c44 from which n and y have to be deter-
mined. This is possible only if there is a relation be-
tween the three elastic constants. One relation between
them exists either if the crystal is elastically isotropic

*National Research Laboratories Postdoctorate Fellow.' For an excellent account see M. Born and K. Huang, Dynam-
ical Theory of Crystal Lattices (Oxford University Press, England,
1954).

s M. Born and T. von K6,rmtin, Physik. Z. 13, 29't (1912};14,
15 (1913).

e=cii —ci~—2c44 ——0, or if the entire interactions are
central when c» = c44 (Cauchy's relation). For the
alkali and nobel metals with which we shall be pri-
marily concerned in the present work, the isotropy
condition is far from satisfied; the quantity 2c44

(c»—c») ', which is unity for an elastically isotropic
crystal, is of the order 8 and 3 for the alkali and noble
metals respectively.

The Cauchy relation (c»——c44) also does not hold for
metals. This is because certain energies —like the energy
Eo of the ground state of the valence electron and the
Fermi, exchange, and correlation energies Ei of the
conduction electrons —depend on the atomic volume
alone, ' so that the forces on the displaced ions arising
from these energies cannot be regarded as due to a
central interaction potential between the ions. In addi-
tion to the forces arising from Eo and Ei, there are con-
tributions also from the exchange repulsion, van der
Waals forces, ion-ion (screened) Coulomb interaction,
etc.', to a first approximation, all these latter may be
described by a central interaction between the ions.
We denote the corresponding potential function by
W(r), where r is the distance between the ions. If we
distinguish the contributions to elastic constants from
W(r) and Es' by superscripts W and E respectively, we

may show, following Fuchs, ' that the contributions to
combinations of elastic constants corresponding to
shearing strains (no change in volume) come only
from W (and not from Es and Er). Thus

Cll —Ci2 = Cii —Cio, C44 = C44,

and
c44 = cii —ci2 '=0. (&)

The Born-von Karman model has been applied to
metals by Fine, ' Leighton, and Bauer. ' Fine calculated

' K. Fuchs, Proc. Roy. Soc. (London) A153, 622 (1935); A157,
444 (1936).

4 See, for example, N. F. Mott and H. Jones, The Theory of the
Properties of Metals artd Alloys (Oxford University Press, England,
1936), p. 148.

s P. C. Fine, Phys, Rev. 56, 355 (1939}.' R. B. Leighton, Revs. Modern Phys. 20, 165 (1948).' E. Bauer, Phys. Rev. 92, 58 (1953}.
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the frequency spectrum for tungsten which is elastica11y
isotropic so that, in this case, there are only two inde-
pendent elastic constants. On the other hand, Leighton
and Bauer, whose calculations refer to silver and sodium
respectively, essentially assume that c»~ and c»~ do
not contribute to the motion of the ions and that
c44~=c~2~, thus having only two independent elastic
constants c~~~ and c~2~=c44~ in their models. It
should be noted that even though c~2~ and c44~ arise
wholly from a central interaction, these two constants
need not necessarily be equal since the Cauchy relation
c»=c44 holds only if the entire interactions under
which the cubic crystal is in equilibrium are central.
We should mention that both these authors were aware
of the limitations of their models.

From the foregoing it is clear that for cubic metals,
which are neither isotropic nor satisfy the Cauchy
relation, one should set up equations of motion for the
ions which contain three force constants and which, for
the limiting case of infinitely long waves, reduce to the
corresponding equations of the elasticity theory. In
this paper we consider a model for a metal which enables
one to set up such equations. It is assumeds that the
forces on an ion may be regarded as arising from (a) a
central interaction W(r) between the ions which is
signi6cant between the nearest neighbors only and

(b) from certain energies E which depend on the atomic
volte only and which are due to the presence of the
free electrons and their interactions with the ions. In
order to calculate the effect of (b) on ionic vibrations
it is assumed, following the Sommerfeld model, that
in the absence of thermal motion the ionic charge it
uniformly smeared out over the entire metal. The elec-
trostatic potential y of the system is then a constant
(= happ, say). The change in y due to a given displace-
ment of the ions is calculated by the Thomas-Fermi-
Dirac method. The force on an ion is then just —e grady.
Next the classical equations of motion are set up and
solved for the body-centered and face-centered cubic
lattices. Each of the resulting secular equations in co'—
one for each type of lattice —contains three force con-

stants which are identified with the three elastic con-
stants of a cubic crystal. In each case, the secular
equation for the limiting case of in6nitely long waves

then reduces to the well-known ChristoGel equations
of the elasticity theory.

Clearly, the assumptions and the consequent limita-

tions underlying the procedure adopted here need some

In the present work the discussion will be con6ned to the
alkali and the noble metals which have body- and face-centered
cubic structures respectively. To a good approximation, one may
regard all the valence electrons to be free in both these groups of
metals.

