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Recent work indicates that the lining-up antiparallel of nuclear spins in liquid He' takes place at tem-
peratures much lower than that which would be expected for an ideal Fermi-Dirac gas. This indicates that
the energy gap between the state in which the spins are aligned and one in which they can orient themselves
in a magnetic field is lower than in the ideal gas. A model is considered in which pairs of atoms rotate about
each other, and it is shown that the energy gap will be less for rigid spheres than for point particles, which
more resemble the ideal-gas case. The model based on rigid spheres gives a reasonably shaped curve for the
temperature dependence of the magnetic susceptibility, but the energy gap is still too large. If the rotation
is hindered the gap is lowered, and a rough estimate of the degree of hinderance of rotation in liquid He'
could be made. However, it appears likely that cooperative phenomena involving all the atoms play a role;
these are discussed and a comparison with He4 is made.

~ AIRBANK, Ard, and Walters' have recently meas-
ured the nuclear magnetic susceptibility of liquid

He' below 1'K. At very low temperatures the nuclear
spins of the He' tend to line up antiparallel and this
causes the spin magnetic susceptibility to deviate from
the classical 1/T law. Such a behavior would be ex-
pected of an ideal Fermi gas; indeed in an ideal Fermi
gas of the same density and atomic mass as He' it
should occur at a temperature ten times as high as that
at which it is actually observed in liquid He'. In solid
He', where each atom is more nearly in its own cell and
there is certainly much less exchange of atoms or
sharing of volumes, it might be that this lining up of
the spins would not occur. ' Thus liquid He' represents
an intermediate condition, as might, indeed, be
expected.

Some idea of the mechanism by which such an inter-
mediate situation may arise can be obtained by con-
sidering the energy level of a pair of atoms, treating
them first as more or less hard spheres and then as
point particles. The case of "hard" spheres is of course
more like the situation which would actually occur in

liquid He', and we shall attempt to set up a model which
can be used as the basis for a semiquantitative de-

scription of the actual behavior of He'.
Let us consider the motion of a pair of He' atoms

situated in He' liquid. As an approximation we shall

suppose that the center of gravity of this pair of atoms
is fixed at the center of a cell in the liquid, and that they
can rotate and vibrate like a diatomic molecule. Sup-
pose the effective diameter of the atoms to be 0. and
their average distance from each other to be ro. The
effective range of radial motion in the liquid will then
be approximately 2(rp —o), and these "vibrations" may
be supposed to carry them between the relative dis-
tances 0 and 2ro —0.

The symmetry properties of the system are de-
pendent upon the rotational state. If the rotational

quantum'number, j, is zero, then the nuclear spins
must be paired antiparallel, and such a state will not
contribute to the magnetic susceptibility. If j=1, then
the spins are in the same direction, and this state can
contribute to the magnetic susceptibility. The rota-
tional energy of this state is given approximately by
the usual formula,

e; =j (j+1)h'/Sn'ttrp',

where tt is the reduced mass of a pair of atoms (equal
to one-half the atomic mass ttt). For the energy of ex-
citation necessary to get the system in a state which
can contribute to the magnetic susceptibility, we obtain

er —ep
——hs/4n'ttrp' ——h'/2m'mrs'.

We wish to compare this situation with that which
occurs when the atoms are considered as point par-
ticles. In doing this, we need to describe a system of
point particles which is as nearly comparable to the
pair of hard spheres as is possible. We are interested in
the interaction of the two particles with each other, not
with the other particles, and we shall consider a pair
of point particles which can range over the whole
volume occupied by the equivalent hard spheres,
namely a volume of diameter 2ro. The two particles
have independent energy levels. If both particles are
in the lowest level, the spins are paired, and no con-
tribution is made to the magnetic susceptibility, but
if one of them is excited such a contribution is possible.
The energy levels of the atoms are best found from the
wave equation in spherical form, using the polar co-
ordinates, r, 8, and p. Just as with the hydrogen atom,
0 and p equations can be separated, and the r equation
takes the form

1 d ( dR) l(l+1) Ssrsm
zy — (z—v)x=0. (3)

r'dr E dr) r' h'
*Work supported by the Once of Naval Research.
r Fairbank, Ard, and Walters, Phys. Rev. 95, 566 (1954).
s I. Pomeranchuk, J. Exptl. Theoret. Phys. (U.S.S.R.) 20, 919

(1950).

