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from a 6lament consisting of a platinum plus 10 percent
rhodium ribbon with a small tungsten ribbon spot-
welded to it in a number of places. This arrangement
was expected to give a 61m with the order of 10 percent
excess barium. ' The structure was not noticeably
changed. An estimate of the minimum concentration of
absorption centers associated with the peak at 3140A
gives 0.03 percent while the value for the peak at
3200A would be considerably smaller.

The small widths of the major absorption peaks at
half maximum (0.07 ev and 0.20 ev) and the fact that
the structure sharpens with substrate temperature
during evaporation of a film, appear to imply that the
absorption is associated with the perfect lattice rather
than with defects in the lattice. The sharpening of the
structure at lower temperatures favors the view that
these are exciton absorption peaks. Exciton absorption
in BaO in the spectral region near 4.0 ev has been
proposed to account for optical absorption and photo-
conductivity data, ' photoemission, ' and the tempera-
ture dependence of photoemission and photo-
conductivity. '

It should be noted that the absorption constant is at
least as great as 300 cm ' for single crystals of BaO
prepared by a considerably different technique from
these films, ' and that the photoconductivity of these
single crystals has a maximum in the region of the

~ Based on private communication from G. E. Moore.
r W. W. Tyler and R. L. Sproull, Phys. Rev. 83, 548 (1951).' Apker, Taft, and Dickey, Phys. Rev. 84, 508 (1951).' H. B.DeVore and J. W. Dewdney, Phys. Rev. 83, 805 (1951).

absorption peaks. ReRectivity measurements from
single BaO crystals at low temperatures would be
desirable to ascertain whether the density of these
absorption centers is indeed as great in single crystals
as it is in BaO films.

Overhauser" has pointed out that the observed
structure can be understood in terms of an exciton
model based on the tight binding approximation. The
four absorption peaks arise from transitions between
the ground state of the oxygen ion (2p)' and the four
excited states of the (2p)s3s configuration. The relative
splittings of the four components can be 6tted in terms
of two constants: The exchange energy between 2p
and 3s states and the spin-orbit splitting of the (2p)'
ion core. A j-j coupling model is necessary. The absorp-
tion peaks at 3200A and 3j.40A are produced by
transitions to excited states of angular momentum
J=O and 2, respectively. These peaks are weak because
the transitions are forbidden by optical selection rules.
The absorption peaks at 3050A and 2880A are produced
by transitions to excited states for which J=1. They
are allowed by optical selection rules and hence are
strong.

The author is deeply indebted to Professor R. L.
Sproull for his guidance and interest in this work and
to Professors J. A. Krumhansl and A. W. Overhauser
for discussions of interpretation. "

's A. W. Overhauser (private communication).
"Since this work was performed, Mr. Koji Okumura has

kindly communicated his studies of optical absorption of BaO
6lms, He has found results similar to the 5'C curve of Fig. 3.
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The critical points (points where Bca/Bx;= 0 for all s= 1,2,3) of the frequency co of the lattice vibrations in
wave number space (x&,am, xs), shown by Van Hove to exist for a very general class of crystals, are located
for the monatomic simple, face-centered, and body-centered cubic lattices. The position and nature of the
resulting singularities in the frequency distribution are found as a function of the ratio of force constants for
second-nearest neighbors and nearest neighbors, and the qualitative features of the frequency distribution
are thus determined. A method for using the information so obtained to determine the frequency distribu-
tion quantitatively is outlined.

I. INTRODUCTION

HE general problem we are concerned with is the
Gnding of the energy eigenvalues of the Schro-

dinger equation for a system consisting of a very large
number of coupled harmonic oscillators arranged in

space in a simple lattice. Physically this system is in-

*Preliminary results reported at the Washington Meeting of
the American Physics, l Society, April 1954 LPhys. Rev. 95, 617
(1954)j.

terpreted as a crystal, the oscillators as the constituent
atoms. Since the number S of atoms and hence the
number of eigenvalues in a macroscopic crystal is of
the order of Avogadro's number, an actual numerical
evaluation of the latter is impractical even after an
analytical expression for them has been obtained;
and we are faced with the additional, usually more
di6icult, problem of ending the distribution func-
tion g(E)dZ of energy levels, defined as the density
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of energy levels to be found in the energy range
(E, E+dE). This function will determine the partition
function J'g(E)dE exp(E/kT) and thus all other ther-
modynamic functions of the solid. ' Among other fields
in which frequency spectra are of interest may be
mentioned optical properties (infrared absorption and
Raman spectra), x-ray difFraction, superconductivity, '
neutron scattering. '

Another way of formulating the problem, a semi-
classical way, is to ask for the frequency eigenvalues
("normal modes") of the wave equation for the system
described above considered classically, and for the
"frequency distribution" g(cos)d&o', the fractional num-
ber of frequencies in the range (&o', &o'+dcos), of them.
The two formulations are equivalent mathematically,
and also physically if Planck's assumption concerning
the levels of an oscillator is made. 4 The semiclassical
formulation is the one which is most used, even today,
probably because the first paper on the subjects ap-
peared before quantum mechanics was invented, and
we shall generally follow this usage in this paper.

An exact calculation of the frequency spectrum has
so far been possible for only very few crystals~'4 (other
than one-dimensional ones), and special, often physi-
cally unrealistic, assumptions had to be introduced.
However, all frequency distributions found by exact
calculation contained points of nonanalyticity: the
two-dimensional crystals showed infinite logarithmic
peak. s, the three-dimensional ones infinite discontinui-
ties in the slope. Van Hove" has traced the singularities

' J. E. Mayer and M. G. Mayer, Statistical Mechanscs (John
Wiley and Sons, Inc. , New York, 1940), Chap. XI.

s J.Bardeen, Phys. Rev. 80, 567 (1950);H. Frohlich, Phys. Rev
79, 845 (1950).' G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).