8' If one assumes a noncentral interaction and considers nearest
and next nearest neighbour interactions only, one has 6ve force
constants in the scheme of Born and von Kkrm6, n. These can be
determined in terms of the elastic constants only if there are two
relations between the Gve force constants; thus it seems necessary
to introduce explicit assumptions about the nature of interactions
in a metal (see reference 5).

discussion. For convenience, this is deferred unti1 the
secular equations have been derived.

In Sec. III, the frequency spectrum of sodium, and
hence its specific heat C„at constant volume as a func-
tion of temperature, are calculated. It is found that the
agreement between the calculated and observed values
of C„ is more satisfactory than that obtained by Bauer'
using the customary two force-constant model.

Similar calculations for silver which has face-centered
cubic structure will be given in Part II of this work.

IL THE SECULAR EQUATION
CALCULATION OF q FOR A GIVEN DISPLACEMENT

OF THE IONS

As mentioned in the introduction, it will be.assumed
for the purposes of this calculation that the ionic charge
is smeared out over the metal. Then in the absence of
thermal motion, the ionic and the electronic charge
densities are equal and constant at every point of the
metal and the electrostatic potential y of the system
is also a constant, equal to qp, say. %hen an elastic
wave passes through a metal, the ionic charge density
and hence the electronic charge density will vary from
point to point. This will result in a change in y which
will depend now on space and time coordinates. Let
p=qp+y~(r). For small amplitudes of the elastic
wave, we may take pp&(r)«qp. One then also has the
result that the changes in y are small over regions of
linear dimensions of the order of the de Broglie wave-
length of the Fermi electrons. This condition is neces-
sary for the validity of the Thomas-Fermi method.
Hence we may calculate q ~ for a given ionic displace-
ment either by the Thomas-Fermi method (without
exchange) or by the Thomas-Fermi-Dirac method (with
exchange). For convenience, the calculations will be
erst made by the former method.

Let E denote the energy of the highest level occupied
by a conduction electron. Ke may take E to be un-
changed when the metal is disturbed by the passage of
an elastic wave since it will not change the over-all
volume of the metal. Then in the Thomas-Fermi
method the electronic number density e(r) and the
potential pp(r) are related by the equation' (choosing
the zero for y(r) such that E„=O):

e(r) = (Ss/3h') (2me) ILpp(r) $&, (2)

where
tf'= (4~tee/h') (3/+) &)&~p&. (4)

Now let u(r) denote the magnitude and direction of
the displacement of the ton at r from its normal position;

' See, for example, reference 4, pp. 48-49.

where —e and nz are the electronic charge and mass
respectively, and other symbols have their usual mean-
ing. The average density no of the electrons is obtained
from (2) by putting pp= qp in it. Then remembering
that @~&&go, we have

An(r) =e(r) —np=g'pt(r),
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the change d N(r) in the ionic number density (average
number=¹-=Is) is given by

hN=N —Ns= —Ns div u (r). (5)

Using (3) and (5) and applying Poisson's equation
we have

V (yo+ yr) = Pyt= 4—7rp= 4se[rl'y& A—lV (r)) .(6)

Since y&(r)=—0 when DN(r)=0, only the particular
integral of (6) is of interest. Hence, formally,

y(r) = 4rreh—N(r)/(7' 4s crt—'). (7)

The force on an ion at r (charge+ e) due to y(= ye+ yt)
is given by

. F(r) = —e grady= —e gradyt(r).

Let u(r) be of the form

nate system, we may take (l, n, m) to be (VS~ '
X (&1,&1, &1) for body-centered cubic (b.c.c.) lattice
which has eight nearest neighbors; similarly, for a face-
centered cubic (f.c.c.) lattice which has twelve nearest
neighbors, (l, m, e) maybetakenas )V2) '(&1, &1,0),
~V2( '(+1, 0, &1) and (K2( '(0 &1, +1). Denoting
the displacements of the central and nearest neighbor
ions from their normal positions by up and u& „re-
spectively and denoting by V the contribution to the
potential energy (due to W) of the crystal from the
terms which involve the coordinates of the ion at the
origin, we have

V= P W()r(„„&'&+u(„„—us)).

