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Theory of the Faraday and Kerr Effects in Ferromagnetics*
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Both the Faraday and (magneto-optic, polar) Kerr effects in ferromagnetics are treated on the basis oi
the band theory of metals. The spin-orbit interaction gives the electron wave functions such left-right
asymmetry that the "magnetic" electrons, under the action of a plane polarized light wave, produce an
average current perpendicular to the plane of polarization. The polarizability and conductivity tensors are
evaluated. The model is capable of describing the rotation of the plane of polarization of the light and the
elliptical polarization resulting from transmission or reQection on the ferromagnetic medium. Order of
magnitude estimates of the tensor components, based on plausible assumptions on the nature of the elec-
tronic wave functions and the energy bands in ferromagnetics, give values that agree reasonably well with
experimental results. The temperature and frequency dependence of these effects as given by the formulas
is also in agreement with experiment.

under the action of an external magnetic 6eld, with the
assumption that in ferromagnetics there is an effective
magnetic 6eld active of considerably higher order of
magnitude than that of the external Geld. In fact,
Voigt found that the effective Geld necessary to produce
the observed effects is of the order of 10'-107 oersteds,
i.e., of the order of magnitude of the so-called Weiss
field, which was postulated to account for the existence
of the ferromagnetic properties of matter.

It is impossible to explain the origin of such a strong
magnetic field. The effective magnetic 6eld for a charge
inside a magnetized medium is, according to Wannier, '
equal to H+2s-(1+p)M, where p is a parameter de-
pending on the motion of the electron, varying between
0 and 1. The nature of the Weiss 6eld, responsible for
ferromagnetism, was explained by Heisenberg as a
result of exchange interactions among the electrons.
Although such an interaction energy can be thought of
as an equivalent effective magnetic field as far as the
alignment of the elementary magnets is concerned, it
cannot aGect the motion. of the electrons as an equiva-
lent magnetic 6eld. It is the motion of the charges that
is of importance here, since this motion gives rise to
the electric current and thus aGects the optical proper-
ties of the specimen.

The answer to this problem was provided by Hulme, '
who introduced into the picture the spin-orbit inter-
action. This is the energy of interaction of the mag-
netic moment of an electron, p, with the magnetic field
it "sees" as it moves through the electric field, —&V,
inside the medium with momentum, y, and it has the
form, @XV'V p. We see immediately that such an
interaction provides a relation between the motion
(p) and the magnetic moment (y) of the electron, and
thus it is plausible that it may be responsible for the
connection between the optical and ferromagnetic prop-
erties that the Faraday and Kerr eGects indicate. In-
deed, the spin-orbit interaction can, in a certain
approximation, be thought of as an eGective magnetic

1. INTRODUCTION
' 'T was observed in the last century that the trans-
' ~ mitted and reQected beams, into which a plane
polarized beam of light splits upon incidence on a ferro-
magnetic body magnetized in a direction parallel to
the beam, become elliptically polarized with their
major axes rotated with respect to the plane of polariza-
tion of the incident beam. This phenomenon, when it
refers to the transmitted beam, is designated as the
Faraday effect; it is known as the (magneto-optic,
polar) Kerr effect when it refers to the reflected beam.
Experiments have shown that these effects are all pro-
portional to the net magnetization of -the sample and
not to the external magnetic Geld, as is the case with
the nonferromagnetic bodies. The difference between
ferromagnetic and nonferromagnetic materials extends
to the order of magnitude of the effects. For example,
in quartz the Faraday rotation is of the order of 2' per
centimeter in an external magnetic 6eld of the order of
10' gauss, whereas for iron it is of the order of 380 000'
per centimeter under the same conditions. It has been
established that these effects are connected with the
ferromagnetic properties of the specimen, since for
temperatures higher than the Curie temperature of the
material these effects disappear along with the ferro-
magnetic properties.

Macroscopically all these effects can be described,
as we shall see below, by assigning to the medium a
"refractive"-tensor which takes the place of the ordi-
nary complex index of refraction, or, equivalently, by
two different complex indices of refraction for light of
right- and left-handed circular polarization.

Early attempts to explain these phenomena on a
microscopic theory of matter' consisted .in using the
Becquerel formula for the di8erence of the indices qf
refraction for right- and left-circularly polarized light
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6eld, of vector potential ~@XV'V, on the motion of
the electrons. This also indicates why the spin-orbit
interaction, although present in all matter, is operative
in this manner only in ferromagnetics. In nonferro-
magnetics the electrons are in pairs with opposite y,
and thus half of the electrons 6nd themselves in one
magnetic 6eld and the other half in an opposite field,
the net result being no effect at all.

Hulme calculated the two indices of refraction, using
the Heisenberg model of a ferromagnetic and the
Kramers-Heisenberg dispersion formula, which gives
the index of refraction in terms of the energy eigen-
values and the matrix elements of the appropriate elec-
tric dipole moment operator with respect to the
eigenfunctions of the system. He accounted for the
difference between the indices of refraction of the right-
and left-circularly polarized beams by considering the
splitting of the energy eigenvalues of the system due
to the spin-orbit interaction and the fact that now
states with different energy differences are combined
under the two appropriate dipole moment operators.
He neglected, however, the effect of the spin-orbit
interaction on the wave functions. Kittel' showed, by
an order of magnitude argument on a simple atomic
model, that this change of the wave functions can give
rise, on the basis again of the Kramers-Heisenberg
dispersion formula, to a difference of the two indices of
refraction of the desired order of magnitude. This is
important, since several experiments have shown that
the orbital angular momentum in ferromagnetic ma-
terials is quenched and thus there is no shifting of the
energy eigenvalues resulting from spin-orbit interac-
tion. Also, on account of the adopted model, Hulme
found only the real indices of refraction, thus neglecting
absorption. However, consideration of absorption is
essential in discussing all the effects under study here,
as can be seen from Eqs. (38), (39), (40), and (41).
In fact, if, e.g., we assume the extinction coeKcient
for iron equal to zero, we can see that the Faraday rota-
tion changes sign. Similarly, the Faraday elliptical
polarization and the Kerr rotation vanish unless there
is a diGerence between the coefficients of extinction of
right- and left-circularly polarized light.

In order to describe both dispersion and absorption
in a direct manner, the band theory of metals is used,
on the basis of which the phenomenon of ferromag-
netism has been discussed by Slater, ' Stoner, ' and
others. ~ The main point here is that the exchange forces
electively displace the energy bands of electrons with
spin "up" with respect to those of electrons with spin
"down, " and thus in equilibrium there are more elec-
trons with one spin than with the opposite spin.