4 This equivalence follows essentially from the fact that semi-
classical theory gives correct results when it deals with oscillators
/see, e.g. , L. Pauling and E. B. Wilson, Qnantnm Mechanics
(McGraw-Hill Book Company, Inc. , New York, 1935)j, pp. 9, 30,
72. In connection with the problem at hand, this has been discussed
explicitly by E. W. Montroll and D. C. Peaslee, J. Chem. Phys.
12, 98 (1944), and it is brought up again only because conversa-
tions and the literature reveal that many persons seem to mistrust
the results of the theory because it is usually formulated semi-
classically. A remarkable example of this mistrust is the statement
"Die Schminglngee des idealen Gitters stellen ein qlantenmechan-
isches System von makroskopischen Dimensionen dar; dene die
Eormalkoordinaten sind Amplitlden von IVellen, die sich dlrch das
ganze Gitter erstreckee. Das scheint cine bedenkliche Annahme. "M.
Born, Festschreft Ahademee der Wsssenschaften, Gottsngen (Springer,
Berlin, 1951),p. 1.' M. Born and Th. von Khrmhn, Physik. Z. 13, 297 (1912).' E. W. Montroll, J. Chem. Phys. 15, 575 (1947).

r M. Smollett, Proc. Phys. Soc. (London) A65, 109 (1952).
W. A. Bowers and H. B.Rosenstock, J. Chem. Phys. 18, 1056

(1950);21, 1607 (1953).
e G. F. ¹well, J. Chem. Phys. 21, 1877 (1953).
'0 C. M. Askey, thesis, University of North Carolina, Chapel

Hill, North Carolina, 1951 (unpublished)."J.P. Hobson and W. A. Nierenberg, Phys. Rev. 89, 662
(1953).

n H. B. Rosenstock, J. Chem. Phys. 21, 2064 (1953).
'3 H. B.Rosenstock and G. F. Newell, J. Chem. Phys. 21, 1607

(1953).
'4 H. B.Rosenstock and H. M. Rosenstock, J. Chem. Phys. 21,

1608 (1953).
'e L. Van Hove, Phys. Rev. 89, 1189 (1953).

to "critical points" (points where all c)ce/el@;=0) of the
surfaces of constant frequency in wave number space
and has shown that a certain minimal number of critical
points follows from the periodicity of or in wave number
space alone; hence that the frequency distribution of
any crystal will show a minimum number of singularities.

In this paper we wish to show how the critical points,
and from this the singularities in the frequency distribu-
tion, may be located for certain simple lattices. We use
the square lattice first for an example in two dimensions
and then treat the three-dimensional simple, face-
centered, and body-centered cubic lattices. Finally we
show how the information so obtained enables us to get
a rather complete picture of the frequency distribution.

and the potential energy.

I =[l Z +lP Z 3(&-d.)'
2nd-nearest
neighbors

nearest
neighbors

Here (tt;,s,v;;q,w,;s) are' the displacements in the
(x,y, z) directions of the atom labeled according to its
position by subscripts ij k (If we.are dealing with a 2D
lattice the index k is not present. ) d is the distance
between two atoms and do is the equilibrium distance;
d—do is to be expanded in the e, e, m and only the lowest
nontrivial terms, leading to Hooke's law forces, are to
be retained. nt is the mass of each atom. n and P are
force constants for nearest and second-nearest neigh-
bors, respectively. One can then write down the Lag-
rangian equations of motion for each atom, solve these
by standing waves with periodic boundary conditions,
and thus obtain the secular equation:

6(xi)Ãs)Xsam

Q)Pi co ) =0)

which determines the squared frequency oP. Strictly
speaking, x;=p,w/1V& is defined only for integer values
of p; between —iV& and iV&, but since i7 is a very large
number, x; may be considered as a continuous variable
running from —

m to m. Let us write down the determi-
nant 6 explicitly for the cases of interest, calling the
diagonal elements f,; and the offdiagonal ones f;;. For
the 2D square lattice, we have'

f,;= (1—c~)+a (1—cics) —)~,

fcs'= cr(1 cs)—

II. BACKGROUND AND NOTATION

We use the following abbreviations: CP for critical
point(s), FD for frequency distribution, 1D, 2D, ~ ~ iD
for one-dimensional, etc., sc, bcc, fcc for simple cubic,
body-centered cubic, face-centered cubic.

The process of obtaining an expression for, the fre-
quencies of the normal modes of a monatomic lattice is
straightforward and well known. ' One sets the kinetic
energy:

T= sttt P ('ts; 's +8, s+51,s's ), ''
all 8,j,k
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for the 3D sc lattice, we have"

f;;= (1—c~)+a(2—c,c;—c,cs) —X,

f;;=o(1 cP—);
for the 3D bcc lattice, we have"

f,,= 1 ctcscs+y (1—cP) —ps,

f;,= (1—c s)cs,.

for the 3D fcc lattice, we have'~

(3)

(4)

"Consider a function f defined on a closed topo
logical manifold satisfying convenient conditions of
differ entiability and regularity. Assume f to be
three times continuously differentiable and to have
no degenerate critical points. Call index of a non-
degenerate CP the number of positive eigenroots of
the quadratic form in the Taylor expansion of f near
the CP. Under these conditions the number of CP of
index i is at least equal to the Betti number R; of the
manifold for the dimension i." By the Betti number
R; is meant "the maximum number of closed i-dimen-
sional surfaces on the manifold which cannot be
transformed into one another or into a point by a
continuous deformation of the manifold. " It is

"P.C. Fine, Phys. Rev. 56, 355 (1939)."R. B. Leighton, Revs. Modern Phys. 20, 165 (1948).
's M. Morse, Am. Math. Monthly 49, 358 (1952); Trans. Am.

Math. Soc. 27, 345 (1925).

Here =of/n, c,=cosx;, )I, =mar'/2a, y=3o/2, iiii=3X/4,
ps ——X/2 and the indices take on values 1, 2 in Eq. (2)
and 1, 2, 3 in Eqs. (3), (4), and (5). Subscripts on pii
and p, J; will be suppressed below.

We observe that in each case the secular equation (1)
can be solved for X or p by elementary algebra,
yielding three, or in the case of Eq. (2), two solu-
tions ("branches") but that the expressions so obtained
would be so complicated as to be of little use in finding
the FD. Even the more restricted problem of finding the
CP defined by ro/r)x;=0 for all a; is seen to present
great algebraic difhculties when attacked by the straight-
forward approach of solving Eq. (1) for X, differentiating
with respect to x~, x2, x3 and solving the resulting equa-
tions simultaneously. Henceforth, we shall therefore
work mostly with the determinantal equation (1)
itself rather than with the solutions which can in prin-
ciple be explicitly obtained from it.

The first, and major problem of this paper, is to
locate the CP of X. Van Hove's paper, " in which the
question of critical points and singularities in the fre-
quency distribution caused by them was first generally
treated, is based on a topological theorem due to Morse, "
which van Hove states as follows:

further stated that in two dimensions Rp=1 Ry=2,
R2=1, and in three dimensions Rp=1, R~=3, R2=3,
R3= 1.