Expanding the right-hand side by Taylor's theorem,
we obtain

u(r) = eAe'&"' "'& (9) 1 dW)
V= Z ——

i Lri "' (ui —uo)
t,m„, n

1 1 d (1dW)
+s Iud .—usl'j+- ——

I
——

2 rdrEr dr)

where A is the amplitude, e the unit vector in the
direction of the displacements, k the wave-vector

(~k~ =2s./X), and ce is the angular frequency. Then
F(r) is given by

4s.e'Ne(e k)
F(r) =—k— A exp[i(k r—a&t)j. (10)

4s eri'+ k'

The eGect of exchange interaction between the elec-
trons is easily included in the above calculation by
Dirac's" modification of the Thomas-Fermi method,
since one has only to replace (2) by the equation"

n(r) = (Ss/3ks) (2me)&L(y+ sos)~+ &ops (2a)

with ro=(2me'/h')&. The average electronic number
density es is now obtained by putting y=ye ln (2a).
Writing again y = yo+ ya and remembering that yr((ys,
it may be seen that, to include the exchange sects,
one has to replace in (3) and all subsequent equations
the constant p' by g, where

(n) '=(~') ' (3s/~)'«o —'
(11)

= (ri') '—0.33ees-&.

Derivation of the Secular Equation

Next we have to calculate the force on an ion due to
the interaction potential W(r) assumed to be eRective
only between the nearest neighbor ions in a lattice. Let
the ion under consideration be situated on the lattice
point at the origin of a Cartesian coordinate system
and let the coordinates of the neighboring lattice
points be rg~„"&(la, ma, rsa). Here a is the distance be-
tween the nearest neighbors and (l, m, e) the direction
cosines of the line joining the origin and a nearest
neighbor. By making a suitable choice for the coordi-

I P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
"See P. Gombas, Bie Stctzstische Theoric des Atoms Ned ihre

Aereendglg (Springer, Berlin, 1949), p. 78, Eq. (9.5).

. X Lrtm (ulna —uo)] +0(N'), (12)

where the summation is over all the nearest neighbors
of the central ion. It should be noticed that (dW/dr)„,
is not zero in our case since W(r) is not the entire
potential which determines the equilibrium distance a.
The force on a particle at the origin due to (12) is just
—gradupV.

Combining this last result with (10) we may write
the equation of motion for the ion at the origin in the
form

M (8'/Bt') us —gradus V+ F——(0), (13)

~L ()L+tsM+ vN) k'

1+k'/(4s crt)
(14a)

and two similar equations obtained from (14a) by
~ As may be seen from symmetry considerations, one would

obtain the same equations, namely (14), if one substituted (9)
into the equation of motion for an ion whose equilibrium position
is at a lattice point not located at the origin of our coordinate
system.

where M is the mass of an ion. Similarly, one may
write down the equations of motion for other ions in
the lattice.

Now let us assume that the solution of (13) is of the
form (9) and let the direction cosines of the vectors e
and k be denoted by (X, p, , v) and (L, M, N) respec-
tively. Then substituting" (9) into (13) and making
use of (10) and (11), we get

Xp&e'= P L4a s(sins-'ka(L/+Mnz+Nss))
l,77', n

X (hl(Q+mp+tsv)+PA} j
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(LMN) (X,y, ~)

100(L)»
(100) 010(T)b

001 (T)

11O(L)
(11o) oo1(T)

1-1o(T)

111(L)'
(111) 1-10(T)

11-2(T)

pug from (14) .

body-centered face-centered
cubic cubic

(8/3) P+ (8!9)&+»
(8/3) P+ (8/9) &

(8/3)P+ (8/9) ~

(8/3) P+ (16/9) &+
(8/3) P+ (8/9) &

(8/3)P

(8/3)P+ (~6/2&) &+
(8/3) P +(8/2&) &

(8/3)P+(8/2&) ~

4P+28+tc
4P+5
4P+~

4P+(5/»~+.
4P+&
4P+k&

4P+(8/3) ~+~
4P+ ~a&

4P+9

kg in terms
of the
elastic

constants

C11

C11
c44
C44+pe

cJ$ -)4
c44+)6
c44+$4

L: Longitudinal wave.
b T: Transverse wave.

TABLE I. Expressions for pv for long elastic waves propagating
along (100), (110),and (111)directions in b.c.c. and f.c.c. crystals.

p= go(c44+-,'e)'
i)= —(9/16) e for b.c.c., (16a)
K =C11—C44

directions of propagation for both b.c.c. and f.c.c
crystals; corresponding expressions in terms of the
elastic constants are given in the last column of Table I
(e Cii C12 2C44) ~

For each type of lattice structure, we have from
Table I nine relations between the three force con-
stants P, 8, and K and the three elastic constants. How-

ever, they are not all independent of each other and, as
may be readily verified, they are identically satisfied
if we put

l~~m, X~~ p, and I ~~M, (14b)

interchanging (l, nt, n), ()t, tt, v), and (I, M, tV) as
follows:

p= '. (C44+-e)
for f.c.c.