4 C. Kittel, Phys Rev. 83, 20. 8 (A) (1951)i also (private corn
munication).' J. C. Sister, Phys. Rev. 49, 537, 931 (1936); 52, 198 (1937);
see also J. C. Slater, Solid State and Molecular Theory Group,
Technical Report No. 6 (unpublished).

'E. C. Stoner, Proc. Roy. Soc. (London) A165, 372 (1938);
A169, 339 (1939).' See several articles in Revs. Modern Phys. 25, No. 1 (1953).

This is the distribution of electrons among the possible
Bloch states in a single ferromagnetic domain. It should
be noted that the actual ferromagnetic samples consist
of many domains with their net spins oriented in differ-
ent directions and that, in addition, the samples are in
general polycrystalline. This structure of the specimen
has been taken into account in the calculations below.

Since we are interested in computing only the co-
herent radiation scattered by the system, which alone
determines the refraction and extinction of the incident
electromagnetic wave, the problem can be treated on
the basis of the semiclassical theory of radiation. Ac-
cording to this theory, the current induced in the system
by the incident radiation is considered as giving rise to
the coherent scattered radiation according to the laws
of classical electrodynamics. Thus, the main task is to
calculate the current density induced in the system
by an electromagnetic wave of certain frequency and,
hence to find the conductivity and polarizability tensors
of the system under consideration.

The calculation of the induced current had presented
some difhculties which have been resolved by Wilson. '
He showed that if all frequencies are kept in the ex-
pression for the induced current, both the polarization
and conduction currents can be obtained directly, and
there are no infinities to be explained away. The calcu-
lations below are carried out in a manner analogous to
that of Wilson.

In the fo1.lowing the 6rst-order effect of the spin-
orbit interaction on the optical properties of ferro-
magnetics is examined on the basis of the band theory
of metals, and it is shown that such an effect can ac-
count for the order of magnitude, dispersion, and tem-
perature dependence of the Faraday and (magneto-
optic, polar) Kerr phenomena in ferromagnetics.

2. CALCULATION OF THE TENSORS

The first step is to take as a system a single crystal
of a ferromagnetic substance magnetized spontaneously
in a given direction, i.e., to consider a single ferro-
magnetic domain. It is assumed that the lattice vibra-
tions are of negligible importance in the optical phe-
nomena that are considered. This is justified as long as
the period of the incident electromagnetic wave is much
smaller than the electron-lattice relaxation time. If r is
this relaxation time and or the angular frequency of ra-
diation, this condition gives (1/~)((7, or co&&(1/r) 10"
per second. Thus, the following considerations apply to
optical, ultraviolet, and higher frequencies. It will be
seen later that other approximations in the calculations
will render the theory inapplicable to frequencies much
higher than ultraviolet. Also the inhuence of the ex-
ternal magnetic 6eld is neglected, since, as mentioned
in the introduction, it is not sufhcient to produce the
observed effects. In the following, the eGect on the
magneto-optic phenomena of the spin-orbit interaction

' A. H. Wilson, Proc. Roy Soc. (London) A151, 274 (1935).
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only is considered. Thus, the results will be strictly
valid in the case of a ferromagnetic specimen mag-
netized in the absence of a magnetic 6eld. Actually,
however, they will be very good approximations even
in the case of a ferromagnetic under saturation condi-
tions, since magnetic fields of the order of 10' gauss
produce magneto-optic eGects entirely negligible in
comparison to those observed. Thus, the role of the
external magnetic 6eld reduces to merely magnetizing
the sample in a certain direction.

In this calculation the usual one-electron approxima-
tion is used in describing the ground and excited states
of the system. The one-electron Hamiltonian

where
K KQ+K +K

Ko ——(1/2m) p'+ V (r),

K'= (1/2m'c')LVV(r) Xpj s,

K"= (e/mc)A(r, t) p.

In these expressions V(r) is the potential energy of an
electron in the crystal in the absence of radiation, and
represents the averaged inhuence of the nuclei and all
the other electrons on the electron under consideration.
A(r, t) is the vector potential of the electromagnetic
6eld inside the material. Such a potential of a mono-
chromatic light wave of angular frequency ~(=2~v) is

A(r, t) =a(r)e '"'+a*(r)e'"'

where
ie expLi(~q, "-co)t]—1

ag, "(t)=———
51c ~g, —cg

X "p), .*(r)a(r) Vyg, , (r)dr

expLi(~ i,"+co)tg —1

X gi, .*(r)a (r) V@i,„(r)dr, (3a)

with the notation

&+i =44~ —» = (&v —&x')/tt; &=+1,

(dr will always denote integration over the whole
crystal). The summation over V, 0 in this formula ex-
tends over all possible states; it will be seen later how
other considerations change this.

The current density of an electron in a state 4i, ,(r, t)
and in the presence of a vector potential A(r, t) is given
by the formula (part of the current operator that would
give terms proportional to magnetization square has
been dropped)

j&„,(r,t) = i'/2m (@~,,*V@~„—4&,V%&,')
—(e'/mc)A@i„, &)„,. (4)

8
ae-'"'=-', A+-

2co Bt

z 8
a'e'"'=-'A ——

2
2o) Bt

and neglecting terms of second or higher order in the
amplitude of the light wave, after some simplification,
we find that Eq. (4) takes the form,

K@ = ih (8%/Bt)'
The solution is obtained by the method of the variation
of constants, K" being treated as a perturbation. Let
the orthonormalized eigenfunctions of (Ko+K') be
y), ,(r) exp( —ia)i, 't), i.e.,

j&,(r,t)=i'/2m(y „*Vy , c c ). —. .

e'5
f):i'~(4). B*,VA e, .4''c &'.~(2)(Ko+K')4)„,(r) =ex'4i„, (r),

p is the momentum operator (It/i)V, and s= (t't/2)e is Using Eqs. (3) and (3a), the easily verified relations
the electron spin operator. Finally, m is the mass of the Lace Eq (1)g
electron and (—e) its charge. K' is the spin-orbit inter- A
action energy of the electron, of which the signi6cance
in these problems was discussed in the introduction.
K" is the interaction of the electron with the electro-

A
magnetic 6eld in the material, only the largest term
being kept.