To the reader not versed in topology, it may not be
clear from the above statement of the theorem, nor
from the proof referred to,"that the predictions of the
theorem for two- and three-dimensional spaces may also
be obtained intuitively from extremely elementary
considerations. Since in this paper more use is made of
intuition than of mathematical rigor, a few words on this
will be helpful. "Consider a function f(x,y) periodic in
both variables. (It helps to visualize this function as
contour lines representing altitude, as on an ordinary
geographical map. ) Such a function is shown in Fig. 1.
The unit cells of periodicity have without loss of
generality been taken as squares and indicated in
heavy lines. In the center cell, there will be at least one
point where f takes on its maximum value"; we have
called that point M and since in its neighborhood, the
contours will be small closed curves, w|.' have encircled
it in Fig. 1a. From the required periodicity it follows
that maxima will also appear at points labeled M2,
M3, Similarly, at least one minimum will exist
in each cell, and these have been labeled m, m~, m2,
and also shown in Fig. 1a. Now consider the path of a
traveler going from "mountain" M to "mountain" M2
along some path A&. He will have to start by going
downhill, end up by going uphill, and reach a minimum
somewhere in between, at a point which we may call
(xi,yi). If he chooses an adjacent Path As instead, he
will reach the minimum along that path at some
adjacent Point (xs,ys). Of all Possible Paths, there will
exist one, A;, at whose minimum the relation f(x;,y,))f(x;,y;) will be satisfied for all jNi. This point
(x;,y;) is a saddle point and the contour is x-shaped
there as indicated in Fig. 1b. In the same manner we
see that another saddle point will appear between m
and m2. Other saddle points will appear at equivalent
points in the other cells, by periodicity. In Fig. 1c these
saddle points are shown connected up in the simplest
possible way. We see that each cell has one maximum,
one minimum and two saddle points; this is what
Morse's theorem predicts for two dimensions. In three
dimensions the surface f= fs through a saddle point is,
near the saddle point, shaped like a double cone;
adjacent surfaces are hyperboloids of one sheet for
f~fs and hyperboloids of two sheets for f~~ fs and
the saddle point is called an S~ point accordingly. The
reader who will construct (or visualize) the 3D model
corresponding to Fig. 1 will have no difficulty convinc-
ing himself, by the same type of argument as we used
for two dimensions, that each periodicity cell will con-

"A very similar "heuristic discussion" of Morse's theorem is
given by E. W. Montroll, Am. Math. Monthly 61, No. 7 (suppl),
46 (1954).

~ The situation where the maximum value is taken on by a con-
tinuous family of points (a curve) can arise, but may be regarded
gN exception@).
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FIG. 1. Illustration of the predictions of Morse s theorem in two dimensions. Detailed explanation in text, Sec. II.
/

tain at least one maximum, one minimum, three 5+
points and three 5 points, in agreement with Morse' s
theorem.

Finally we wish to review brieQy the conclusions of
Van Hove concerning the nature of the singularities in
the frequency distribution which each of the above CP
will cause in a 3D crystal. This is done in Table I.
Table I will enable us to sketch the frequency distribu-
tion as soon as we have located all the CP. Care must
be exercised only in eliminating "generalized" CP
which might give rise to less strong singularities. "

III. LOCATING THE CRITICAL POINTS

We have seen in the preceding section that we cannot
hope to find the critical points by straightforwardly
solving the three equations W./Ba, =0 simultaneously.
In looking for another method we observe that X as
given by (1) with (2), (3), (4), or (5) depends on the x;
only through the c;=cosx;. It follows first of all that
we may restrict ourselves to considering the half-
periodicity cube, 0&@&,x2 f3&x. Furthermore we may
write BX/Bx;= (dc;/dh;) (B/Bc,) = —sine;(B)i/Bc, ).Since
therefore BX/Bx;=0 if and only if either sin@;=0 or"
BX/Bc;=0 it follows that we may have the following

types of CP:

Type-1 CP All three sins; vanish.
Type-2 CP Two sinx, vanish and one H./Bc; vanishes.
Type-3 CP One sine, vanishes and two BX/Bc; vanish.
Type-4 CP All three N./Bc; vanish.

Now sins, vanishes only when x; is 0 or x. Since in the
above classification no other mention appears of the x;,
we may henceforth consider the c; as our variables and

pay no more attention to the x;. Henceforth when we

speak of corners, faces, or other features of a cube, we
shall mean the cube —1&c&, c2, c3&1.We may now say.'

Type-1 CP appear at the 8 corners.
Type-2 CP appear on edges, at (1D) minima or maxima

along the edges.
Type-3 CP appear on faces, at (2D) maxima, minima,

or saddle points on the faces.
Type-4 CP appear inside the cube.

We have thus already located the minimum number 8
of CP predicted by Morse's theorem (the 8 Type-1 CP
at the 8 corners). This of course is no accident but
rather a consequence of the fact that Morse's theorem
is arrived at entirely by periodicity considerations, and
that the Type-1 CP are the ones that owe existence
entirely to periodicity. The other type CP also depend
to a greater or lesser extent on the detailed structure of
the secular equation and are correspondingly harder to
locate.

The locating of Type-2 CP is still rather easy. When
two sins; vanish, four off-diagonal terms vanish, the
determinant factors into the three diagonal terms which
are linear in X, and each of these can be considered
individually. Each contains only one variable in which
it is at most quadratic, the equation H/Bc;= 0 i,s there-
fore easily solved, and the Type-2 CP have been found.

TABLE I. Nature of singularities in the frequency distribution
(FD) of a three-dimensional (3D) crystal caused by ordinary
(not generalized) critical points (CP). Here e)0; the table gives
the erst nonconstant term in the expansion of g(X) about X.;~ indicates the sign of the term's coeKcient.