K=cii—C44+e.
(16b)

Moreover, by substituting (16a) or (16b) in (14) and
remembering that the body-centered and face-centered
cubic lattices have eight and twelve nearest neighbors
respectively, one may verify that for the limiting case
of in6nitely long waves (k~ 0), Eqs. (14) reduce to
the ChristoGel equations of the elasticity theory. "

From (16), we also have

l ~ n, )1 ~~ v, and I.c~ le. (14c)

Here p(=noM) is the density of the metal and p, 8

and ~ are given by

pu' (1dWi pu'i d (1dW)
2M t r dr ), 2M dr r dr )

cii—cis ——(16/3)p
for b.c.c.,«4= (g/3)P+ (g/9)&

(17a)k'
K=enos(rl) '=eno'

~

—
~

Xno 1—0.33eno r . (15)
4irnte (3) and

In deriving (14), use has also been made of the fact
that in a cubic crystal corresponding to a nearest
neighbor ion at (lu, ntu, nu), there is a nearest neighbor
ion at (—lu, —ma, —na). The summation in. (14),
however, is over all the nearest neighbors.

In order that a nontrivial solution (eg0) of (14)
exist, the determinant formed from the coeScients of
P, p, v must vanish. This gives the secular equation in
oP in the form of a 3&&3 determinantal equation which
will not be written here explicitly. The secular equation
is cubic in pcs and, therefore, has three solutions (three
values of &o') for each k. The direction cosines ()1, tt, v)

of the polarization vector e of the acoustic wave of
wave-vector k and frequency cc(k) may be determined
by substituting these particular values of k and cc'(k)
in (14) and then solving the latter for )1, tt, v.

Identi6cation of the Force Constants g, 6, and ic

with the Elastic Constants

For this purpose, we shall solve Eqs. (14) for the
velocities e(=co/k) of the acoustic waves of infinitely
long wavelengths (k ~ 0). The solution of (14) is par-
ticularly simple for waves propagating along any of
the three principal directions in a cubic crystal, vi~. ,
:(100), (110), and (111),since for these three directions
of propagation the waves are either wholly longitudinal
(e~~k) or wholly transverse (el k). In Table I we give
expressions for pv' as obtained from (14) for these

cii—cis= &p+&
for f.c.c.

c44= 4p+8
(17b)

'gA. E. H. Love, Mathematical Theory of Elasticity (Dover
Publications, ¹wYork, 1944},fourth edition, p. 299."It may be verified that expressions (17) for c» —c7Q and c44
are the same as those obtained by considering changes in the
potential energy ZW(x) of a crystal due to appropriate statt'c
homogeneous strains; this provides a check on our calculations.

Thus c44 and c11—c&2 are independent of f(:, and are com-
pletely determined by the interaction potential" W(r),
a result which is in agreement with (1).

By substituting (16a) or (16b) in (14) and inserting
the observed elastic constants for any particular metal,
one may solve the latter for ois for any k. Further, if
one defines a frequency distribution function G(M)
such that G(cc)dtc denotes the number of frequencies
lying between tc and tc+dtc, one may calculate G(&c)

by solving (14) for suff'tciently large number of points
in k-space. The distribution function G(cc) for sodium,
and hence its specific heat, will be calculated in Sec. III.
We shall, however, first discuss some of the distinctive
features of Eqs. (14) and the limitations inherent in
the model on whose basis they have been derived.

Discussion

First, it will be noticed from (16) that in the present
treatment one linear combination of the elastic con-
stants —K=cii —c44 and K=cii —c44+ e for body- and
face-centered cubic lattices respectively —depends es-
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sentially only on the number of free electrons per atom
in the metal. Taking this number to be 1 per atom, the
calculated values of x for Na (b.c.c.) and Ag (f.c.c.)
are 0.3X10" and 1.7X10" dynes/cm' respectively as
compared with the corresponding experimental values
0.39X10n and 2X10" dynes/cm' The agreement be-
tween the two values for other monovalent metals is
not so satisfactory, the worst examples being Li and
Cu for which x«i is 0.99X10"and 3.5X10"dynes/cm'
as compared with the experimental values 0.23&(10"
and 0.2X10" dynes/cm' respectively. Of course, in
view of the crudeness of the model adopted here, and,
in particular, since the use of the Sommerfeld model
for a metal implies that the effect of the energy Eo
(Es depends on the atomic volume only) of the ground
state of the valence electron on the ionic motion, and
hence on the bulk modulus -', (c»+2c») of the crystal,
is negligible, one can hardly expect more than a quali-
tative agreement between the experimental and calcu-
lated values of x. Indeed, if in the expression (15) for
K the second term, which arises from the exchange
interaction between the electrons, is neglected,
becomes

= (h'/4 m) (~/3)'Xtto'", (18)

the right-hand side of (18) may be immediately recog-
nized as the bulk modulus E of the electron gas if one
remembers that IC = —V(Bp/BV) and that the pressure

p of an electron gas enclosed in a volume V is given by
the expression" (rt=rtsV)

p = (3h'/20+m) (sr/3) &(rt/ V) 't'. (19)

