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Double Scattering of Electrons with Magnetic Interaction*
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(Received September 20, 1954)

The Mott theory of double scattering of electrons by nuclei is extended to the case where a constant
homogeneous magnetic Geld intervenes between the two scattering centers, The problem is treated iri the
Foldy-Wouthuysen representation. It is found that the presence of the magnetic Geld causes the asymmetry
in the double-scattering cross section to be altered, and that this change in the asymmetry can be utilized
to determine the gyromagnetic ratio of the free electron.

I. INTRODUCTION

HE Mott theory' of double scattering of electrons
by nuclei is extended to the case where a constant

homogeneous magnetic 6eld intervenes between the two
targets. If there is no anomalous moment interaction, it
is found that the double-scattering cross section into a
given direction is the same cross section, as in the Geld-

free case, into another direction. The new direction
(magnetic field present) can be obtained from the first
direction (field-free) by rotating about the direction of
the field by an amount equal to the space rotation of the
particles between the scatterers. However, with an
anomalous-moment interaction, there is an additional
change in the cross section which depends upon the
relative orientation of the constant homogeneous mag-
netic 6eld with the directions of motion of the initial
beam and 6rst scattered beam. The way in which the
asymmetry is altered is discussed, and it is demonstrated
how it can be employed to determine the gyromagnetic
ratio of the free electron.

II. MOTT THEORY

We will brieQy outline the Mott theory of' double
scattering in a vacuum, and then show how the inter-
vention of a magnetic Geld between the two scatterers
alters the cross section.

An unpolarized beam along the direction IA (Fig. 1)
is incident upon the first target at A. The part of the
beam which is scattered into the direction of AB is
allowed to fall upon the target at B. The beam is then
scattered into direction BC. It is found that for a given
angle 8s (Fig. 1), the double scattering cross section
exhibits an asymmetry about the azimuthal direction
in the x'y's' coordinate system.

Although the Mott theory starts with the Dirac
equation, it restricts itself to transitions between posi-
tive energy states and neglects all contributions to the
cross section arising from transitions from negative
energy states. This approximation is quite good because
it is found that the asymmetry in the double scattering
cross section washes out for energies such that P=%
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is greater than about 0.7.' This can be explained by
noting that transitions between the positive and nega-
tive energy states can cause a depolarization of the first
scattered beam. Thus, only where the contribution to
the cross section from the negative-energy states is
negligible can we expect that the asymmetry will not be
negligible.

Because we limit the discussion to positive-energy
states only, we can describe the spin polarization of the
beam in terms of a two-by-two spin density matrix. '
The original beam which is incident on the 6rst target
is unpolarized. The spin density matrix is given by

(a)
Pmm, r —

2 ~mar

where m and m' refer to two states of spin polarization.
The beam of particles are considered to have the same
momentum, and so the momentum density matrix
describes a pure momentum state. In order that our
notation be close to that of Mott, ' we take the s com-
ponent Pauli spin matrix diagonal. The scattering is
described by a scalar transition operator (scalar under
simultaneous rotations of spin and space) which trans-
forms an initial momentum and spin state to a 6nal
state. It is given by

V = f(8)+ig(8) (o sing+a„costp).

The f(8) and g(8) are the Mott f and g functions which
depend on the polar angle 0 between the beam incident
on the target and the scattered beam (Fig. 1), and io

is the azimuthal angle. The angles 8 and q describe the
difference in direction between the initial momentum
and momentum after the scattering. The 0-'s are the
usual Pauli spin matrices.

After the initial scattering, the density matrix is

s N. F. Mott, Proc. Roy. Soc. (London) A135, 429 (1932);
H. A. Tolhoek and S. R. deGroot, Physica 17, 1 (1951).This does
not mean that the single scattering Mott formula is not exact,
because there it is legitimate to consider only the positive energy
states.

Density matrices are discussed by: J. von Neuman, Gottingen
Nachr. 243 (1927); R. C. Tolman, Principles of Statistical 3fe
chanics (Oxford University Press, London, 1938), p. 327; H. A.
Tolhoeh and S. R. deGroot, Physica 17, 1 (1931); U. Fano,
National Bureau of Standard Report 1214 (unpublished) and
others.
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FIG. j.. Schematic dia-
gram of double-scatter-
ing experiment.