CP at Xo g() c —e) g(~ +~)

maximum 3f
minimum m
saddle point S
saddle point 8+

""Generalized critical points" are dered in reference 15 as
points near which the topological shape of the surfaces is the same
as for ordinary CP but at which the equations SX/Sz; Odo not=
hold. The generalized critical point that appears in reference 15
at the absolute minimum of frequencies appears as an ordinary
CP in our paper because we consider the distribution of ) =mes'/2e
rather than co as does Van Hove. Since it is X rather than co that
appears in the secular equation, this leads to other simplifications
as well. Transition from the distribution g (X)dX of X to the distribu-
tion G(co)da& of co is made by noting that we must have g(X)dX
=G(co)da&; hence g(X)Pm/2a)2cad&v=G(cu)des or G(a&) =ruing(X)/a.~ A possible exception to this statement might arise if BX//Bc; = ~
at a point at which sine; 0. This does not occur.
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The method for locating Type-3 CP, the ones that
appear on a plane (square) is best explained by using the
square lattice, Eqs. (1), (2), as an example. The equa-
tion is quadratic, so there will be two solutions; but,
as explained in See. 2, we wish to avoid considering
these in detail as their form will be rather complicated.
However, their behavior on the edges is simpler and is
easily found by equating c& or c2 to 1 or —1; this causes
the determinant to factor into two terms linear in X.
(If the Type-2 CP have been found explicitly, then this
work has already been done. ) We thus get:

t
Xi=a (1—c2)

when c~=1,
l X2= (1+0)(1—c2)

t
Xg= (1+0){1—cg)

when c2=1,
IX4——0 (1—cg)

from the f~~ term,

from the f22 term; '
(6)

from the f~q term,

from the f,2 term;

A —X

D 8—A

=0.

FIG. 2. Illustration of the relation between MI points on the
boundary of a region and the two-dimensional critical points
inside it. Detailed explanation in text, Sec. III.

and similar expressions when c~ or c2 are —1. In this
way we determine the behavior of X on the boundary of
the square, and from this we shall attempt to find its
behavior inside the square. One question which arises
erst however is whether at (cq,c~) = (1,1) we shall join
Xq to X3 and X2 to X4 or Xq to X4 and X2 to X3. (All four
solutions take on the value of 0 at that point, so that at
first sight either choice would seem possible. Points
where two solutions take on the same value are called
"contacts between branches" by Van Hove. ") In two
dimensions this question can be easily and explicitly
resolved. Consider the equation

Its two solutions are

2+=A+ 8+ L (A J3)2—+4CD)&,

2& =A+8—L(A —8)'+4CD1~&

where we wish to emphasize that, as usual, t ]& means
the positive square root. If A, 8, C, D are functions of
two parameters x, y, note that X+&X for all x, y. When
CD approaches 0, (8) approaches

or

2K+=A+8+
i
A B i,—

n =A+a —[A —a~,

)+=A or 8, whichever is larger,

X =A or 8, whichever is smaller.

This makes it clear that in (6) we must join Xq to X4

and ) 2 to X3. Observe that simply joining the solution
arising from the fn term for cq ——1 to the solution arising
from the f~~ term for c2 ——1 would have been incorrect.

More generally we may assert: in order to properly
identify solutions, it is sufhcient to make sure that if
'Ag&)2&)3 at any one point, then )&&)~&A3 at all
points. For if, for any two points, there exists a path
along which X& is never equal X2, then A, & will be the larger
at the end point if it started out larger at the initial
point, and our rule for identification becomes necessary
as well as sufhcient; whereas if no such path connecting
the two points exists, the two points must be separated
by a continuous curve (or, in three dimensions, by a
continuous surface) of points where the two solutions
are equal; so that it then does not matter how the
identification is made. Thus suKciency is assured in
either case. This argument and conclusion is equally
valid in two or three dimensions; we shall have to keep
it in mind also for locating Type-4 CP later.

We have now established the behavior of the solutions
on the edges which bound the faces; in particular we
know (from the work for Type-2 CP) the 1D maxima
and minima along the bounding edges. We shall now
show how this gives us considerable information con-
cerning the 2D maxima, minima and saddle points in
the square inside those edges. In Fig. 2, the heavy
lines represent a closed curve bounding a region, and
light lines, as before, are contours of constant frequency.
(Although in most cases that concern us here, the region
is a square, we have not drawn it so in order to empha-
size the greater generality of the argument. ) In Fig. 2a,
no 2D CP is enclosed, and we find one 1D minimum
and one 1D maximum along the boundary. This is the
simplest possible case. In Fig. 2b, the boundary {or the
contours or both) have been distorted and as a result
four 3f~ points now appear on the boundary (notation:
and M; point is an iD maximum or minimum). Note
that at three M~ points, the contours are tangent to the
boundary from the outside (we call them M~' points);
and at one 3f~ point, the contour is tangent to the
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Illustration

Fig. 3a

up

, 1'2
.etc.

rp

'2
.etc.

.2'3
etc.

p
j.
2

Fig. 3b

Fig. 3c
Fig. 3d

Fig. 3e
Fig. 3f

TABLE II. Possible 2D CP inside a region along whose boundary
the 1D maxima and minima are known.

Take, e.g., the square lattice again: X as de6ned there is
symmetrical about the line c~=c2, and it follows from
this that if any S2 or M2 are contained in the square
at all, at least one of them will appear on that line. A
CP located on this diagonal is again easily found and
investigated on account of the fact that the determinant
simplifies along it. Detailed calculations are given in the
next section.

The same general ideas that enables us to locate the
Type-3 CP on the faces also apply to locating the
Type-4 CP inside the cube. Although we have not been
able to formalize our work by establishing a rule like
(11), the study of two-dimensional Ms or Ss points on
the surface of the cube, together with symmetry con-
siderations, enable us, as is shown in the next section,
to locate the fortunately small number of Type-4 CP
that the lattices of interest show for fairly small r.

etc.

2

, 3
4.etc.

Fig. 3g
IV. LOCATING THE CRITICAL POINTS—

CALCULATIONS

A. Square Lattice

It is convenient to write

boundary from the inside (we call this an 3f~' point).
We can convince ourselves that by distorting the con-
tours or the boundary, we can add M~' points and
M&' points only in pairs, and that M&' —Mj' will re-
main equal to 2 under such distortions. Now assume
that in a simple configuration as in Fig. 2a, a M2 point is
just outside the boundary (Fig. 2c) and observe what
happens if the boundary is slightly distorted so that
the 3fs point gets into the bounded region (Fig. 2d).
We see that the result is the addition of one M~' point
to the boundary and the removal of one M&' point from
it. Similarly, Fig. 2e and 2f shows what happens to the
boundary if it is distorted so as to enclose a new S2
point (a two-dimensional saddle point); two Mr' points
get added to the boundary. We may summarize the
results by writing

p= X/(1+o),
r=o/(1+o. ),
= 1—cy)

g= 1—
C2~

(12)

p+re(1 p) I——

rp(2 —p)

rV(2 —0)

rJ+rp(1 q) p——(13)

and to consider the square 0&p, q&2 for 0&r&1.
The secular equation (1) with (2) beomes then

0=As(p, q; r; p)

M to —M' r' ——2+2Ss—2Ms.