Here l is the rotational quantum number, E. is the
radial part of the wave function, and V, the potential
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energy, has the form

V=O for r&ro
=~ for r&ro. (4)

x= (Sir'mE/h') &r. (6)

Therefore the eigenvalues for /=0 are given by the
positive roots of the equation

sinx0=0,

where xo is the value of x when r= ra. The first of these
is xo=m, which gives

Epi ——h'/8mrp'. (8)

The eigenvalues for l= 1 are given by the positive roots
of the equation

tanxo ——xo. (9)

The first root of Eq. (9) is xp ——4.493 (see reference 2,
p. 84). Thus the first eigenvalue for l= 1 is

E =4 493'h'/Ss'mr ' (10)

This represents the lowest excited state. If one of the
particles is in this state, the two particles can have the
same spin and can contribute to the magnetic sus-

ceptibility. The excitation energy, therefore, is

Eti Eoi= [(4—.493/m. )'—1]h'/Smrp'. (11)

Since (4.493/pr)' —1 1, we see that

(Eii—Ep,)/(oi —op) ~'/4 2.5. (12)

Thus higher excitation for the point particles is re-

quired; therefore the magnetic susceptibility will fall

below that anticipated from the Curie law at a higher
temperature.

The difference between Eqs. (2) and (11) can be
explained in a simple intuitive manner. In the case of
the hard spheres, the small values of r are always ex-

Solutions of this equation for the region r&ro which
have the proper behavior at r=0, are given' by the
Bessel functions of order i+to. The first two solutions
(l=0 and l= 1) are

x—V;(x) = (2/s-)&x ' sinx,
(3)

x-Vi (x) = (2/s. )&x-'(x ' sinx —cosx),
where

eluded. This is true for both the lowest and next
lowest energy level. In the case of the point particles,
however, the small values of r are allowed for the lowest
level, but for the next level, with l=1, they are e6'ec-

tively excluded by the rotational-potential term
l(l+1)/r'. This decrease in the free radial configuration
space results in a relatively greater increase in the
momentum, hence in the energy. It is important to
point out that the effect of changing a pair of point
particles to a pair of hard spheres is really to raise the
lowest energy level more than the higher energy levels
are raised. This may be a little difFicult to see when one
considers only the rotational energy, i.e., the energy
connected with the angular momentum of the quantum
state. It is evident, however, that the zero-point
"vibrational" energy (i.e., that connected with the
radial motion) is much higher for the hard spheres than
for the point particles, and then it is seen that the
smaller digerertee between the rotational states of the
hard spheres merely means that the higher energy states
are not raised as much above those of the point par-
ticles as is the case with the ground state.

We shall now calculate the magnetic susceptibility,
using a model in which we suppose that E atoms can
be considered as 1V/2 independent pairs of hard spheres.
This, clearly, is not too realistic, especially because the
pairs cannot be independent. We may hope, however,
to make a calculation which can lay the groundwork
for a semiquantitative understanding of the situation.

We shall consider only the two energy levels, with
j=0 and j=1 (assuming always that we are dealing
with the lowest vibrational state). Let us suppose that
the system is in a magnetic field B, and let the corn-

ponent of the magnetic spin moment of an He' atom be
either M, if in the direction of the field (energy= MH), —
or —M if in the opposite direction. If the system is in
the lower energy level (j=0) the resultant moment of a
pair is zero. In the higher triplet energy level the com-
ponent of the magnetic moment of a pair is 2M, 0, or
—2M. The Boltzmann factors for these energy levels

(j=1) are, respectively, exp( —h'/2s'mrp'kT+2MH/
kT), exp( —h'/2m'mrp'kT), and exp( —h'/2s'mrp kT
—2MH/kT), and the quantum weight of each of these
states is 2j+1=3.The total magnetic moment induced
in 1V atoms or 1V/2 pairs will then be

3(1V/2)(2M)t exp( —h'/2s'mro'kT) jfexp(2MH/kT) —exp( —2MH/kT)g
xH=

1+9exp( —h'/2ssmrpskT)
(13)

where x is the susceptibility of the Ã atoms. The factors
arising from the magnetic energies are small if II is

small, and are omitted from the partition function
Ldenominator of Eq. (13)j.Assuming 2MH/kT«1 and

expanding the corresponding exponentials in Eq. (13),
8 K. P. Adams, Sygitlgsoniun Mathematical Fornsllae @ed Tables

of Elbptf'c Futtctsons (Smithsonian institution, Washington, D. C.,
1922), pp. 202-203.