The beam incident on the second target is a partially
polarized beam and the momentum density matrix
describes a pure momentum state along the s' direction
(Fig. 1).The second scattering is described by the scalar
operator V(8s, &p&) which is given by Eq. (2) in that
representation where 0, is diagonal. The spin density
matrix p&') is transformed to this representation by
rotating about the y axis through an angle 8i (Fig. 1).

Since the y direction remains invariant, the spin
density matrix p"' in the representation where 0., is
diagonal is given by Eq. (5) with o.„replaced by o„.The
density matrix after the second scattering is

p'= V(8s, &ps)p'Vt(8s, &ps),

Since V is a function of the angle between the initial
and scattered directions, the density matrix after the
first scattering p is a function of 8i, &pi (Fig. 1). The
direction of the incident beam being taken as the polar
axis. The cross section can be obtained by taking the
trace over the spin states, and is

and the double-scattering cross section is obtained by
taking the trace of p' over the spin states. Thus,

~~-CC
I
fil'+

I giI'HC
I fs I'+

I g2l'3
—Lfigi' —fi*gi)Cfsgs* —fs*gs1 cos &ps), (8)

where fi means f(8i) and fs means f(8s), etc. This can
be written as

do.~j.—8 cosy2,
~-(8., ")-Clf(8)I'+ lg(8) I'7, (4) where

which is independent of the azimuthal angle yi. If
instead of measuring the cross section after the first
scattering, the beam is then scattered by the target at
J3 (Fig. 1), the cross section after the second scattering
will exhibit an asymmetry in the azimuthal direction.

Following Mott, we consider the erst scattered beam
to be in the direction 0=0i and y~=0. It is incident on
the second target. The spin density matrix of this beam
is, from Eq. (3),.-'=V &If(8.)I+lg(8)I'-'.,I f(8.)g*(8.)-f*(8)g(8)1}, (&)

where E is a normalization constant. It will be dropped
in future calculations but its presence is implied. Note
that the form of p&'& divers from the spin density matrix
of the incident beam. This means that the portion of
the scattered beam in a specified direction in space is
polarized. The degree of polarization of the beam
incident on the second target is given by4

I f('i) I'I «'i) I'—Cf('i) g*('i)+f*('i)«'i) j
Llf(8.) I'+lg(8) I'3

If the f and g functions are real, the polarization
vanishes as has been pointed out by Mott.

4 The degree of polarization is defined as P= ~o~', where the
spin density matrix is defined in terms of the Pauli spin vector as

p& ~&=-,'(i+a &r7.

This is the same as Fano's definition in reference 3. Fano's de-
6nition differs from that of Tolhoek and deoroot, but both are
related to the same invariant properties of the density matrix.

Cfigi* fi*g X—fsgs* fs*gsj—
Clfil'+ lgil'&Clfsl'+ lgsl'j

(10)

III. EXTENSION OF THE MOTT THEORY

The Mott theory is adequate to describe the double
scattering experiment in free space. However, it has to

Equation (9) gives the Mott double-scattering formula
in free space.

If the transition operator V were independent of the
spin, the first scattered beam would have remained
unpolarized. The cross section of the double scattering
would have been given by the first term of (8), and
would not have exhibited any asymmetry in the azi-
muthal direction. Thus, the asymmetry is seen to arise
from the spin dependence of the scattering potential.
Therefore, in principle, one could determine the spin
magnetic moment by measuring the asymmetry. How-
ever, it is diKcult to measure an absolute cross section
in the double-scattering experiment, and so it would not
be feasible to employ this method to measure the gyro-
magnetic ratio of the free electron. The fact that there
is an asymmetry in the cross section demonstrates the
existence of the spin magnetic moment of the free
electron. In order to make a quantitative measurement
of the gyromagnetic ratio of an electron not bound to
an atom, one can allow the spin magnetic moment to
interact with a magnetic field between the two scat-
tering events. The magnetic interaction causes the
asymmetry to be altered and this can be utilized to
determine the gyromagnetic ratio.
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be modified where there is a magnetic field present
between the two scattering centers.