This may be solved to give

(10)

From Eq. (11), Table II may be constructed. Table II
tells what configurations of M& and 52 points we may
expect if we know the M~' and M~', points on the bound-
ary. (It should be added that in practice Mr' and Mr'
points are readily distinguished by expanding the
secular equation about them. ) Some of the possibilities
of Table II are illustrated in Fig. 3. For each value of
M&' —M~', an infinite number of possible configurations
still remain, to be sure, but for the simple lattices we

consider here and for comparatively low values of the
force-constant ratio 0, only the simpler ones occur, and-

symmetry considerations enable us to decide which. Fxo.3.Illustration of somgof the con6gurations derived in Table II.
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2 (l-7) 2T- 2(l-T)

2?

FIG. 4. Behavior of the solutions for the square lattice along
the edges. Numbers show the values taken on by the two solutions
at the corners.

Along the edge P= 0 this reduces to

py= TQ~ p2= g j

and along the edge P =2 this reduces to

p3=2 rq, p4—= 2r+ (1—2r)q)

(14a)

(14b)

with similar expressions for the edges q=0, 2. Since the
expressions (14) are linear, there will be no minima or
maxima along the edges except possibly the end points
(corners). Which solution is to be joined to which at
the corners is determined by continuity at (0,2) and

(2,0) and by the rule established in Sec. III at (0,0)
and (2,2). Figure 4 shows the result. We see that p+
has along its boundary two minima at (0,0) and (2,2),
and two maxima, at (0,2) and (2,0); p has along its
boundary one minimum at (0,0) and one maximum at
(2,2) if r &—,', but has the same location of maxima and
minima as p+ if r&-,'. To determine whether these are
Mi'or Mi'points, we expand (13) about them and find:
(0,0) is an Mi' point in both p+ and p for all r. (0,2)

B. Simple Cubic Lattice
It is convenient to write

p =X/(1+2o), p= o/(1+2o),

p=1—ci, q=1—c2, r=1—c3,

(15)

and to consider the cube 0&p,qr&2 for 0&p&1.
(1) with (3) then become

and (2,0) are Mi' points for p+ for all 7, and Mi' points
for p for r) i2. For p+, (2,2) is an Mi' point for r&-',
and an 3Ei' point for ~& -,'; for p it is an 3f~' point for
r& ~ and an 3f~' point for r& 2. All this is illustrated
in Fig. 5.

Next we look for 2D CP along the main diagonal
(see the remark near the end of Sec. III) by setting
P=q and finding maxima or minima along that line
by differentiation. We find only one, p= (1+3r)'/Sr
loca'ted at p=q=(1+3r)/47. This point is located
inside the square for r& —,', belongs to p+, and by expand-
ing about it we 6nd that it is a saddle point when
r& -,'. Table II now tells us unambiguously that for p,
(S2,M2) = (0,0) for all r, and that for p+, (S2,M2) = (0,0)
for 7 & —,'. For p+ with 7 & —,

' there remain only the possi-
bilities (S~,M2)= (1,0), (3,2), (5,4), etc., since if there
were an odd number of SI2, symmetry would demand
that at least one of them show up on the main diagonal,
and we reject all but (1,0) as too complicated to result
from (13). The final sketches, Fig. 6, showing all CP,
may now be made. We see that only three topological
configurations occur; we shall call them I, M, Ã as
de6ned in Table III.

0=
P+ (q+ )(1—P)— pr(2 r)—

pP(2 P) q+ p—(P+r) (1 q) p—pr(—2 r)—
pP(2 P)—pq(2 q) r+p(P+q) (1—r) —p

(16)

The behavior along the edges is established by equating
two of the variables P, q, r to 0 or 2. Again we find that
along each edge p is linear in the third variable. From
the symmetry of the determinant together with the
rule for joining given in Sec, III, it follows that the cube
surface of each of the three solutions of (16) will consist
of two sets of three identical faces. The behavior on one
set of these faces is found by setting one of the three
variables equal to 0, on the other set by setting one of
the variables equal to 2. Upon setting r =0, (16) gives

~blare 62 is defined by (13) and analyzed in Sec. I&A.
Upon setting r= 2, (16) gives

p(P+q) —p]62—(P,q; o; v) =0,

with o related to p by (15) and v= (ii—2p)/(1 —2p). The
cube faces are thus completely determined by the work
of Sec. IVA and the simple expressions in the brackets
of Eqs. (17), (18). After joining them up properly we
find for the faces of the three solutions:

L, (p+q) p)~, (p,q; p, p) =0—, (17)

Range of ~
Configuration of

s +(~)
Configuration of

p-(~)

TABLE III. Notation concerning configurations exhibited in Fig. 6
for the square lattice.

pi(p) =

pm(p) =

p(P+q) on front faces,

p-(p) on front faces,
(19)

(1—2p) p+(o)+2p on back faces;

(1—2p)p (o)+2p on back faces;

0&~&)

~&~&1

N
N
L

2 p(P+q)—
on front faces,

on back faces.



D YNAM I CS OF SI MPLE LATTI CES 297

0& p& t/5

gE
11F

~/5&T & ~/2

eh
1F 1F

(c, (A,

&/2(T& ) t/2«& I

aE1F

Fzo. 5. 3II&' and M&' points for the square lattice.

2T

——2(l-r)

Here p~(r) are the functions sketched in Fig. 6; by
"front" and "back" faces, we mean faces containing
points (p,q,r)=(0,0,0) and (2,2,2), respectively. The
two variables not constant on a face have for simplicity
been written p, q. We inay now use Table III to prepare
an analogous table (Table IV) for the faces of the cube
and also sketches of the surfaces (contained in Fig. 7).
All Type-1 and Type-3 CP can be read off the sketches;
there are no Type-2 CP. To locate the Type-4 CP we
investigate the main diagonal of the cube and find one
CP, Ais ——(1+6p)'/16p located at p= (1+6p)/Sp, and a
double one, Ais ——1/4p located at p= 1/2p. p, , is inside the
cube if p) 1/10, and by expanding we find that it is an
Ss point for 1/10(p((2+10—S)/6—0.221 and an Ms
point otherwise. When it is an 3f3 point the configura-
tion becomes much more complicated and we shall
therefore restrict ourselves to p(0.221 henceforth.
This stipulation also eliminates all consideration of the
CP p6, as it is inside the cube only when p& 4. Study of
the surfaces in Fig. 7 shows that the entry of an 53
point into the cube at p= 1/10 at the point (2,2,2) is
possible without change in the surface configuration
only for the solution pe. Finally we remark. that when

TABLE IV. Configurations on curbe faces for simple cubic (sc)
lattice, as exhibited in Fig. 7. Notation as in Table III.

p=0 we get two-dimensional continua" of critical
points at the frequencies 0, 2. Ke are now able to ex-
hibit in Fig. 7 sketches showing all critical surfaces for
all p from 0 to 0.221.24 The CP are listed in Table V.