we obtain

(12NMs/kT) exp( —h /2s mrpskT)

1+9exp (—h'/2pr'mrosk T)
(14)

At very high temperatures this reduces to a Curie law
of the form

xp = 121V3P/10kT.
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Xo
,4

On the other hand, if the atoms were completely inde-
pendent the limiting high-temperature form would be

Xs = le'/kr. (16)

The difference between Eqs. (15) and (16) is due to
the use of only two rotational levels to obtain (15).
It seems, therefore, reasonable to set as a rough
approximation:

x/&s ——10 exp( —k'/2s'mrs'k T)
&&L1+9exp( —k /2s harp /kT] (17)

We may 6rst test the shape of this curve by giving
pro' an arbitrary value so as to best fit the data. In
Fig. 1, we show such a comparison with the experi-
mental results, and also a curve for an ideal Fermi-
Dirac gas with the constant similarly adjusted. It is
seen that Eq. (17) gives a curve which is quite similar
to that of the Fermi-Dirac gas except at very low tem-
peratures, and that it fits the experimental data at
least as well.

It is most interesting, however, to see what we obtain
by setting m and ro equal to values expected from He'.
When. this is done for the ideal Fermi-Dirac gas (using
the known value of m and of the density) and for Eq.
(17) (setting rs equal to the corresponding distance in
He4, 3.15A, known from x-ray data, ' times the cube
root of the ratio of the density' of He' to that' of He'),
it is seen (Fig. 1) that Eq. (17) with these parameters
gives a curve which is better than that for the ideal
Fermi-Dirac gas but which is still not very close to the
experimental data.

A model using pairs of independent point particles,
as in Eq. (11),gives a curve rather close to that for the
ideal Fermi-Dirac gas. This is also shown in Fig. 1.
Account has been taken of the difference in the possible
spin states in this case, from those in the case of hard
spheres, in drawing this curve.

4 J. Reekie and T. S. Hutchison, Phys. Rev. 92, 82'/ (1953).
Keesom, Helium (Elsevier Publishing Company,

Amsterdam, 1942), p. 207.' E. C. Kerr, Phys. Rev. 96, 551 (1954).
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FIG. i. Relative nuclear magnetic susceptibility as a function
of temperature. Curve A, ideal Fermi-Dirac gas with density and
atomic mass of He'. Curve 8, ideal Fermi-Dirac gas with adjusted
parameter. Curve C, pair model, point particles. Curve D, pair
model, hard spheres. Curve E, pair model, hard spheres with
adjusted parameter. The experimental points and curves A and
8 are from the 6gure of Fairbank, Ard, and Walters, ' an enlarged
copy of which was kindly furnished by Professor Fairbank.

The fact that Eq. (17), with the proper parameters
inserted, gives a curve which is still not very close to
the experimental data, indicates that the energy gap
between the states with symmetrical and antisym-
metrical orbital wave functions, given by Eq. (2), is
still too high. The free rotation, therefore, still repre-
sents a situation in which it is too easy for the atoms to
change places. If we assume that the rotation were
forced to take place in a plane rather than taking place
freely in space, this halves the energy gap, because the
formula for the energy of a plane rotation depends on
the rotational quantum as j' rather than as j(j+1).
This still does not suffice to bring the curve into co-
incidence with the experimental points.

If the rotation were hindered this would lower the
energy gap still further. For example, a potential
barrier at rotational angles of 0 and m would cause the
first two wave functions to have forms of the type
shown in Fig. 2. The symmetrical wave function ac-
quires what amounts to a superimposed wavelength of
half its original wavelength, which means that its
energy is raised, and the energy gap is thus lowered.
It is, in fact, well-known that the energy gap is roughly
inversely proportional to the time required for a rota-
tion to occur, so one could use the results on the mag-
netic susceptibility to make an estimate of the extent
of the freedom of mutual rotation of atoms in He'. The
model, however, is probably not good enough for one
to take such an estimate too seriously.

As a matter of fact, comparison with He4 indicates
that the situation must be more complicated than would
be inferred from this simple picture. Direct calculation
from Eq. (2) indicates that the energy gap, with the
proper parameters for He' inserted, is about 4.5 calories
per mole, or about 2.2 calories per mole of He' atoms.
In order to 6t the data on the magnetic susceptibility,
the energy gap should be about ~ of this, or 0.5 calorie
per mole. This is a very small excitation energy; in
He' the roton excitations involve approximately 2.5
calories per mole' of excited He4 atoms. This difference

Fn. 2. The two lowest rotational wave functions
with hindered rotation.