It is assumed that within a region of about 10' wave-

lengths from the scatterer, about 10 ' cm for an elec-
tron with energy as low as one hundred kilovolts, the
effect of the magnetic field upon the particle is neg-

ligible compared to the scattering potential. This is

justified, because for magnetic field of about one
hundred gauss, the spin precession frequency is given by

~.= (e 3C/mac) (1—P') ~g/2,

where g =gyromagnetic ratio (about 2), e=electronic

charge, %=magnetic field strength, @so=rest mass of
electron, c=velocity of light, P=e/c (the ratio of elec-
tron's velocity to the velocity of light), and the spin
precession will be about the order of 10 ' radian. The
change in orbit direction will be of the same order of
magnitude. For electrons of higher energy this approxi-
mation will be even better. Within this region the par-
ticle can be considered as traveling in free space. The
scattering is then completely determined by the scat-
tering potential. The same assumption is made for the
second scattering. Thus the only effect of the magnetic
field will be to change the wave function between the
two scattering events.

The equations of motion of the wave function is dis-

cussed in the Foldy-Wouthuysen representation. ' Al-

though the Mott theory is based on the Dirac repre-
sentation, ' Mott actually employs a Pauli type approxi-
mation' as has been noted previously. It has been
demonstrated that in the low-energy limit the positive
energy eigenfunctions of this new representation readily

go over to the Pauli limit.
If we consider only positive-energy states, the

Hamiltonian is shown in the appendix to be, up to terms
of first order in ties (tie is the Bohr magneton),

Furthermore 8 is the energy operator in the absence
of spin and is

8 = [mp'c4+c'z-']'*, (13)

H= 8 @pe 3![—(1—P')'+uj

(e v)(v K)

+italo

L1—(1-P')'j (12)
2

correction to the spin magnetic moment. ~ This can be
shown to be independent of the momentum' for a par-
ticle in a constant magnetic field.

The equations of motion of the coordinate operator
r is given by

r' =—[r,H] =c'(p —eA/c)/8. ,
N

'

which is just the equation of motion of a particle in a
magnetic field rotating with the relativistic cyclotron
frequency nil, =eK(1—P') &/msc. If we consider the
terms in the Hamiltonian containing the spin operator
(defined as o acting in this representation), we find
the equations of motion for the spin operator for the
following interesting cases are given as:

(1) Sellv: Ze/dt= [1+a]~,each,

(2) Xiv: de/dt= [1+a/(1—P')q~, each; (15b)

4'ines =e'&'P(t)Q(t)P. (16)
' J. Schwinger, Phys. Rev. 76, 790 (1949); 82, 664 (1951).' Schwinger has shown in Phys. Rev. 76, 790 (1949),Eq. (1.114)

that the extra term appears as

Also

(n/2 )gpc xFo(x —x')m„„(x')d(o'A„—(x),
JI

h is a unit vector in the direction of the field. Thus, we

find that the spin can be considered as precessing about
the direction of the field with a frequency diGerent from
the cyclotron frequency by an amount that depends
upon the relative orientation of the field and the par-
ticle's velocity.

The eGect of the Hamiltonian can be considered as
changing the space state and the spin state separately.
The Hamiltonian acting on the initial space part of the
wave function gives a wave function which describes a
particle which has been displaced along the direction
of the field and rotated about the direction of the field

by an amount col.t, t being the time spent between the
two scattering events. Similarly one can see that the
action of the field on the spin state is to rotate the spin
state about the direction of the field by an amount co,t,
where co, is given by Eq. (15).'

Thus, if the wave function after the first scattering
is%', then just prior to the second scattering it is

where er =p —eA/c= mv, p =momentum, A= vector
potential, and a=n/2z is the second order radiative where

Fp(x) =b(x)+(1/6~')Q'b(x)+ ~ O(Q'),

~=A/rmpc.

~ L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);
K. M. Case, Phys. Rev. 95, 1323 (1954); H. Mendlowitz, thesis,
University of Michigan, 1954 (unpublished), gives a detailed
treatment in the Foldy-Wouthuysen representation of an electron
with an anomalous moment in a constant magnetic field.' This is because he allows only positive energy eigenfunctions
of the Dirac equation to be int:ident upon the second target.

Following K. M. Case, Phys. Rev. 76, 1 (1949), and S. Borowitz
and W. Kohn, Phys. Rev. 76, 818 (1949), we integrate by parts
and apply the d'Alembertian operator on the vector potential.
For a constant magnetic field, the terms in Q2 and all higher
order terms in this operator fall out.