The wave equation to be solved is

(2a)

Here X denotes all the quantum numbers necessary for
the space part of the wave function and s(=&1)
stands for the spin quantum number. If the electron is
in the state pq, , (r) at t= 0, i.e., before the application of
the light wave, its wave function at time t is, to the 6rst
order in the amplitude of the light wave,

ei„,(r,t) =yg, (r) exp( —koi, 't)

+P),.„a~"(t)q4, (r) exp( —~ t), (3)

pi, , ,Vpx, ,*) Qx..—.*A Vpi...dr+cc.
ie'h 1

'~ f]i' x ($i s Vg' r
4fgcM& ~&

BA—4, , V4», ,*) &,~* VA„dr c.c. —
Bt

——A4~.*m.,
mc
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where
1—exp[—i(ppg, i,

"—cp)t)
d' S+

07yl, y
—

GO

1—exp[ —i(ppi, , i,"+pp)tj
(Sa)

can be found by perturbation theory. Let
P„(k,r) be the orthonormalized eigenfunctions of Xp
and E„(k) their eigenvalues, i.e.,

To this approximation, Eq. (5) takes the form,

i'
ji„~i(r,t) = (Ai, ~t*V4i,+t—c.c.)

2m

e'k
g (f~, i+/4, i (A)+4, i (A))+c.c.}

4m'c &'

ie'k 1

Q (fje, y [Kg~, y(BA/Bt)
4m'c o) &'

Xpg„(k,r) =E (k)P„(k,r),

"y„*(k',r)y„(k, r)d, = r„„S(k'—k).

(6)

(6a)

w Lg, ), (BA/Bt) g—c.c.}
e2

——A(4i*A~[Pi,xi*+cc )},
SEC

(9)

Here the reduced Brillouin zone scheme is used in
enumerating the Bloch functions f (k,r); e denotes the
energy band, and k is the wave vector. P„(k,r)a(s) can
be taken as unperturbed eigenfunctions, where n(s),
s=&1, are the spin eigenfunctions of the Pauli spin
operator 0,0, i.e.,

o.,p n(+1) = au(+1).
Here so denotes an arbitrary direction of quantization
of the spin. In the "molecular field" approximation of
the exchange forces the quantities Z„(k)+8 are taken
as, the energy eigenvalues of the eigenfunctions
iit„(k,r)n(+1). Now, since the perturbation X' has the
periodicity of the lattice, it connects only Bloch states
of different bands with the same k. This also proves that
the Bloch functions are the correct zero-order wave
functions for the perturbation X' for all k, except
possibly for few k's for which there might be degeneracy
of diGerent bands. Such cases can be disregarded, as
their effect is certainly negligible.

In expression (5) for the current density, terms up to
the order of (spin-orbit energy)&((amplitude of light
wave) are kept, and thus, effectively,

where

~,"()=[a-(k, )~x.(k, )3 (~1),
pi,

+' ——E (k)a8

x„(k,r)= g b„(k)i' (k, r),

with —ih'/4m'c'
b (k) =

E.(k)-E (k)

X P.*(k)(VVXV).py. (k)d.. (8c)

The other parts of

iraq,

~i give terms of order higher than
that worked with. The diagonal matrix element of K'
is zero, as can be seen directly by making use of the
time and space inversion symmetry properties of the
Bloch functions, thus exhibiting the quenching of
orbital angular momentum.

where

K,., ~(A) = (0,'VA —6 VA*)~ A.*A Vf.d~

4, ), (A) = (A*Vgi: 4i, VA*—) (6 *A Vx),

+xi, *A VA)d7+(gi*Vx), +xi'Vgi

I—
4'&, vxi*—xi vA*)~ pq *A.vga, d7,

1—exp[—i(tpi;, i,—tp)t) 1—exp[ —i(tp„. )+tp)t)

), x— tp&, . ~,+~

dk'. (0=volume of specimen).

The next step is to Gnd the total current density.
In this Hartree approximation,

1=j+&+1—&~

3+~=9 &3&,+~ 3—i=~a jx —i, (10a)

the summations extending over states occupied by
electrons with the corresponding spin. This is equivalent
to assuming a completely degenerate electron distribu-
tion. For a nondegenerate distribution, j+~ are obtained
from ji,, ~& through Eqs. (10a) by multiplication with
the Fermi distribution function. j~,~~ are given by
Eq. (9) where, according to the time-dependent per-
turbation theory, )' in the summation should go over
all possible one-electron states, whether occupied or
unoccupied. This is a result of the Hartree approxima-
tion, where each electron is assumed to be in a definite
state and the Pauli principle is taken into account by
having not more than two electrons (and in the case of
two, with opposite spins) in the same Bloch state. It

tpz', i =tpi ' —w = (@v-K)/,

X denotes quantum numbers (e,k), X' denotes quantum
numbers (m,k'), and
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where
j—j (0l+j (1)

e'5
j("=—— — Z 2 ( (fR), ). )+ K), ),( A)

2m'c ~(+»'»

e'k 1
+ —2 Z (sf~, x )R, ), (~ A/~&)2' c co &&+) &'&&

and

e2
——A Z @*A,

mc &(+)

j('&= — P g (&f„),+) L~. ), (A)
2m, ~c ).(—) v))

(11a)

ie'k 1
—Z Q (&f~,~ )4,~(&A/&&)

2m~c co &(—) &'&&

e'—A Z (g7O,*+c.c.).
mc

(11b)

pq( 1 indicates that the summation is to be taken
over the states that are occupied oddly by electrons with
spin a(+1), i.e., the electrons responsible for the mag-
netic properties of the sample, and which shall be called
magnetic electrons. gq(+& denotes a summation over
all states occupied by electrons with spin n(+1) aud
all states occupied by electrons with spin n(—1). (R and
8' denote the real and imaginary parts of a complex
quantity, respectively. The term g), Q), , ~&*Viz,~&

—c.c.)
s H. Kramers and R. de L. Kronig, Z. Physik 48, 174 (1938).
)o F. Seitz, Moderw Theory of SolNJs (McGraw-Hill Book Com-

pany, Inc. , ¹wYork, j.940), Chap. XVII.

was observed' in connection with the optical properties
of atoms that agreement with experiment obtains, if
only the nonoccupied states in Eq. (9) are summed over.
This can be explained theoretically on the basis of the
Fock approximation, which takes the exclusion prin-
ciple into account directly by describing the states of
the whole system by determinantal wave functions
constructed out of the one-electron wave functions
used. "Thus, j is given by Eqs. (10) and (10a), where

j)„~& are given by Eq. (9) with the understanding that
now )' stands for any one of the nonoccupied states,
which is denoted symbolically by X'&X.