Secondly, since the metal is treated here partly as a
continuous system, the secular equation (14), and hence
the frequencies ro obtained from it, will generally not be
periodic functions of k. We have, therefore, to restrict
k values in some suitable way so that the total number
of normal modes of vibration exactly equal the number
of degrees of freedom, vis. , three per atom. Now, had
the periodicity of the ionic lattice not been ignored,
(14) and cd would have been distinct only for k values
lying inside the first Brillouin zone in k-space, and the
solutions corresponding to a k lying outside this zone
would have given no new normal modes of vibration.
Since the first Brillouin zone has just one k-point per
atom, one obtains the correct total number of normal
modes of vibration by restricting the k values to the
first Brillouin zone."Therefore, it would seem reason-

'5 See, for example, reference 11, p. 6.
It should be mentioned here that recently Jules de t.unay

D. Chem. Phys. 29, 1975 (1953}ghas made an attempt to make
a three force-constant model for a metal. Lunay superimposes the
free electron gas on the Born-K6, rm6n model, but appears to
assume that the ionic lattice is in equilibrium under the central
forces alone. He thus obtains the result that the deviation c~2 —c44
from Cauchy's relation is just equal to the bulk modulus of the
free electron gas. No calculations of frequency spectrum have been
made on this model. The author is indebted to Dr. E. Bauer for
drawing his-attention to this paper.".-For a periodic lattice, these results are obtained by the use of
Born's cyclic boundary 'conditions. It should be mentioned that
in general there exist several equivalent portions of reciprocal

able to restrict the k values to the first Brillouin zone
while calculating the frequency spectrum from (14)
also. .It may be mentioned that. since the forces arising
from the energies E do not contribute to the motion
of the +holly transverse waves, the frequencies corre-
sponding to these waves will be periodic functions of
k Csee Eqs. (28)j.

Lastly, the application of the Thomas-Fermi method
to calculate changes in qr due to time depe-rtdertt ionic
displacements contains the implicit assumption that
the electrons follow the motion of the ions "adiabati-
cally" in the sense of the Thomas-Fermi method—
namely, that the electrons occupy the lowest energy
state of the instantaneous lattice potential. This seems
to be reasonable for low frequencies. For higher fre-
quencies, the validity of this assumption may be
doubted. However, it does not appear easy to make a
decision on this point from a comparison of the theo-
retical and observed specific heats since, first, the high
frequency end of the spectrum a6ects the specific heats
at comparatively high temperatures only and that not
very sensitively, and secondly, the accuracy of the
theoretical values is limited by the approximations
involved in the calculation of frequency spectrum and
by the accuracy of the available observed elastic con-
stants which have to be inserted in the secular equa-
tion (14).

Although the foregoing discussion makes it clear
that a more refined treatment than given here of the
problem of determining the frequencies of the normal
modes of vibration of a metal would be desirable, the
present approach is likely to be an improvement over
the customary two force-constant model. This is be-
cause, unlike the latter, it is able to incorporate all the
three independent elastic constants of a cubic metal
in the secular equation. The uncertainties mainly arise
at the high frequency end of the'-spectrum, and these
do not affect the results on specific heats very sensi-
tively. Thus one may expect that, provided one uses
the actually observed elastic constants in the secular
equation (14), the calculations of frequency spectrum,
and hence of specific heats, based on (14) would be
an improvement over those based on a two force-
constant model. This, of course, would be all the more
so for the low-frequency end of the spectrum and hence
for the specific heats at low temperatures.

II. FREQUENCY SPECTRUM AND SPECIFIC
HEAT OF SODIUM

In this section, the frequency spectrum of sodium,
and hence its specific heat C, at constant volume, will
be calculated from the solutions of the secular equa-
tion (14).
space to which k vectors may be con6ned. Of these, the Brillouin
zones have the maximum possible geometrical symmetry con-
sistent with that of the lattice; We choose one-of these zones
(namely, the first for obvious reasons) because the approximate
method of Houston, by which the frequency spectrum is calcu-
lated in Sec. III, is the more reliable the more symmetrical is
the k-space to which. k vectors are con6ned.
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Houston's Method of Calculating Frequency
Spectrum

For cubic crystals, Houston's" method of calculating
the frequency spectrum is, by far, the most convenient
one. There exist for a cubic crystal certain directions
(8„,$„) in k-space along which the secular equation in

pop can be solved analytically. Corresponding to each k
there are, of course, three frequencies corresponding to
the three branches. In the following, these will be dis-
tinguished by the subscript s (i= 1, 2, 3). The number
g(ko)dkodQ of normal modes (frequencies) which lie
between ko and ko+dko and whose wave vectors k lie in
a solid angle dQ around k(8,&) may be written as

