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Ground State of Impurity Atoms in Semiconductors Having Anisotropic Energy Surfaces*
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RCA Laboratories, David Same+ Research Center, Princeton, Pew Jersey

(Received September 22, 1954)

The nature of the ground state of a substitutional impurity atom in a crystal having an anisotropic energy-
band structure is re-examined. A variational calculation has been made for the case of a band whose energy
contours consist of several, symmetrically-located ellipsoids, Unlike the previous scalar, hydrogenic impurity
model, this calculation at the outset uses the experimentally determined effective-mass-tensor components.
Results for the impurity binding energy in germanium and silicon are on the order of thirty percent lower
than those obtained directly from activation-slope measurements. Further, theoretical agreement with the
experimentally determined critical impurity density for vanishing binding energy in germanium is much
improved over the older model, though still not perfect.

' "Thas been customary to describe the ground state of
~ - a Group III or Group V impurity atom, substitu-
tionally introduced into the diamond-type lattice
(germanium or silicon) in terms of a hydrogen-like
model' in which the electron has a scalar eGective-mass.
However the recent cyclotron resonance experiments'
have revealed that electrons at the bottom of the lowest
conduction band in both germanium and silicon have
highly anisotropic eGective-mass tensors. Further, for
both crystals the Z vs k map for the lowest conduction
band exhibits several identical, symmetrically located
energy valleys, the number and their axial locations
being indicated in the first two columns of Table I. The
measured eGective-mass values corresponding to prin™
cipal axes of the constant-energy ellipsoids are given in
the third and fourth columns. It is evident that a re-
consideration of the theoretical problem is required.

A formalism suKciently powerful, in principle, to
handle the impurity problem in the presence of the
above complications has recently been published by
Koster and Slater. ' In this formalism a set of simultan-
eous diGerence equations is obtained relating Fourier-
expansion coefficients of the Bloch-wave energy E(k)
to Wannier-function-expansion coefficients of the im-

purity wave function. In the case of a single minimum

kp in the E vs k map, passage from the difference
equations to the standard eGective-mass Schrodinger

*This work was supported by the Signal Corps of the U. S,
Army.' Wartime contributions to this problem are reviewed in H. C.
Torrey and C. A. Witmer's Crystal RectvJters (McGraw-Hill Book
Company, Inc. , New York, 1948).More recent work is reviewed by
G. W. Castellan and F.Seitz in Semjconductjng itlateriats (Proceed-
ings of the Reading Conference) (Academic Press, New York,
1952). In the hydrogen-like model for the impurity, the ground
state has the radius as=(em/me)ae and the binding energy
Es = (me/esm)Esss. Here e is the dielectric constant of the host
crystal, m the free electron mass, m* the effective mass of the
lowest-conduction-band electrons for Group V impurities (or of
topmost-valence-band holes for Group III impurities) ao is the
Bohr radius, av=0.53 A, and Zsss=e'/2ae, e being the electronic
charge.

~Lax, Zeiger, Dexter, and Rosenblum, Phys. Rev. 93, 1428
(1954). Also B.Lax, paper read at the Amsterdam Conference on
Semiconductors, June 1954, Physica (to be published).

s G. F. Easter and J. C. Slater, Phys. Rev. 95, 1167 (1954),
particularly Eqs. (8)& (3), (6), and (12).
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FIG. 2. "Pancake" wave-function parameters vs
C=mg/m&(C &1).

4 In superposing these individual wave functions account must
be taken of their nonorthogonality —they are coupled together
by the Coulomb potential. A study of this coupling has been made
by J.Luttinger. and W. Kohn. For clarification of this aspect of the
problem I am indebted to J. Luttinger (private communication).

equation is achieved via a Taylor expansion of E(k)
about ks and some other simplifying assumptions.
Where the E vs k map exhibits several equal minima,
in a first approximation one may follow the same
procedure and Taylor-expand E(k) about one minimum,

thereby obtaining the eGective-mass Schrodinger equa-
tion and its solution for that particular energy valley,
The correct impurity wave function is then a super-
position4 of the individual wave functions for each

energy valley. Because the latter functions are "building
blocks" for the correct wave function it was felt worth-
while to study them and also thereby obtain a first
approximation to the binding energy of the ground
state using the experimental mass values.