Making use of the relations

lt„(—k, r)=P„a(k,r), Z„(—k)=Z„(k),

x„(—k, r) = —
7( *(k,r),

which give

f „+(—k', —k)= f +(k',k), K „(—k', —k)

=K„„*(k',k), L„„(-k',-k) =-L .'(k', k),

and noting that if state (e,k) is occupied so is (u, —k),
the total current density

(12)

(13)
and

7(„(k)r)= (1/Ni)e' 'w~(k)r))

where, as can be seen from Eqs. (Sb) and (12),

w„(k, r) = P b„„(k)u„(k,r), (14)

b„(k) being given by Eq. (Sc). Here u (k, r), and con-
sequently w„(k, r) also, has the periodicity of the lattice
and is normalized over a unit cell, i.e.,

u„*(k,r)u„(k,r)dr, =1.

dr0 will denote integration over a unit cell, in contra-
distinction to d'7. that denotes integration over the whole

has been dropped, since its macroscopic value is zero.
j&0) is the induced current density in the absence of any
spin-orbit interaction. j' ~ arises from spin-orbit inter-
action; only the magnetic electrons contribute to j&",
and this points out the connection of the magnetic and
optical properties of metals in so far as the spin-orbit
interaction is responsible for it.

In this semiclassical theory of radiation, variations
in a region small compared to the wavelength of the
wave are unimportant, and thus the calculations can be
simpli6ed by 6nding the average current density over a
unit cell. This restricts the applicability of the results to
light waves of frequencies (o such that (2)rc/(o)))a,
where u is the lattice constant. Since a~10 8 cm,
co«10" per second; hence, the results do not apply
to x-ray or higher frequenciea This and the previous
approximation of disregarding collisions of electrons
with lattice vibrations limit the range of validity of the
formulas pretty well to optical and ultraviolet frequen-
cies. However, as will be shown below, this averaging
will give a simpli6ed expression for the total current
density, part of which will be proportional to the elec-
tric 6eld E of the light wave (conduction current) and
the rest proportional to clE/R (polarization current).
This was 6rst demonstrated by Wilson' in connection
with the optical properties of solids.

A coordinate system x, y, s is taken so that the
wave propagates parallel to the s-axis. It is assumed
that A(r, i) depends only on z, i.e., A(r, i) =A(z, i), and
it will be proved later that this is a self-consistent
assumption, i.e., that this wave gives rise to such a
current density that Maxwell's equations for this
density admit of a solution A(z, t) depending only on z.
The averaging calculations are straightforward general-
izations of those by Wilson, and as such they will not
be reported here. However, this averaging process
neglects the momentum of the light wave in comparison
to that of the electrons (which is reasonable in the
frequencies used), and gives essentially the selection
rule k' =k for the nonvanishing of the integral J'fq *A.
Vf),dr= fP *(k',r)A VP„(k,r)dr The Bloc.h char-

'
acter of the wave functions is used here, namely,

P„(k,r) = (1/N')e*~'u (k,r),
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crystal. Thus, P„(k,r) is normalized over the whole
crystal according to Eq. (6a); E is the number of unit
cells in the crystal.

Using the relations giving the vector potential in
terms of the electric field E(s,t), i.e.,

1 BA BE &o'

c Bt Bt c

1—exp[—i((o „—&o)t]
f „+(k)=-

1—exp[—i ((o„„+(o)t]

E„(k)-E.(k)

the result of this calculation, i.e., the average values of

j, j&'&, and j&'&, given by Eqs. (11), (11a), and (11b),
respectively, is

J(r, t) =J&"(r,t)+J"'(r,t), (15)

where J, the total macroscopic current density (which,
by the nature of the calculation, includes both the con-
duction and polarization current), and J&", J&'& are
given by the relations,

Q &„extends over all nonoccupied bands. J') denotes
integration over all occupied states, once for each spin
orientation (this includes effectively a summation
over rt). J'„denotes integration over the states occu-
pied by magnetic electrons only. Here, for convenience,
the. x, y, s components of a vector have been denoted
by the subscripts i, j(i, j=1,2,3). f+ is a function that
often appears in collision and radiation problems and
has the property, "

J (P) = (r (P) .P+ (r (P ) . (gE/()t)

Jo)= (r(() .E+(r0) . ((&E/(jt)

»m f„„+(k)=
(15b)

—+irr() ((o„,„—(o)
-~mn —~

X ft') Z[—&Rf„—+(k)]P„„"(k) dk,
mPn

0 . .0)—0 t'g

e'h

Sx m'(o m» ~,
[6if„„—(k))Q„„*(k)dk,

e'-k —Z
Sm'm' co' m» ~,

[sf .+(k)jQ .'~(k)dk,

The e's and 0,"s are conductivity and polarizability
tensors, of which the components are:

e'k 1
"[of„„-(k)]P„„'t(k)dk,

8am' ~ -&- ~ v

e% 1
z, , (o)

t2
871 8$ CO y

+tpl () (Gone+Co)
- &omn+(o

o . .(03—
Oiy

a 5 f' ()(M~o &o)

P ."(k)dk,
Sx'm' m» ~ co

e'A p m
n;;~0) = ———

4~'m' "r 2It(oP

(o„(k)
P„'t(k) dk,

m»OP CO „—OP

where 5)/x is called the principal value of x (it behaves
like 1/x for x/0, but it is zero for x=0), and 8(x) is the
Dirac delta function. Thus, Eqs. (16), in the limit of
large t, take on the form,

with e'A

Bu„(k)
P„'t(k) = u„*(k) dr p

Bxt

Q ."(k)dk,
4m'm' ~» "„p) '—(op

& f)(&o~n (o)
Q„."(k)dk,

GO

Bu„*(k) e'A

X u (k) drp, (16a) &)t;;"'=—
Bx; 8pr'm'

1 p BN„
Q„„'t(k)-— u„d r p

i ~ Bx;

I
( Bu) Bu„q

X )
u„+w„* id,

ax, axt)

BQ

Bxt

f' ( O'N Bu„'&
X (

u +u) idrp . (16b)
e&x; Bx; )

where now th, e integral sign means the principal value
of the integral. Thus, the theory is free of infinities.
Here the term containing h((o „+(o) has been dropped,
as it contributes nothing to the integral. Taking t very
large does not invalidate the use of time-dependent
perturbation theory, since this can always be done for
a small enough radiation field.