Making use of (20) to (23), one obtains for G(ko) the
expression"

V 4v
-

f'dkq
G(ko) = —Q 10k'( —

~

(2or)s 35 ' &dko1;, g

f'dkq f'dk~
+16k'( —

[ +9k'] —
[ . (24)

kkfko) & s Kkfkol

In general, the right-hand side of (24) has to be
multiplied by a normalization factor so that one ob-
tains the correct number of normal modes, ~is. ,

g (ko,8,y)dkokiQ= p;g, (ko,8,y)dkodQ
G;(ko)kfko=SpV (s= 1, 2 and 3), (25)

Q,k' -dkodQ,

(2pr)s dko;(8, fo)
(20)

G((o)dko= Q,G;( )Ckoko =—Q;Coo g;(po, 8,&)dQ
J

'=4v'kfko Qkkrk, o. (22)

This method naturally gives the better approxima-
tion to G(ko) the more numerous are the directions
(8,kt„) along which the secular equation is solved.
In practice, one solves the secular equation along the
three principal directions of a cubic crystal, vis. , (100),
(110), and (111) Lthe corresponding direction cosines
being (100), 2 &(110), and 3 &(111)$; the quantities
referring to these three directions will be distinguished

by subscripts A, 8, and C respectively. Then one has
to retain only the first three terms in the expansion
(21). Apart from normalization factors, the first three
appropriate Kubic Harmonics, expressed in Cartesian
coordinates, are (x'+y'+s'= 1)

Ep 1, Ei= (x'+y4+——s' —$),
'

Es=x yss'+ (1/22) Ei—(1/105).
(23)

"W. V. Houston, Revs. Modern Phys. 20, 161 (1948). An
account of various methods of calculating the frequency spectrum
may be found in reference 1, pp. 70—84.

'SKubic Harmonics were introduced by F. C. Von der Lage
and H. A. Bethe, Phys. Rev. 71, 612 (1947).

where t/' is the volume of the crystal under considera-
tion. One now expands g( k,o8$) in terms of those
Kubic Harmonics" E„(8,&) which are invariant under
the operations of the cubic symmetry group; thus

g;(oo,8,kti)=p„ks;„E„(8,y), (Eo——1). (21)

The coe%cients ki; in (21) may be determined from
the solutions of the secular equation along the various
directions (8„,$„) in k-space. The total number of fre-
quenCieS G(pp)doo lying betWeen ko and ko+dko iS then
obtained from (21) by integrating it over all solid
angles and summing over the three branches. Re-
membering that the various E are orthogonal to each
other, we have

where Ã0 is the number of atoms per unit volume. If
we denote the maximum value of k along the three
directions A, 8, and C by kz(nk), kii(m) and ko(m)
respectively, the normalization factor F is determined
by the equation

4x
V —

s L10kx'(m)+16ka'(m)+9kcs (hark) j
(2or)s 35

=EpV. (26)

As already mentioned in Sec. II, the k vectors are to
be restricted to the 6rst Brillouin zone. For a body-
centered cubic lattice —this is the case we are interested
in here since sodium has body-centered cubic structure-
the first Brillouin zone is a dodecahedron bounded by
(110) planes. The distances of these planes from the
origin of k-space are given in reference 4, p. 156, and
we may determine k&(res), k&(m), and ko(m) by finding
the points of intersection of the corresponding k vectors
with (110) plane. One finds"

kg(fis) =%3(s/u), ks(tn) = (Q-,') (v/a),
ko(m) =-,s (s/a). (27)

From (26) and (27), one obtains for the normalization
factor F:

F=0.778.

Before we use (24) to calculate the frequency spec-
trum of sodium, we should mention that the frequency
spectrum obtained by Houston's method out1ined
above contains, in general, a certain number of singu-
larities; the area under them, however, is finite. These
singularities are peculiar to Houston's method and
arise from the fact that the frequency spectrum is
approximated from the solutions of the secular equation
along three directions only. Van Hove" has investigated

» This is essentially Houston's expression (11) after allowing
for a misprint in his equation preceding (11),where the coefficient
of f& (q) should read —2/(4r)& instead of —10/(36s )&.

~ Note that in reference 4, a is the lattice constant while here
a is distance between the nearest neighbors; moreover, fw|' as de-
6ned here is 221- times the k used in Chapter V of reference 4.