The eGective-mass Schrodinger equation for one

energy valley, with the reduced Coulomb potential
e'/er, may —be written, after a change to dimensionless

units, as

8 1 8 1
+ +— +- 4=N,

Bx' By' C Bs' r
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TAB&E I. Experimental and theoretical results for conduction-band electrons and donor impurities in germanium and silicon.

Ge
Si

No. of Min.

8(or 4)'
6

Axial
location

(1,1,1)
(1,0,0)

mi/ma

1.4
0.99

mg/ma

0.083
0.19

B(exp)b
ev

As:0,0127
P: 0.043

B(calc)
ev

0.0089
0.0285

Rt
A

64.6
24.7

Rf
A

23.9
13.5

0.24
0.46

+I
A
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a Cyclotron-resonance data reported by B.Lax at the Amsterdam Conference on Semiconductors, June, 1954, Physica (to be published).
Activation-energy data reported by J. A. Burton at the Amsterdam Conference on Semiconductors, June, 1954, Physica (to be published).' whether there are 2M or M energy valleys depends on whether the minima are located in the interior of the first Brillouin zone or on boundary faces

of the zone.

(2)

Minimization of the energy integral I=f/*Her
[where H is given by (1)j with respect to 8 and D
results in the following set of equations, valid for the
case C&1, involving an auxiliary variable I:

C =—,
' (u'+1) —(u'+1),I—tan 'I (3)

u —tan 'I D
D=-',C I3=

u' (u'+1) &

D 1D'
I= tan 'u ——-'8' ————

Q 3C

(4)-(5)

(6)

By first plotting C, D, 8, and —$ against u, one then
obtains the desired plots of D, 8, and —$ as functions
of C, shown for the range 1&C&104 in Fig. 1. For the
case C&1, which is not at present of experimental
interest, a set of equations somewhat like the set (3)-(6)
is obtained, with tan ' replaced by tanh '.

with C=mi/mi and r= (z'+y'+s')&. The coordinate
axes are chosen to coincide with principal axes of the
constant-energy ellipsoids for the chosen energy valley.
The units of length and energy are, respectively,
ai=ar/2 and E,=4Er, ' with m*=mi

For C+1, (1) is not separable and in consequence a
variational method has been employed to estimate the
binding energy $ of the ground state. The exact hydro-
genic ground-state wave function, fia ii ——(Se.) &

)&exp[—(-,'x'+-', -y'+-,'s')&j, suggests a simple trial wave
function for the general case, CQ 1, which one would not
only expect to represent the true solution quite well, but
which also proves quite tractable in calculations, namely
the normalized function

With C)1, the wavefunction (2) is a "pancake"
function. Plausible measures of the transverse and
longitudinal spreads of this "pancake" function are,
respectively, R& a——&/8 and Ri a,/D. ——

The experimental values for the binding energy E
and the calculated values of E= (—$)Ei, Ri, and Ri are
presented, for germanium and silicon, in Table I. Also
included are the scalar effective-mass ratios me/m of
the "old" theory, as determined from E(exp), and the
corresponding ground-state radius ug.

For electrons in the lowest conduction band in silicon
(e=12), C=5.2, a,=16.7 A, E,=0.0713 ev and from
Fig. 1, D=1.24, 8=0.675, and —)=0.40. E(calc) is 34
percent lower than E(exp) corresponding to phosphorus
impurity.

For electrons in the lowest conduction band in ger-
manium (e=16), C= 16.9, a~= 51 A, Ei=0.0175 ev and
from Fig. 1, D=2.13, 8=0.79, and —(=0.508. E(calc)
is 30 percent lower than E(exp) corresponding to
arsenic impurity.

As pointed out above, the impurity ground state is a
superposition of the variationally-determined "pan-
cake" functions, each with the spatial orientation deter-
mined by the constant-energy ellipsoids for the par-
ticular energy valley. The resultant ground state is a
highly scalloped wave-function whose spatial extent,
for purposes of discussion of the "overlapping impuri-
ties" problem may be taken as R&. "Cubic" packing of
impurities would correspond to a density of (2R&)

—'
cm', or 4.6&&10i7 cm s for germanium (Table I). This is
much closer to the published data of Debye and Conwell~

which indicates a vanishing impurity ionization-energy
at a donor concentration of 1.6&10'~ cm ', than the
result predicted by the "old" scalar model. The "cubic"
packing density in the latter model is (2ar) ' cm ', or
2.8X10is cm ' (Table I).

s P. P. Debye and E. M. Conwell, Phys. Rev. 93, 70& (1954),
Flg. 12.