The tensors now can be simpli6ed by making use of
the symmetry properties of the wave functions. The

n W. Heitier, The Qaanttt)1 Theory of Rad&tioa (Clarendon
Press, London, 1954), third edition.
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calculations are not carried out here, '2 but only the
general scheme of simplification is indicated. The tensor
components of e&') and n") are of the general form,

Using Eq. (22), it can be proved that

Jtu *(Rk)vu„(Rk)drp=) u *(k)(R~)u„(k)drp,

p' =, gL -(k)7P-"(k)dk, (19)
and thus,

and those of e&') and e~') are of the form, P P „'f(Rk)=P ) u„*(k)(R~),u„(k)dro

(20)

and
E„(Rk)=E (k); (o„„(Rk)=(o„„(k); (21)

P (Rk, r)=P (k,R 'r); u (Rk,r)=u„(k,R 'r). (22)

where g(&o ) is some function of co (k), and P „",
Q „"are given by Eqs. (16a) and (16b). The region V
(or v) in k-space over which we integrate can be divided
into a number of equal regions, all of which can be
obtained from a "fundamental" region Vf (or vr) by
application of the symmetry operations, E, of the point
symmetry group of the lattice. "It is known" that for a
general k, with a nondegenerate star, the following
equations are true:

X~ u *(k)(Rv),u„(k)drp.

An analogous equation can be writtenforgnQ „"(Rk).
We are interested in the case of the cubic group 0~, this
is the point symmetry group for cubic lattices, and thus
the following apply to the ferromagnetic Fe and Ni
crystals. In the special case of the beam propagating
along one of the cubic axes of the crystal, (RV); can be
found easily, and thus some tensor components are
proved to be zero. By a tensor transformation the
tensors for a general arrangement of the direction of
propagation of the beam, the cubic axes, and the spin
direction can then be found. Then the average tensors
over the diBerent ferromagnetic domains and the
crystal orientations can be found, and these are

Equations (19) and (20) can then be rewritten in the
following form:

p, ;= '

g[co,. (k)7P .+(k)dk where

o;;=apb, ,+a&'&P;;,

~v= ~A;;+cr"'AJ,

0 0'

(23)

g[~.„(k)7P„„'f(k)&k
~ (BVf)

8;,= 0 1 0

.0 0 Ps—
0 —Pr

0.

g g[cp„„(Rk)7P „"(Rk)dk
J„~ R

= " g[co „(k)7+P„.'&'(Rk)dk,
R

[j9;(i=1,2,3) are the direction cosines of the net spin
direction of the specimen with respect to coordinate
system attached to the beam propagating along the
3-direction 7.

e'h 1
I

8((o„„—(o)
o'o ——— —P ~

u *Vu„pro dk,
8~m 3m&ed~

q;, =J g[co (k)7 p Q „'&(Rk)dk.
R

e'5
~o=

4n'm'3 & ~vto'(co „'—cps)

8S
(24)

7S hl

e'5
I

1
Q„„(k)dk,

4m m'
'.~ For more details at this and other points see author's thesis,

University of California, Berkeley, 1954 (unpublished).
'& H. Brooks, thesis, Harvard University, 1940 (unpublished)."F. Spitz, Ann. Math 37, 17 (1936.); see also Bouckaert,

Stnoluchowski, and Wigner, Phys. Rev. 50, 58 (1936).

I' ~(&ma cp)
o, t &= — P ~

— Q (k)dk, (25)
8~&~2 ea&e 4,

Within the fundamental regions V~ and e~ the functions
~„„(k),P„„"(k),and Q „"(k) depend on the detailed
nature of the crystal potential V(r), and no general
statement can be made about them; we can hope, then,
to detect the vanishing or nonvanishing of p„and q;;, where n= total number of electrons per unit volume.
not through the integration over, but rather through
the vanishing or nonvanishing of the factors gaP" (Rk)
and ggQ'&'(Rk) in the integrand.
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1 t Be*
Q „(k)=2(R — N,„dip

i~ By

(' ( B'(p~ Bz(„)
(26)

Bx Bxi

w„ is given by Eq. (14), where now

Using expression (2'7) for Jt ( ),

1 BvXE=-
c Bt

1 BE 4z BE 47r
vXH=- +—~ +—~ E.

c dt c Bt c

(29)

(30)

ik 4m'c' t-

ham(k) = — ' p *(vVXv),p„dv.
(p„„(k)"

Thus, the average macroscopic total current density

J,.„(——(r E+e BE/Bt, (27)

where e and a are given by Eqs. (23). This is the basic
equation which will give all the optical phenomena
when used in conjunction with Maxwell's equations for
the electromagnetic 6eld.

Op —Oy 0 Gp —Qj 0

with

0= tTy

.0
Op 0 ) c= cy

0 up. .0
ap 0 , (28)

0 up.

3. FARADAY AND KERR EFFECTS

Consider now the case of a ferromagnetic sample
(such as iron or nickel) magnetized in the +z-direction.
In such instance,

Pi=Pp=0~ Pp/0~

and the conductivity and polarizability tensors are

where

1V(EXk)= —H,

Ã(Hxk)=5 E,

Ap —Ag 0

(32)

(33)

4m
5=1+4'.e+—e= A (

.0
4m

A p=1+4m p+ ~p, —
Z(d

Ap 0

0 Ap.

Looking for solutions of the form of a monochromatic
plane wave of angular frequency co propagating along
the s-axis, we have

F—F &i&a(t Ns/—a)

H —H pka(t Nz(c)—

where Ep, Hp are constant vectors and E is the com-
plex index of refraction. It is known from the electro-
magnetic theory of optical phenomena that such solu-
tions exist for suitable Ã. This proves the self-consis-
tency of the assumption made before, namely, that E
is a function of z and t only. Equations (29) and (30)
become, for such time and space dependence of E
and H,

oy=o"'p agan("p (28a) 4n.
A g=4n.ay+ —o g,

4'

(34)

(Ap —E')E. A)E„=O, —
1 BvXE=-
c Bt

(35)A)E,+ (Ap —E')E =0

A pE, =O.
1 BE 4z.

v XH=- +—J„...).
c Bt c

The 6rst two equations for E, E„have a nontrivial
solution only if the determinant of their coe%cients
vanishes, i.e., (Ap —Ã')'+A)P=O, and thus Ã' is equal
to either

It should be noted here that both the so-called conduc-
tion and polarization currents have been included in
Jt ~,). Also, it has been, assumed that (BM/Bt)=0,
where M is the average magnetization of the sample.
This assumption is justified, since the induced mag-
netization by the H Geld of the light wave is zero in our
frequency range.