C. Body-Centered Cubic Lattice

This is more conveniently treated in terms of the
original c; rather than the p, q, r One sol.ution is found
not to be linear along the edges, but no maximum or

TABLE V. Critical frequencies for the simple cubic lattice.

0
pl 2p
p2=4p
p,3——2—4p
jg4= 2—2p

pmsx= 2

us= (I+fip)s/&fip

pr = (I+3p)'/gp
i s=2p+(&+p)'/gp

cp

S
S+
S
Sp
M
S I 0 &p &0.221
jII 0 221 &p
S+
S+

Range

all
all
all
all
all
all

p&k
p)$

—( 1 +3—r) /Br
2

FIG. 6. Sketches of curves of constant frequency, square lattice.

Range
of a

0&0.&)

3«&k

Range
of p

0&p&~
g&p&g1« 1

1 3(P)
front back
face face

N N
N N
N N

Configuration of
~~(p)

front back
face face

ul(P)
front back
face face

L N
L N
j/I

s' This, and its effect on the frequency spectrum (see Sec. V) is
well known. See, e.g. , the discussion by Newell, reference 9.
Newell has also predicted the entry into the cube of the S3 point
p5 when p=1/10.

24 To the reader who has difhculty visualizing the connectedness
of the surfaces from the rather congested drawing of Fig. 7, we
suggest that he first prepare cubes (or half-cubes respectively) and
drawn the appropriate lines on the surfaces; and that he then re-
draw the same figures on a sphere (or hemisphere respectively) or
similar figure containing no sharp edges or corners to confuse him.



298 HERBERT B. ROSENSTOCK

!
I

I

Pl
p*p

I

I

I

P.p

p=p

I

l

I

L

p=p p&p&— /PIp&p&— p&p&—
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Fzo. 7. Sketches of surfaces of constant frequency, simple cubic lattice.
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3
=0
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q(A)
+

~ ~

I+y

p+

——3+ 7y
9

7y—~—),63+

p. p
IS QUALITATIVELY THE

SAME AS FOR ygO

FIG. 8. Sketches of surfaces of constant frequency, body-centered cubic lattice.
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minimum occurs for —1&c;&1 unless y&~; if we
therefore take p&-', there will be again no Type-2 CP.
To 6nd the behavior on the faces we again set can=1
for the front face and get

L1—crcs —X]hg(cries r p r p) =0, (20)

h~ being what is left of the 2&2 determinant formed by
ftr, frs, fsr, fss. For the back faces we set ct———1 and
find

L1+crcs—Xjhn(cr, —cs, y i p) =0. (21)
This shows that this time all six faces are alike except
for a 90' rotation. If the two solutions arising from A~
in (20) or (21) are considered separately from the one
arising from the bracket, it is found that the sufhcient
condition for joining (Sec. III) is satisfied and that in
order to satisfy the convention that p&&p, 2&@3 every-
where, the solution arising from the bracket should be
labeled p2. The CP on the faces are found by the by
now familiar method of 6rst finding the nature of the
N~ points on the edges and then along the main face
diagonal; each face is found to have one CP at (c;,c;)
= (0,0) as shown on the sketches on Fig. 8. Inside the
cube along the main diagonal we find first of all critical
points at cr ——cs——cs ——[—y& (p'+ 18)&j/9—+%2/3 —y/9
where p= 2—2ycr —9ycrs=1&0.63+7'/9, which upon
expansion turn out to be saddle points for small 0. By
symmetry, all diagonals are equivalent and hence the
same saddle points appear on all of them. As we pass
through the origin along the main diagonal, the first
derivative does not vanish for any solution but the
second derivative does; all solutions become equal there
and in order to preserve the relations p~& p2& p3 it is
necessary to rearrange them properly. Even though the
generalized CP resulting from this rearrangement will
not cause a "strong" singularity (no discontinuity in
the slope but only in the second derivative) in the
FD, we must nonetheless study them carefully in order
to determine the possible shapes of the surfaces through-
out the cube. By expanding the original determinant
about (ct,cs,cs)=(0,0,0), the solutions appear in the
proper way directly. We thus And that p, 3 has a mini-
mum, p~ a maximum, and p2 a double saddle point
)the shape of the surface of ps through (0,0,0) near
(0,0,0) is a quadruple cone, the axis pointing to the
points (1, 1, —1)(1, —1, 1), (—1, 1, 1), (—1, —1, —1)j.
It turns out that these are all the critical points needed
to give a consistent picture of all surfaces. They are
shown in Fig. 8,"and listed in Table VI.

D. Face-Centered Cubic Lattice

The larger number of points- and line-contacts be-
tween branches makes the study of this lattice substan-

'~ The surfaces are seen to be more complicated than in Fig. 7.
The essentials of p, 2 have been described in the text. p, & may be
visualized best by paying most attention to the surface p, =0.37
+7o/9. It consists of one closed surface which encloses the center
of the cube and which touches, at four points located on the
diagonals, four cup-shaped surfaces each of which surrounds one
corner of the cube. p,s has a similar structure.

TABLE VI. Critical frequencies for the body-centered cubic
(bcc) lattice. Good to y=$. When y=0, 0 and y coalesce, and 2
and 2+y coalesce to give a continuous line of CP.

0

p=0.37+7'/9

1+v
p+—1.63+7'/9

2
2+7

CP

S
S+
S

(S,M,rrr) (generalized)
S

S+,M,M
M

TABLE VII. Critical frequencies for the face-centered cubic (fcc)
lattice. Only ordinary (not generalized) CP are shown.