~ Note that co, depends on the relative directions of the motion
of the particlt; apd the masnetjc fie/d,
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(25)Q, (t) =exp(ie n&/2),

The operators P(t) and Q(t) are operators which rotate Consider Q, (t) to be given in the primed coordinate
the space and spin states respectively, and are given by system by

z
P(t)=exp ~i,L ht, (17a) where n is a unit vector in the direction specified by

e,= sin8 cosP, e„=sin8 sinP, n, = cos8,
Z GOs

Q(t)=exp ——e ht,
52

(17b) where 8 is the polar angle P is the azimuthal angle in
the primed coordinate system. The cases of interest
are when n is along the direction of the field. Now

=(C lfil'+ I el']Clfml'+ Igni']}

—{Cfigi* —fi*gi]l f2g2*—f~*g2]}

X(cosp2Ccos'($/2) cos8 sin'($/2)]

where L is the angular momentum operator. The term
e'&' in (16) can be considered as a constant phase factor trace (VQ»(~)P'Q» '(~) Vt}
arising from the displacement of the particle along the
direction of the field, and it will be dropped in future
calculations.

After the first scattering, the spin density matrix
in the representation where o-, is diagonal is given by
Cfrom Eq. (15)]

~"'=2(LIfil'+

Ilail']

—i~. Cfigi* —fi*gi]} (Ig)

The density matrix after the second scattering is then

~"=VP(~)Q(~) p'Q '(~)P '(~) V', (20)

where V is defined by Eq. (2) in the representation
where 0.. is diagonal.

Let
Q(&) =Q~(~)Q (~) (21)

where Q~(/) corresponds to the same angle of rotation
as P(t), and Q, (t) rotates the spin state through the
angle corresponding to the difference between Q(t) and

Qp(t) Then.

The momentum density matrix describes a beam of
particles traveling along the s' direction, a pure mo-
mentum state. If there were no magnetic field, the
density matrix p' would describe the beam incident on
the second target. However, in the presence of the
magnetic field, both the spin and space states of the
beam are altered. The density matrix (in the primed
coordinate system) describing the beam incident on the
second target, after spending a time t in the field, is

(19)

—sin'8 sin'($/2) cos(2P —
q 2)

—siny2 cos8 sing}. (26)

Therefore, the cross section given by (24) can be
obtained from Eq. (26) by rotating the primed coordi-
nate system about the direction of the field in the
direction of rotation of the particle and through the
same angle.

Consider the case Q, (/) =1. This is true when (=0,
which means the anomalous moment vanishes. Then
(26) reduces to

CC I fil'+ Ilail']C I f2 I'+
I g2 I']

—Cfigi* —fi*gi]Cf2a2*—f~*g2] cos~2} (27)

The double-scattering cross section of (24) into a
given direction is the same as the field-free cross section
into another direction. The new direction is obtained by
rotating the direction specified by Eq. (27) in the primed
coordinate system about the field by an angle corre-
sponding to P(t). If the space state was rotated through
angle 2rsm (e being an integer), the cross section would
correspond to the field free cross section.

If the magnetic field is oriented along the y' direction,
the direction perpendicular to the initial and first scat-
tered beams, then

Q, (t) =exp(io, .e/2),

8=~/2, P=m/2, $= e.Since V is a scalar under simultaneous spin and space
rotations, p" can be expressed as This is substituted into Eq. (26) and gives Eq. (27).

Thus, this case does not differ from the case where there
is no anomalous moment, and the eGects of the anoma-
lous moment cannot be detected.

If the magnetic field is along the s' direction, the
direction of the first scattered beam,

p"=P(~)Q (~) VQ (~)~'Q. '(~) V'Q '(~)P '(~) (23)

The scattering cross section for the double scattering
is obtained by taking the trace of Eq. (23) over the spin
states. This gives

Q, (t) =exp(ia; e/2),

P(~) trace CVQ, (t)p'Q, '(t) Vt] P '(/). {24)
SP1Q

p"= VP(/)Q (t)Q, (&)p'Q (t)Q -'(&)P '(t) V'. (22)
and
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da 1 Icos(lr—s+a&r t+ e). (30)

For these experimental conditions, if e is not too small,
one can determine both the magnitude and sign of the
anomalous moment. If col.t=2ms (I being an integer),
the eGect of the anomalous moment on the asymmetry
could be detected. In the experiment of I ouisell, Crane,
and Pidd, "the time of Right between the two scatterers
was too small for e to be significantly diferent from
zero, and so they effectively measured the rotation of
the asymmetry about the direction of the field which
was caused by the normal moment. This corresponds to
the case where Q, = 1 discussed above.