S+'=AP —iA J,

X '=Ap+iA).
or

(3&)

The solution corresponding to X+ =Ap —iA~ is E„&+&

=+iE,(+), and the one corresponding to N '= A p+iA i

( )
The tensors have the form required by general sym-
metry arguments except for the last diagonal element,

cessariiy have to be equal to the other and k= unit vector in the z-direction. Substituting
two. This may arise from magnetostriction or other Eq. (32) for H in Kq. (33), the fundamental equation

purely optical sects which have been neglected How- for the optics of anisotropic bodies is obtained, namely,
ever, it will be seen that the magnitude of the third 5 E=cV'LE—k(E k)j,diagonal element does not enter the discussion of the
Faraday and Kerr sects. or, in component form,

The relevant Maxwell equations are
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is E„' '= —iE,&
—). Thus, there are two possible ways

for a wave to propagate along the s-axis: either as
Est+& exp{kuLt —(1V+/c)sj), which denotes a right-
handed circularly polarized wave traveling with the
complexvelocityc/1V+, oras Esi i exp{so~Lt —(N /c)zj),
which is a left-handed circularly polarized wave travel-
ing with complex velocity c/N . Any linear superposi-
tion of the two is also a possible wave.

The constants pertaining to the Faraday and
(magneto-optic, polar) Kerr effects can now be found.
A plane polarized beam, upon incidence on the surface
of a sample, assuming normal incidence, splits into the
refracted and rejected beams. The refracted beam
becomes elliptically polarized with the major axis
rotated by an angle

tf p=-,'(ces/c)(R(1V+ —N ), (38)

at a distance s from the boundary (a positive sign of ps
denotes a rotation of the major axis from x- to y-axis;

hays is a right-handed triad), and with an ellipticity
(ratio of the minor to the major axis) given by

ep = —tanhL-', (ops/c) 8 (1V~—1V )j. (39)

Equations (38) and (39) are the constants of the
Faraday eGect. The reflected beam also becomes
elliptically polarized with the major axis rotated by
an angle

p»= d$(N+ N—)/(N+N— 1)j, —

with an ellipticity equal to

e» = /Jtf (N+ N)/—(N+/V —1)j. —

(40)

Equations (40) and (41) are the constants of the (mag-
neto-optic, polar) Kerr effect, in the special case of
normal incidence. P», too, counts as positive for rota-
tion from x- to Y-axis, but it must be kept in mind that
the beam to which it refers is traveling along the
—s-direction. These formulas are valid for (N+ —N )
«X+ or X .

It is interesting to note that all four phenomena can
be observed only in absorbing media. If the medium is
transparent, i.e., with real E+ and X, then the ellip-
ticity of the refracted beam is zero, i.e., it is a plane
polarized beam, and the rotation of the polarization of
the rejected beam also vanishes.

The phenomena connected with the case'of a ferro-
magnetic magnetized in a direction perpendicular to
the propagation of the beam, such as the Cotton-
Moutton eGect, etc., cannot be discussed, since a con-
sistent treatment of this problem requires the calcula-
tion of the tensor components to the second order in
spin-orbit interaction.

X+, E are now calculated for our case. From Eqs.
(33a) it can be seen that

Thus, in this approximation,

N+ —1V = iA—i/+As,

X+—X —id'
N+N 1(As——1)QA p

(44)

(45)

It should be observed that +As is the complex index
of refraction, N=n —ik (a=real index of refraction;
A= extinction coe%cient), of the medium in the absence
of any spin-orbit interaction. This is approximately
equal to the complex index of refraction of the ferro-
magnetic above the Curie point, as can be seen with the
help of Eqs. (24) and verified experimentally by re-
Rectivity ns temperature experiments. "

Thus, from Eqs. (42), (43), (44), and (45),

(46)

1V+.—E (o i/io) +iui= (—4s) . (47)
N+N —1 (I—ik) L(e—ik)' —1j

These are to be used to estimate the Faraday and Kerr
constants given by Eqs. (38), (39), (40), (41).

4. COMPARISON WITH EXPERIMENT

In comparing the results of this theory with experi-
ment, e and k are assumed to be given by independent
experiments on the optical constants of the specimen,
although they are given in principle through Eqs. (24).
We shall attempt to estimate the fundamental quanti-
ties of our theory, (T& and n&, in terms of which the
Faraday and Kerr eGects are given.

The expressions for oi and rri LEqs. (25)] can be
approximated as follows:

oi —— ps Q (Q /(co .'—cos))A, dk,
4/m'

e'k . 1
ni — Ps—g (bg——.—(o)Q )A, ) dir,

Sx'm' oP ~~

From the de6nitions of 0.0, 0.0, r~, o.&, it is noted that
(oi/&o)«ao and ai«(oo/oi), since only the magnetic
electrons contribute to 0~, n~, whereas all of them con-
tribute to 0'p, O.p. This is especially so near the Curie
point, since at the Curie temperature o.q=nq=0. Ex-
perimental values, on the other hand, indicate that at
room temperatures (o i/or) and ni are about 30—50 times
smaller than mrs and (oo/o~), respectively. Using this
approximation, iA&«As, and Eqs. (36) and (37),

N+= (A p sA—p)i Q—As ', i—A-i/+As,

1V =(Ap+iAi)& QAp—+ ',iAi/Q-As.