0
$+o
1+0'

1
(3+4r)s/16(1+~)

pc*~i 8
2+d'

2
—0.067 &ET&0 (3+4r)'/16(1+o )

otherwise unchanged
1 and 1+o coalesce to give a continuous line CP
2 and 2+cr coalesce

CP

m
S
S+

3f, S
M
S+
M
M
S~

0&0 &0.149

0
$+n

1
1+o

(3+4r) /16(1+o)
@*=i.s

2
2+0'

SS,S+
3f
S+
S+
M
M

tially more involved than of the preceding ones. Again
we begin by investigating p along the edges; then, upon
considering the front faces c~=1, we get

L2—(c&+cs) p)D—s (c&,cs, o; p) =0, (22)

with hs defined in analogy with (20). At the back faces
c3= 1, we get

[2+(cr+cs) —
fJ,Jhr (—err —cs, o,p) =0, (23)

and so again only one face need be studied in detail.
The one CP on the main diagonal of the face, at c~= cm

= (5+4o)/4(1+o) where p= (5+4o)'/16(1+o), is
found to be an S2 point for 0 &r+—0.149 and an Mq
point for o.)o+. )Precisely, o+ is defined as the solution
of the equation o (5+4o) (3+4o)=3.j The generalized
CP (3+4o)/(2+2o) and —', result from interchanging
solutions along the line contact running from (—1, 0)
to (0, —1) on each face. The configuration on the sur-
face changes when at r=0 these two frequencies be-
come equal and again when at o = (—2+F3)/" —0.067
when (5+4o)'/16(1+o) and as become equal. These
changes do not seem to acct the structure of the sur-
faces inside the cube qualitatively, however. After
ascertaining the behavior of the solutions at the corners
and other M~ points on the edges, the con6gurations



300 HERBERT B. ROSENSTOCK

—.—I j2 + cr 2

2+ cr I:
/

2——6'4~ ~l6(l+ 0-) —xx—p =l6

81:)y'/~

+a

FIG, 9. Sketches of
surfaces of constant fre-
quency, face-centered
cubic lattice.

x ~ «+

7 I

(e)'

0 &(7 &.I49

=.,'~+ ()j

0&o

shown on the surfaces of the drawings of Fig. 9 are ob-
tained for r&o.+. Since in contrast to the other lattices
considered in this paper, the fcc is not unstable for all
v&0, we include sketches of solutions for v&0 when-

ever they are diferent from the ones for r)0. Along
the main diagonal inside the cube, each solution is found
to have a CP at the origin. In two cases p= —',1o and
the CP is a 53 for cr(~, in the third case p=2+o and

the CP is a M3 for all cr. This gives a consistent interpre-

tation for the solutions p2 and p3, but the fact, revealed

by expanding, that p& is smaller than 2 in the neighbor-

hood inside the cube of the points (1, 1, —1) indicates

that another 53 point must exist inside the cube. This

point is not located on the diagonal:that runs from

(0,0,0) to (1, 1, —1) and so we have not been ab1e to
locate it or find the exact frequency p* of the critical



D YNAM I CS OF SI MPLE LATTI CES 301

surface. However for 0-=0 the minimum value of p~
along the diagonal ci——cs= —cs is ps ——6(16+3V2)/17—1.79 and this value is not very sensitive to changes in
o", we may therefore conclude that 1.7&+*&(2 or
2+a., whichever is smaller). The final results are shown"
in Fig. 9 and Table VII.

p=0

V. THE FREQUENCY DISTRIBUTION

The FD' for the sc, bcc, and fcc lattices can be
sketched directly from the information given in Tables
V, VI, VII with the help of Table I. The sketches are
given in Figs. 10, 11, and 12 respectively. The square
lattice which has been rather fully treated by Montroll'
has been included in this paper primarily to illustrate
the problems in a simple way and will not be treated
further. It is interesting to note in Fig. 10 that all new
singularities that appear as p increases "grow out of" old
singularities; this may be seen from Fig. 7 to be due to
the fact that new CP invariably enter the cube by way
of, or form out of, old CP. When we get a continuous
surface of CP for the sc lattice (Fig. '7) and an inverse-
square-root singularity, which is the singularity charac-
teristic of 1D problems, appears in the FD. Physically
this is due to the fact that, with nearest-neighbor inter-
action only, the motion in the x-direction of an atom in a
sc lattice is independent of all atoms other than those
in the x-direction, so that we are in effect dealing with
a 1D problem. Similarly when o-= 0 we get a continuous
line of CP for the bcc and fcc lattice (Figs. 8 and 9,
respectively) and a logarithmic singularity, which is
the singularity characteristic of 2D problems, appears
in the FD. For this we know no explanation as simple
as for the inverse square root singularity in the sc
lattice.

The only previous work that we can compare our
results with nontrivially is Leighton's' numerical-
mechanical computation of the fcc FD for two values
of r. Figure 13 shows Leighton's results for 0= —0.1
(replotted so that the abscissa is p rather than fi&) to-
gether with the singularities found in this paper. Agree-
ment is good; some of the singularities actually show

up as discontinuities in the slope, though not as infinite
ones (1,1.47), and others (0.4,0.9,X*,1.8) as rather sharp,
though not discontinuous changes in the slope; some
are slightly displaced. Clearly such smoothing would be
expected to result from any numerical treatment. The
agreement for o =0 (not shown in Fig. 13) is equally
good. The peak at @=1 is definitely there, though of
course not infinitely high.

We cannot. compare our work. of that of Fine' since
his choice of y=1 falls outside our range. Our results

26 The structure of p3 and p, 2 is comparatively easy te visualize.
The essential surface is the one that goes through the S3 point
(0,0,0). The change in the surface of p~ as o goes through 0 results
from the fact that 1+0~~1 as 0~~0. The structure of pI is some-
what similar to p~ and p~ in the hcc lattice (see reference 25):
The surface p= p,

* consists of a closed surface which encloses the
origin and to which six cup-shaped appendages are attached.

0'p& '/io

p

g(l )
/Io P /7

I/I& p& I/5

0 p~ I p Af ps@4 2
IJ") ~

I/5& p&.22I

g(p, )

I

p+ 2

g (p.)

p+ 2 2++

Fxo. 11.Sketches of frequency distribution,
body-centered cubic lattice.

g~s psN 2

I) Py
Py

FIG. 10. Sketches of frequency distribution, simple cubic lattice.
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VI. THE ABSOLUTE VALUE OF THE FD

In the foregoing we have, for certain lattices and
force constant ratios, found the frequencies at which
the FD has singularities and established the nature of
each singularity. Ke have not, however, done anything
to find the absolute value of the FD at any point, except
trivially at the end points where g=0. In this section
we indicate briefly an approximate method by which,
once the position and nature of the singularities is
known, the FD may be found quantitatively with what
we believe to be little labor for the accuracy attained.
One sample calculation which bears out this belief has
been performed.