' See O. K. Rice, Phys. Rev. 96, 1460 (1954).
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may be, at least in part, connected with the fact that
the quantum number j cannot have the value 1 in the
rotation of a pair of He4 atoms, on account of the sta-
tistics. Insofar as the pair approximation is good, then,
the first excitation in He must be to the next higher
level, j=2. However, it is also probable that a coopera-
tive interaction of all the atoms, peculiar to the Fermi-
Dirac statistics, has something to do with the very low
excitation energy in the case of He'.

I.et us consider the situation at O'K, where pre-
sumably one-half the atoms have their spins in one
direction and half have their spins in the opposite
direction. Since the substance is in the liquid state and
since the zero-point motion is considerable, it is hardly
possible that the atoms have reached a state at O'K in
which no exchanges occur. Indeed, if they had, the
spin-antiparallel alignment would have been destroyed, .
But if exchanges occur, we must assume that they take
place between atoms which have mutually symmetrical
spin functions (symmetrical exchanges) as well as
between atoms which have antisymmetrical spin func-
tions (antisymmetrical exchanges), and there must be
some of each since half of the atoms. have the same
spin. However, if symmetrical exchanges were as fre-
quent as antisymmetrical exchanges, there would be a
considerable amount of localized angular momentum,
which would force up the energy of the whole system.
In order to avoid this situation, there will be some
tendency for atoms in symmetrical spin states to stay
as far away as possible from each other. This, however,
raises the zero-point energy, so some compromise will
have to be found. In any event, it is seen that the
energy of the whole system is higher than it would be
if the exchange problem were not involved, ' (i.e., if
there were no spin, and all exchanges were symmetrical
as in He'). Since the ground level of He' is thus raised,
this may be another reason why excitation to a higher
state should be lower in He' than in He4. It may seem
that the difference between 0.5 cal per mole and 2.5 cal
per mole of excited atoms is large, but these energies
are very small compared to the zero-point energy, so,

In this connection, compare my earlier remarks, 0. K. Rice,
Phys. Rev. 93, 1161 (1954), Sec. 4.

taking account also of the eGect mentioned in the pre-
ceding paragraph, the diGerence does not seem un-
reasonable.

In considering cooperative eGects, there is a some-
what more specific point to which attention should be
directed. The roton excitations in liquid He4 apparently
require the cooperation of a number of atoms, while
in this paper, at least in the detailed calculations, we
have considered interaction of pairs only. ' It is of course
possible that excitation in He' requires cooperation of
several atoms, also. However, in the light of the lower
density of He', and the presumed preliminary "excita-
tion" even at absolute zero, described above, it may be
that the consideration of pairs only is a better first
approximation for finding the energy of excitation in
this case than it would be in the case of He4.

It is clear that the model used here can be made the
basis of a theory of the specific heat of liquid He'.

Note added i pttroof. After submi—ssion of this paper I learned
that P. J. Price" had already submitted a paper in which the
same problem was treated by the same independent-pair model.
The two papers appear to supplement each other; there is some
difference in emphasis, for Price has stressed the possibility of
finding a more reasonable model than the ideal-Fermi-gas model
to account for the magnetic results, whereas I have particularly
endeavored to find a semiquantitative explanation for the difI'er-
ence between the observed temperature parameter and that pre-
dicted from the ideal gas. Price has worked out the consequences
of the model using the full set of energy levels; the fact that I find
in better agreement with the experimental results by considering
only the two lowest energy states may be a reQection of the hin-
dered character of the rotation of a pair, the eGect of the sur-
rounding molecules being to bring the lowest levels closer together
and effectively to isolate them from the others. Price mentions
the possibility that long-range interactions will cause deviations
from the calculated susceptibilities at very low temperatures; if
these deviations are not too important, He' may possibly exhibit
superAuidity at suKciently low temperatures. "

I. Prigogine, J. Philippot, and co-workers Lsee I. Prigogine,
Advances in Physics 3, 131 (1954)j have obtained qualitative
agreement with the properties of liquid He4 considering only the
interaction of pairs of atoms. However, there seems to be little
doubt that the elementary excitations actually involve several
atoms. Their results for a Fermi gas apparently do not coincide
with those found here."P. J. Price, Phys. Rev. 97, 259 (1955).

"O. K. Rice, Phys. Rev. 97, 263 (1955).