If the magnetic 6eld is along the x' direction, then

Q, (t) =exp(io, e/2),

8=m/2, P=O, $= e.

Equation (26) gives

L I
fil'+

I gr I']C
I fs I'+ Igs I']

—
I frgr* —fr*gr]l fsgs*—fs*gs] cosy s cose. (31)

If P(t) corresponds to a rotation of 2nsradians . (rI being
an integer), then the double scattering cross section, for
the case where the magnetic field is in the same plane
as the initial and first scattered beams but perpendicular
to the scattered beam, is given by

do~1 —5 cos+2 cos6. (32)

It is seen that the eGects of the anomalous moment on
the cross section are detectable because of the alteration
of the asymmetry. However, in this case the sign of the
anomalous moment cannot be determined because the
change is independent of the sign of e. Also, the direction
of the field along the x' axis is not important. In the
limit of small e,

do~1 —5 cosyg. (32a)

It is therefore necessary that the time between the two
scatterings be long enough that e be at least a signi-
ficant fraction of m.

's Louisell, Pidd, and Crane, Phys. Rev. 94, 7 (1954).

Then Eq. (26) gives

C L I fil'+ I gr I']4 I fs I'+ I gs I']
—I:figi*—fr*gr]Cfsgs fs gs] cos(q s+ e)} (28)

The scattering cross section for the double-scattering
experiment is obtained from (28) by rotating the
direction about the s' axis. If, before the rotation, a
direction is specified by 8 and p in the primed system,
after it has been rotated through an angle col.t, the direc-
tion is specified by |l and ++~I,t in the primed system.
Therefore, the cross section (24) is, in the primed system,

d~-(L
I fil'+ I gil']L I fs I'+ I gs I']

Lflgl fl gl]Lfsgs f2 gs]

Xcos(ps+rer, t+ c)}, (29)
or

In the experiment to measure the magnitude of the
gyromagnetic ratio to such accuracy that the second
order radiative corrections are significant, it will be
necessary for the number of spatial revolutions about
the 6eld to be of the order of j.0' to 104.

IIo=cprrr ss+ps1spc

=p&Or+ psOs, . (A-1)

IV. CONCLUSION

It is shown, that up to first order of @0Kin the energy,
the precession frequency of the spin about the direction
of the magnetic 6eld is given by:

(1) Field parallel to velocity of the particle,

re, = (ol,L1+a]. (33)

(2) Field perpendicular to the direction of the
velocity of the particle,

~.=i[1+ a/ (1 0')—'] (34)

The ratio of the spin precession frequency co, to the
cyclotron frequency col, is for the two cases:

(1) I,/rel, ——g/2= L1+a], (35)

(2) ~;/~i= g/2= t 1+a/(1 0')'], — (36)

where g is the gyromagnetic ratio for the spin moment.
Although the magnitude of the second order correction
to the moment is constant in a time-independent homo-
geneous magnetic field, the gyromagnetic ratio depends
upon the relative orientation of the field to the velocity
of the particle and also on the magnitude of the
velocity.

The Mott double-scattering cross section is modified

by the intervention of a magnetic field between the two
scattering centers. For the case where the magnetic
field is along the direction of the 6rst scattered beam
(s' direction), the cross section is given by

dorsal —5 cosLqrs+rert(1+a)]. (37)

When the magnetic field is perpendicular to the direc-
tion of the first scattered beam but parallel to the plane
of the initial and first scattered beams, the expression
for the cross section is more complicated. If the particle
executes an integral number of revolutions about the
direction of the field, the cross section is given by

dos~1 —8 costs cosLacer, t/(1 —P')&]. (38)

If the particles do not make an integral number of
revolutions, the double scattering cross section can be
obtained from Eq. (38) by rotating the primed coordi-
nate system about the 6eld through the same angle that
the electrons have been rotated. The cross section is
given by Eq. (38) in the new coordinate system.