Ao=1+4n. ( o—so'o/ ),

sA i= 4s.t (o i/ce)+ini j.
(42)

(43)

's L. Ornstein and J. H. van der Veen, Physics 3, 289 (1936);
"L. Ornstein and O. Koefoed, Physica 5, t/5 (f938); J. H. van der
Veen and L. Ornstein, Physics 6, 439 (1939).
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where M, is the saturation magnetization of a domain,

g is the spectroscopic splitting factor, and p~ ——(ch/2mc)
is the Bohr magneton. On the other hand, Ps is the aver-
age value of the direction cosine of the net spin direc-
tion with 'respect to the s-axis, and thus, since the
magnetic moment of the electron is opposite to its spin,
M, the s-component of the net magnetization, is given
by 3I=—M,Ps. Combining the last four equations and
taking g=2,

4ec
( 2 &Q-/(~-' —~'))A.)~

m tean
(48)

or= ' Q &B(4&mm ~)Qmn)Av
Pl GP m&&

(49)

Since e,k depend only slightly on magnetization, as
explained above, it can be seen immediately that the
Faraday and Kerr constants are proportional to the net
magnetization M of the specimen. ep is always ob-
served for so small a 61m width, 2, that it is always
proportional to S(X+—1V ) Lsee Eq. (39)$. This is what
is observed experimentally, as was mentioned in the
introduction. (See also footnote 1.)

The proportionality constant depends on frequency,
but it is temperature-independent. All temperature
dependence of the Faraday and Kerr constants is thus
given by M(T) according to our theory. It should be
noted that this is so mainly because, in the calculations
for optical and ultraviolet frequencies, the effect of
electron —phonon collisions was neglected. The effect of
temperature on the electron distribution is certainly
negligible. The available experimental evidence indi-
cates that this is indeed the case at these frequencies,
the magneto-optic effects under consideration here
decreasing slowly at 6rst with rising temperature,
much faster as the Curie point is approached, and finally
vanishing at the Curie point, much in the same way the
M vs T curve behaves.

The dispersion of the effects is also given in principle
by our formulas, but it is rather di6icult to state it
explicitly, owing to the complexity of the integrals
involved and the lack of accurate knowledge of ~ „(k),
Q „(k).A similar situation exists with the optical con-
stants e and k. However, the fact that 0~ depends on
a& through the expression (co „'—&u') gives rise to the
possibility for the Faraday rotation to change sign
(an experimentally observed fact) below a certain fre-
quency; whereas an effective magnetic field approach

where the angular parentheses indicate an obvious
average. But now

I

(no. of magnetic electrons)
~ dk= (2s)sX

lj unit volume
M,= (2s)s

~~gag

to the problem gives a dependence like (~ „'—+s)',
which excludes such a possibility.

In order to get a numerical estimate of the order of
magnitude of these effects, it is necessary to make
further approximations as to the structure of the wave
functions and the energy bands. We 6rst approximate
the integrals in the expression (26) for Q„„(k), the
average value of which appears in Eqs. (48) and (49).
Introducing the abbreviations

f 8
I,„*—u„drs (m—

l
—B.ll),

ax

i)s' p (BV B BV B)—l4„d.=(tlel~),
4m'c'~ ( Bx By By Bx)

we have

(~l ell)
Q„„=2-(ml B„l~&* P

»w~ E~—E»
(El e jnz)*

&llB, ll) .
»&m, gm —+»

Here (R has been dropped, since the matrix elements of
8„8„,and 6 are purely imaginary numbers, and thus
the whole expression is real. As will be seen below, the
most important m-band is the 4s-band, whereas e
stands for one of the 3d-bands, namely that occupied
by most of the magnetic electrons. Thus, in this crude
estimate, the second sum compared to the first in the
previous expression for Q „may be neglected, since
8„—8» can become quite small with / any one of the
other overlapping 3d-bands. Furthermore, the terms
making the major contribution to the 6rst sum are the
ones with / one of the 3d-bands. Therefore, we shall take

2
Q-= —.&~l B.l~)*Z (~l t) IN)&~I B*l~» (So)

AEi
where

AE= &E„(k)—Z)(k))A„

and l denotes any one of the 3d-bands not occupied by
most of the magnetic electrons (this is the ts-band).
The Bloch functions for the 3d-bands have been calcu-
lated by Fletcher" for nickel on the basis of the tight-
binding approximation according to which Bloch
functions are constructed as linear combinations of
atomic wave functions centered about different lattice
points. Since the 6ve 3d-bands overlap, a linear com-
bination of all 6ve 3d-atomic wave functions should be
taken for the construction of the corresponding Bloch
functions with different coefficients for different values
of the wave vector k. Even this complicated procedure
neglects the overlapping 4s-band. The resulting Bloch
wave functions and their E ss k curves are quite com-
plicated. Zn the order of magnitude estimates for the

's G. C. Fletcher, Proc. Phys. Soc. (London) A65, 192 (1952);
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matrix elements, (ll8ln), simpler expressions for the
3d-band Bloch wave functions will be taken, namely,

Thus, Eqs. (48) and (49) may be written as

A (E E—) (E)—E„)
I otl 1.0X10" M

~E[(E„-E.)s-he~']

where p„(r) is the corresponding atomic wave function
and R denotes the position of the lattice points. Such
an approximation is not likely to introduce an order of
magnitude error. Brooks" has shown that in such a case

(fl eln) =W(ZIL, ln),

where A is the ordinary one-electron spin-orbit interac-
tion. parameter for free atoms, and (El L, I n) is the matrix
element of L,= (1/i) (xB/By —yB/Bx) = (1/i) B/B&, with
respect to the angular parts of the atomic wave func-
tions Pt and P . Most of the magnetic electrons, as is
shown by Fletcher, "occupy the most energetic states
of one of the 3d-bands. It is assumed that all of them
are in the eth band, and that its Bloch wave functions
are given by Eq. (52), with P„(r)=ysf(r). This par-
ticular choice does not aGect the order of magnitude,
although it can alter the sign of the matrix element;
thus, it is seen that a definite statement cannot be made
as to the correct sign of the matrix elements, and, hence,
of the final estimates of «T~ and n~. Bloch wave functions
for the other four 3d-bands are constructed in an
analogous manner from the other 3d-atomic wave
functions, p&(r):xyf(r), sxf(r), s(x' —y') f(r), (1/2~3
X (x'+y' 2s') f(r)—

It is readily found that the only P& which has a non-
vanishing matrix element of L, with P„ is the sxf(r),
and for this case (llL, In)=1/i. Thus, neglecting a
minus sign, since no faith can be placed in it, Eq. (50)
may be written,

0 .= (2/~E)~(ml B I")*(ml B*li)

Now, in order to get a rough, estimate of the order of
magnitude of the matrix elements of B/Bx, B/By, they
are transformed in the usual manner to matrix elements
of x and y.