The idea is to modify Montroll's approximate method,
which was discovered at a time when the existence of
singularities in the FD was not known, in such a fashion
as to take proper account of the singularities. This
occurred simultaneously to Lax and Lebowitz29 and the
writer. ~ Montroll's original method" may be described
thus: Expand the frequency distribution,

g()

l

2
25

I6
ms ——P„as„p„, (25)

the p„(X)being known functions, such as Legendre
polynomials, powers of X, etc. ; the p„are coefficients
undetermined at this point. Multiply each side by X~

and integrate over X; the result is

t t5+4cr&~ ~t /li+~ i6 (i+~)
2+Q

where ms
—=J Vg(X)dh, called the kth moment of

the FD, is seen to be the average value of X~, and
as„=J'Xsp„(X)d)i can be directly computed. If we

knew the first s moments, we could cut the sum o8 at
e=s and solve the set of s equations (25) for the
expansion coeKcients p„.Equation (24) would then

give us the FD approximated by a linear combination of
a finite number of the functions g„(X).The point is that
the average value of X~, which may also be written

Fxo. 12. Sketches of frequency distribution,
face-centered cubic lattice.

s Q X; 8Ãidxsrfxs&
~ J & ';-i ' (26)

are in agreement with Montroll's6 for the square lattice
and Newell'sg for the simple cubic lattice for small p,
as they must be since Montroll's and Newell's calcula-
tions are exact. Our results do not agree with Bauer's"
who obtained many infinite peaks in his FD for the
body-centered cubic lattice. This may be attributed to
Bauer's use of Houston's' approximation.

r' E. Bauer, Phys. Rev. 92, 58 (1953).
s W. V. Houston, Revs. Modern Phys. 20, 161 (1948).The idea

on which the approximation is based is the replacement of the
integration over the cube 0 &x~, x2, xg &21- in the exact expression

g(oP)=JJJSi aP—F(xgx2xa)gxgCxgCxg

8 oP—I' r~dr sined8dg,

where oP =F(x&xmxs) is the expression for co', by a sum
g„c'„J'6(«P—F)r'Cr over a finite number of directions (&,e„),

and interpolating and normalizing properly. What makes the
approximation useful is the fact that for certain directions (&„,8„}
the expression co'= F is simple enough for the r-integration to be
carried out, whereas in general it is not. The concomitant difhculty
is that these directions are the ones running from the origin to a
corner; i.e., from and to a CP. As a result, the triple integration
over the CP is in effect replaced by a single one, and the singulari-
ties that appear in the 3D FD are of the nature that is correctly
obtained in the 1D case, that is to say, inhnite peaks of inverse
square root nature. The appearance of spurious infinite peaks in
Houston's approximate method has been previously discussed
in connection with two speci6c 2D problems in reference 8 and by
T. Nakamura, Progr. Theoret. Phys. (Japan) 5, 213 (1950). It
should be said that Bauer seems to be aware of the shortcomings
of the method.

w M. Lax and J. L. Lebowitz, Phys. Rev. 95, 617(A) (1954);
Phys. Rev. 96, 594 (1954}. Detailed calculations for one 2D
crystal are given.

~ See footnote to title."E.W. Montroll, J. Chem. Phys. 10, 219 (1942).
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may indeed be easily computed even when 'A; is not
known explicitly; for (1) may be written as M/=7&P,
where M is the matrix of the determinant 6 with X

set equal to 0; multiplication from the left by M~ '
gives M+=X+. An elementary theorem of matrix
algebra then states that

Tr(M2) =Q 7&.;";

hence from (26)

2.8 I I I

2.4

I &

~(

g(p. )

~

FREQUENCY DISTRIBUTION

SIMPLE CUBIC LATTICE

p = I/20

P.~ QJ—-- EXACT (NEIELL)

FOUR-PARAMETER APPROX

2s Tr(M2)dxidx2dx3. (27) 0 .I .2 .3 .4 .5 .6 .T .8 .9 1.0

To take account of the singularities we merely replace
(24) by something like

FIG. 14. Frequency distribution obtainable by applying Mon-
troll's approximate method to the results of this work, compared
with Newell's exact result for the simple cubic lattice, small p.

g(X)=g P;(X)1(X; „X~),
j~l fl CO+ Cl&&3&

f2 C2+C3P&.

f3 ——c4(X—0.1)&+c3(0.9—X)&+C3,

f4= cv+C3I3&

f3 c3+cioI3. ——

where

1(a,b) =
0 otherwise,

and Xo——0&)~&) ~& &) =X, are the values of X

at which singularities in the FD occur, and Ii; is a
function which contains a number of undetermined
coefFicients and which has the correct behavior at
X; i and X;. The coeflicients of the first term ~X

—X;~ &

near any singularity can in principle be found by ex-
pansion of the determinant about the CP that causes
the singularity; in practice this is easiest for Type-4 CP
and most diKcult for Type-1 CP on account of de-
generacy; it may be easier to keep that coefIicient
undetermined.

The example we have treated is the sc lattice for
p=0.05. The location and nature of singularities is

That is to say, we took the additional shortcut of as-
suming that the FD was a straight line in the ranges
(0,0.05) and (0.95,1) and ignoring the square-root-type
singularities which appear at the end points of those
ranges and which, according to the recipe given in the
preceding paragraph, we should have taken into ac-
count. In the case at hand this is justified by the fact
that the shortness of the range assures that these
singularities will not aR'ect the shape of the FD much.
The total number of undetermined coeKcients included
was thus eleven; one of those, c4, couM be easily found
from the determinant, and six more were eliminated by
the use of the conditions that g(0) =g(1)=0 and that g
is continuous for all p, four simultaneous equations of
the form (25) had therefore to be solved. The moments
were taken from Montroll. " p, has been normalized
to run from 0 to 1. The results are shown in Fig. 14,
the singularities at 0, 0.05, 0.95, 1 having been restored.
Newell's' exact FD is also shown. In view of the fair
agreement obtained by the use of only four free param-
eters, it may be hoped that more complicated approxi-
mating functions, together with the use of a high-speed
computer to solve the larger number of simultaneous
equations, will give accurate results. We hope to present
results of such calculations in the future.

I wish to thank Professor W. A. Bowers for discus-
sions and criticism and Mrs. H. M. Rosenstock and
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Fzo. 13. Comparison between Leighton's numerical work and the
results obtainable from this work for the square lattice.

found from Tables V and I. We assume the'following f;:
(28)