The eQ'ects of depolarization of the electron beam on
the double-scattering cross section will be discussed in
a later paper.

APPENDIX

Consider the Dirac equation for a particle in a
constant homogeneous magnetic field,
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where O~ and 03 are the operators which are the coef- Therefore
ficients of the pi and p&, respectively. This Hamiltonian
is then transformed to another representation by the g —

p e. K cos(~/2) sin2(~/2)
following transformation 7r2

p2'p/2IIDei p2 t/2 (A-2)

where q is independent of the p operators and assumed
to be independent of time. Then

H= po[Oo cosq —Oi sing)

+pi[Oi cosoo+Oo sinoo].

If q is chosen such that and
—(e5/c) X'—m'(e K),

(e ~)(e K)+(e X)(e oo)=2oo K.

(e oo)(e X)+(e X)(e oo)

+pl sin(oo/2) cos(q/2),

where the trigonometric functions in Eq. (A-11) are now
independent of o ~. Now

(e oo)(e X)(e oo)=2(e oo)(oo X)

then
tan oo =—Oi/Oo,

H =po[Oi'+Oo']'.

(A-4)

(A-5)

This new Hamiltonian is the Hamiltonian of the
particle in the Foldy-Wouthuysen representation, and
for the above case it is

Therefore,

B=po{e X—(1—moc'/E )
X[(e oo) (oo K)/s' —(ekc/2) 3C'/c'~'}

—»(~ K/I~I)(1 —mo'c4/E '). (A-12)

H =po[mo'c4+c'rr' ehce R]—'= poE, . (A-6)

If p3 is taken diagonal with the eigenvalues of &1, the
energy eigenvalues are just & the square bracket above.

In this representation the positive eigenvalue of p&

refers to the positive-energy states and the negative
eigenvalues to the negative-energy states.

In the usual Dirac representation, a particle with an
anomalous moment of magnitude ago is described by a
Hamiltonian given by

HD =cpie"'oo+po(moc —aloe"' K). (A-7)

This is transformed to the Foldy-Wouthuysen repre-
sentation and gives

JI =g ip2&/2' gip2'p/2= g —gpop

Since we are restricting ourselves only to positive-
energy solutions of the wave equation, the terms in p&

are dropped, and for p3 we substitute its positive eigen-
value. The Hamiltonian is then given by

H= 8 [1—ence K/8 ']'—apo{e R—(1—moc'/E )
X[e oo(oo K)/~' —(etc/2) (BC'/c'm')]}. (A-13)

The first term in (A-13) is expanded to give

ek 1 (egBC q'
E.= a.— K—

28 /c 28 &28,/c)

Since the minimum eigenvalue of b is mac, then up
to terms which are linear in go I KI, we can write

( e5
E.=S.—

I Ie K.
42' /c)

where A is given by Eq. (A-6) and 8 is

p2 0/2O . +gip2 rp/2

Therefore
(A-9)

The correction terms are smaller by a factor of 10 "
for a field of about one hundred gauss. Therefore up to
terms which are linear in poI RI, the Hamiltonian in

Eq. (A-13) becomes

8=po{cos(oo/2) e K cos(p/2) —sin(q/2) e. K}
+pi{sin(v/2)e K cos(oo/2)

+cos(oo/2) e.K sin(oo/2) }. (A-10)

Now p is given by Eq. (A-4), so that cos(oo/2) is a
function of

[(e ~)(e ~)]"-[e—(ea/c)e X]"

Since K is a constant homogeneous field, cos(y/2)
commutes with e K. However, sin (y/2) is a function of

(e oo)[(e oo)(e oo)]" (e oo)[m' —(equi/c)e. X]"

so that

II= 8— o' X—Gpoo'' $C
2 a./c

+ago(1 —moc /8 ) (e oo) (oo R)/~o. (A-14)

If we consider wave functions which are product func-
tions of eigenfunctions of 8 and a function of 0., then
we can replace 8 in the denominator by its eigenvalue
moc'/(1 —P') &, which gives

II= &.—moe K[(1—P')~+a]
(e v)(v X)

+ago [1—(1—P )&), (A-15)
p2

because

sin(oo/2) (e R)= [(1—cosy)/2]&(e oo) (e. R)/I oo I.
(A-11) Thus this now corresponds to Eq. (12) in the text.