' L. Van Hove, Phys. Rev. S9, 1189 {1953).
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the nature of the singularities of G(oo) in one, two, and
three dimension, He 6nds that in three dimensions
G(to) can only have finite discontinuities. Nakamura, "
on the basis of an analysis of two dimensions, concludes
that Houston's method reproduces fairly accurately
the shape of the frequency spectrum up to the erst
maximum; beyond this, the actual G(ot) is flatter than
that obtained by the Houston method. Since the nu-
merical work involved in systematically improving
Houston's approximation is rather large and since the
slight flattening of the distribution function beyond
the first maximum is likely to acct, if at all, the calcu-
lated specific heats in the temperature region T~O
(effective Debye temperature) only, we shall use here
Houston's method. The effect of the flattening of G(ro)
will be discussed qualitatively at the end of this section.
For the purposes of numerical integrations, however,
the singularities will be replaced by finite peaks of
equal area.

Frequency Spectrum

The first step towards obtaining the distribution
function G(oi) is to solve equations (14) for o~' along
the three directions A, 8, and C. The solution is ele-

mentary; making use of (16a), we find

Direction A

(X,p, v) = (100):

Direction C

(X,p, v) = (1,1,1):

~kaq (kaq
'to'= —3 (C44—s)»n'j —j+3(3c44+s)»no

j

—
j

Cp I 2& &6).
(cii—c44)k'

+—,(28f)
pj 1+k'/(4s. er&)j

(X,&i, v) = (1,-1,0) or (1,1,-2):
1 (kaq

to'= —3(c44+-', s) sin'j —
j

a'p E 2 )
(kai

+3(3c44—-', s) sin'j —
j . (28g)

L. 6)
It will be seen from (28) that, just as in the case of

infinitely long waves (see Sec. II), the elastic waves of
any wave number k propagating along one of these
three directions are either wholly longitudinal or
wholly transverse. In other directions, there is a slight
mixing up of the longitudinal and transverse vibrations.
Hence the frequency distribution obtained from (28a),
(28c), and (28f) will be predominantly due to the
longitudinal waves, while that obtained from the re-
maining equations in (28) will be chieQy due to the
transverse waves. Ke denote these two distribution
functions by G&(oi} and G&(a&) respectively. Obviously

12 ( ka ) (cii—c44)k'
to'= —c44 sin'j —j+-, (28a)

a'p & 2&% pL1+k'/(4~crt) $

()I,&s, v) = (010) or (001):

G(to) =Gi(~)+ G, (o~} and

1
Gi(co)dM= —,Gi(oi)doo=XoU.

2~

12 (ka )
QP = c44 sill

a'p &2%3&

Direction 8

(X,p, v) = (1,1,0): c44=0.580X 10" c~~—c44=0.390X]0",

s= —1.02X10" all of them in dynes/cms

o =&o= 2.36X10"/cc, a= (3%3/4eo) &,

p= 0.97 g/cc,

i ( ka ) (cii—c44)ks
oP= —(6c44—3e) sin'j — j+- (28c)

S~p (Q6) pL1+k'/(4s. er))1
(29)

()~,p, v) = (1,—1,0):

The frequency distribution functions G&(&o}, G, (to}
and G(o~) are now easily obtained with the help of (24),

(28b) (27), and (28). The elastic constants for sodium used
in this calculation were the same as employed by Bauer. '
These, as well as other constants needed in the calcula-
tion, are listed below:

(ka iro'= —(6C44+3s) sin'j
a'p (+6&

1 M (c»—
C44)

(28d) (4rrer&) '= — =0.015Xa' j see Eq. (16)J.
4~e p ceo

(X,p, , v) = (001):

6 (ka)
0P=—c44 sin

(+6&
(28e)

The distribution functions Gi(oi), Gi(oi), and G (&o) are
plotted against co in Fig. 1.

SpeciQc Heat of Sodium.

From the distribution function G(to), the specific
~T. Nakamura, Progr. Theoret. Phys. Qapan) 5, 213 (1950). heat C, at constant volume may be obtained in the
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while those below this temperature are due to Pickard
and Simon '4

A more usual way to study the C,—T behavior is to
insert C, at a given T in the Debye formula for specific
heats, calculate the characteristic temperature 0 and
plot 0 against T. If G(co) is strictly proportional to tos,

0 is independent of temperature; otherwise 0 depends
on T. In Fig. 3, we give 0~ —T curves for (g) 0~ derived
from the C„calculated in the present paper, (b) 0 de-
rived from the observed specific heats. As mentioned
in the introduction, Bauer, ' using a two force-constant
model, has calculated the specific heat of sodium. For
comparison, we give in Fig. 3, curve c, 0 s obtained by
him on Houston's approximation and finally curves
(d) and (e) which give 0's obtained by Bauer by
flattening in two different ways" the frequency dis-
tribution function G(to) calculated by Houston's
method. We should .mention that for temperatures
above about120. 'K, the theoretical 0-values [pre-
sented in the dotted part of the curve (a)7 are to be
regarded as giving merely the general shape of the
curve since, at these temperatures, a small error in C,
causes a large error in the corresponding 0 value.