(ml B,ln)=(m/hs)(E„—E ))» *xts„drs

= (m/h') (E„—E„)(m, I
x

I n),

and similarly for (m I B„I n). It should be noticed that the
free electron approximation of the mth (4s-band) and
higher bands gives zero matrix elements, since (m I B,. I n)
=(nlB, lm)=0 (u =constant for plane waves). The
deviations of the wave functions from plane waves are
thus essential for a correct calculation; the almost-free
electron approximation usually gives fair estimates.
However, in view of the dimensions of the unit cell and
the relation fI eg„drs=8 „, it may be assumed
(mlxln) and (mly[n) are of the order of 10 ' cm.

"H. Brooks, Phys Rev. 58, 909 .(1940).

0!y ~ «Ty GO

latl 5.2X10" sec '

latl~ 1.6X10 ' for Ni, (53)

I
o tl 12.4X10" sec '

for Fe.
l~, l- 4.0x1os- (54)

These values, along with the remark about the approxi-
mation of o&, give, e.g. , for the Faraday rotation in iron
under saturation conditions at room temperature, an
angle of ~280 000' per centimeter.

The experimental work on these eGects is not satis-
factory, mainly on account of the usual diQiculties that
beset all optical measurements of solids. The results
depend markedly on the method of preparation of the
61ms used. All experimental work up to 1936 has been
summarized by Schultz. ' The most recent measurement
of the Faraday rotation in iron is that of Konig, "who
measured pr in saturated iron at room temperature
for X~6000A and found it to be (pr ——380000' per
centimeter) approximately twice as big as previous
measurements had indicated. He was able to show that
the oxidation of the 6lms can account for such diGer-
ences. An analysis of the work of Foote" on the Kerr
constants and that of Skinner and Tool" on the Faraday
constants for )~6000 A gives the following values for
the quantities «T&, 0.& within a factor of 2, taking n= 2.0,
k=3.9 for nickel, and n =2.4, k=3.3 for iron (see also

"H. Konig, J. Optik 3, 101 (1948)."P.Foote, Phys. Rev. 34, 96 (1912).
» C. A. Skinner and A. Q. Tool, Phil. Mag. 16, 833 (1908).

(A factor of 10 can easily enter the last expression. )
Here all bands higher than the 4s-band are neglected,
since for our frequencies they contribute much less
on account of the resonant form of the denominator.

From Slater's diagram' the energy diGerence near
the top of the magnetic 3d- and 4s-bands is estimated as

(E„—E„)=4 ev= 6.4X10—"erg.

Also, DE= 1 ev= 1.6X10 "erg, and therefore (E —E~)
=5 ev=8.0X10—"erg. For a light wave of wavelength,
say, X=6000 A, fun=3. 0X10 "erg, and

I ~, I
-1ox 1.0»wm

Taking, with Brooks, the spin-orbit parameter to be
A=10 "erg for nickel and A=0.7X10 "erg for iron,
and 3f=500 gauss for nickel, under saturation condi-
tions at room temperature, and %=1700 gauss for
iron, under the same conditions, we finally obtain:
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Darwin" )

and

r1~ 3.1X10" sec '

0.&= 1.7X10 '

~1~30.0X10" sec-'

~&= 4.3X10—'

for Ni,

for Fe.

Values for diQ'erent wavelengths in the visible region are
not very much difFerent. In view of the approximations

"C. G. Darwin, Proc. Roy. Soc. (London) A151, 512 (1935).

necessary to get the theoretical estimates, Eqs. (53)
and (54), the comparison is satisfactory.
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Neutron Damage to the Structure of Yitreous Silica

JOSEPH S. LUKESH
General Electric Compurjy, ENolls Atomic Power Laboratory, * Schenectady, Sew York

(Received September 29, 1954)

The x-ray diGraction pattern of vitreous silica has been investigated before and after exposure to neutrons.
Small, but significant, changes are observed. A relation between these changes and those caused by neutron
damage to crystalline forms of silica is suggested.

INTRODUCTION

EVERAL observations have been reported on

~

~ ~

~

~ ~

~ ~

~

radiation damage in silica, both crystalline and
vitreous. Wittels and Sherrill, ' for instance, found
that fast-neutron irradiation of a total of ~2X10"
neutrons/cm' caused all crystalline forms to become
apparently glassy with a density of 2.26. Vitreous
silica also reached this density. Primak, Fuchs, and
Day' report an increase in density and refractive
index of vitreous silica. No extended study of the x-ray
difFraction pattern of irradiated vitreous silica has been
published. In view of the tendency of all crystalline
silica materials to become glassy with a common density
and of vitreous silica to increase in density to the same
value, it is of interest to examine the difFraction patterns
of these damaged materials in some detail. In this
report, the efFect of neutron irradiation on the x-ray
intensity curve of vitreous silica is discussed.

EKPERIMENTAL

Vitreous silica of high purity' was irradiated by
neutrons at the Materials Testing Reactor to an
exposure of ne$ 2X10", at a temperature of about
50'C. The specimen showed no visual change other
than a slight violet discoloration. The density was
found to have increased from 2.21 to 2.25, in excellent
agreement with previous work. Also confirming earlier

*The Knolls Atomic Power Laboratory is operated by the
General Electric Company under contract with the United States
Atomic Energy Commission.

' M. Wit tels and F.A. Sherriii, Phys. Rev. 93, 1117 (1953).
s Primak, Fuchs, and Day, Phys. Rev. 92, 1064 (1953).' Provided by Corning Glass Works, Corning, New York.

TABLE I. Spectroscopic analysis of vitreous silica.

Constituent

V
Cr
Tl
Mn
Cu
Mg
Al
8

Abundance&
(parts per million)

400
200
120
60
16
6
6

(&200

& May be in error by a factor of two or three.

observations, the refractive index (sodium D line)
increased from 1.45706%0.00004 to 1.46687&0.00010.

The x-ray intensity curves for both unirradiated and
irradiated material were obtained using a spectrometer
and Geiger counter. Values were measured at intervals
of one degree 20 or less, except at high angles where
larger intervals were used. Readings were taken to
sin8/X= 0.700, above which point all scattering is
essentially incoherent. Filtered copper and molybde-
num radiations were used. Since the radiation was not
strictly monochromatic, no Fourier analysis has been
made of the data. It is hoped that in the future, data
suitable for such analysis can be obtained. The
intensities were measured by using the fixed count
method in which the time to register a fixed number of
counts is recorded. The probable error is less than one
percent.

Spectroscopic analysis of the unirradiated material
is given in Table I. The results may be in error by a
factor of two or three.