It will be seen from Fig. 3 that the agreement be-

7

40

20

0
0

t I t I i I

6 8 lO f 2 t25tt fO
l

2
FREQUENCY so lN UNITS OF {a~p)

(b)

FrG. 1. The frequency spectrum of sodium. The distribution
functions G&(co) and G&(rv), predominantly due to longitudinal
and transverse waves respectively, are given in Fig. 1(a), while
G(ur) =G~(co)+G~(cu) is given in Fig. 1(b). (For convenience, the
singularities have been replaced by finite peaks of equal area. )
The normalized distribution functions may be obtained by
multiplying the ordinates in Fig. 1 by 3 9X10 s(esp)VloV.

~ F. E. Simon and W. Zeidler, Z. physik. Chem. 8123, 383
(1926).

usual manner by numerical integration. The results of
the entire numerical work of the present paper are
estimated to be correct to within about 3 percent. The
calculated and experimental specific heats are plotted
against the temperature T in Fig. 2. The experimental
values of C„above 20'K are due to Simon and Zeidler, "

C9
Wa $—

o
O 2—

I

i —J
x'
X

/
0. I I I I t I I I I I I I

0 40 80 l 20 l60 200 240
TEMPERATURE 'K

FIG. 2. The calculated and observed lattice specific heats C, of
sodium, as a function of temperature. The experimental points
are shown by X. (The electronic specific heat, which was sub-
tracted at low temperatures from the observed C„ is assumed to
be given by the formula to be found in any textbook on the
subject. )

24 G. L. Pickard and F. E. Simon, Proc. Phys. Soc. (T.ondon)
A61, 1 (1948)."See reference 7', p. 63.
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Fzo. 3. The effective Debye temperature 0 for sodium, as a function of temperature. Curve (a): present calculations; curve (b):
experimental. Curves (c), (d) and (e) reproduce the theoretical results of Bauer; the explanation of these curves is given in the text.

tween the calculated and observed values of 0"
I curves

(a) and (b)$ is satisfactory" below about 30'K; the
discrepancy below about 4'K is presumably due to the
uncertainty in the contribution of the electronic specific
heat. This specific heat, according to recent investiga-
tions by Buckingham, "may not be proportional to T
as is usually assumed. Above 30'K, the theoretical
values are about 15 percent higher than the experi-
mental values. However, it will be noticed that the
curve. (a) lies everywhere much closer to the experi-
mental curve than the curve (c) which was obtained
by Bauer' using Houston's method, i.e., by the same
method of calculating the frequency spectrum as em-

ployed here. The discrepancy at higher temperatures
between the 0-values calculated here and the experi-
mental values may be due to one or more of the follow-

ing causes:
(1) The actual frequency distribution beyond the

first maximum is Batter than that obtained on Houston's
approximation. This will lower the theoretical values
at higher temperatures. For example, the curves (d)
and (e) of Bauer lie lower than his curve (c).

(2) The assumptions on which the secular equation
(14) is derived make the high frequency end of the
spectrum somewhat uncertain (see discussion at the
end of Sec. II).

's We should mention that although both curves (b) and (a)
show a minimum at about 7'K, the minimum in the experimental
curve is deeper than that in the theoretical curve; this deep
minimum in the former is due to a slight hump at about 7'K in
the experimental C,—T curve of reference 24 and does not appear
to have been confirmed by the recent work of Hill, Smith, and
Parkinson (unpublished); see M. J. Buckingham and M. R.
Schafroth, Proc. Phys. Soc. (London) A67, 828 (1954), footnote
on p. 829. The C,—T curve obtained from the present calcula-
tions has no hump."M. J. Buckingham, Nature 168, 281 (1951); see also the
reference given in the previous footnote.

(3) Temperature variation of the elastic constants
which is neglected in the present calculation. (The
values used in the calculation refer to O'K).

(4) Finally, it will be seen from Fig. 2 that the
observed C„rises above the classical value 6 cal per
degree per g atom at about 200'K, while the C„calcu-
lated from the frequency spectrum of normal modes of
vibration can never rise above this value. This implies
that part of the contribution to the experimental specific
heat at this temperature, and therefore possibly at
lower temperatures too, comes from sources other than
elastic vibrations, e.g. , from anharmonicity. If this
extraneous specific heat is allowed for, the experimental
points in Fig. 3 would tend to lie, at least above about
100'K, a little higher than at present.

Conclusion

From the foregoing discussion we may conclude
that, on the whole, the agreement between the experi-
mental values of C„and those calculated here is satis-
factory. In particular, the close agreement between the
two sets of values below about 30'K indicates the
necessity of using, as has been done in the present
paper, some three force-constant model for a metal like
sodium which is neither elastically isotropic nor satisfies
the Cauchy relation c»= c44.
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