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The collision matrix found by Newton to satisfy at all excitation
energies the requirement that it describe an excited nucleus whose
decay is independent of the mode of formation is shown to imply
the vanishing of the absorption cross sections at high energies
where the levels overlap and therefore does not describe a com-
pound nucleus in the usual sense. The essential characteristic of
this matrix is the high degree of the correlations of the signs of
the square roots yz, of the reduced level widths for the various
levels ) and channels c. On the other hand, a collision matrix,
which is similar to one 6rst considered by Bethe and involves pz,
whose signs are uncorrelated, implies energy average decays that
are independent of the formation mode and absorption cross
sections that are of the order of magnitude of the nuclear area at
high energies. These matrices are derived and discussed by using
the R-matrix theory of Wigner, Eisenbud, and Teichmann. It is
shown that the Bethe form of the collision matrix, which is valid
only if all of the partial level widths are much less than the
spacings, may be modi6ed by means of the Teichmann-Wigner
channel elimination procedure so that it is also valid in situations

where some of the partial widths exceed the spacings. The form
of the compound-nucleus collision matrix thus obtained is similar
to one deduced by Weisskopf by considerations involving the'

compound-nucleus hypothesis and the reciprocity theorem. The
pole strength functions s„which are the averages of the ratios of
reduced widths pp, to level spacings, and their Stieltjes energy
transforms are decisive in the determination of the behavior of
these collision matrices and their associated cross sections. The s
functions and their transforms are presented and discussed in the
cases of the strong-coupling and complex square well potential
representations of the particle-nuclei interactions. The latter repre-
sentation with an additional surface absorption is also considered.
The present theory indicates that the imaginary part of the com-
plex square well potential should increase with the absorption
width, and it suggests a "giant resonance" interpretation of the
average cross-section behaviors. The effect of the compound-
nucleus on non-compound-nucleus processes such as stripping and
pickup is also mentioned.

I. INTRODUCTION' levels A. and the factor b, to the channels c. However,
according to the present considerations, the absorption
cross sections implied by Newton's U tend to vanish at
suSciently high nuclear excitations where there are
many decay channels and the levels overlap, contrary
to experience and to the compound-nucleus concept.

One aim of the investigation reported here was there-
fore to obtain by means of the E-matrix theory a
form of the collision matrix which would satisfy the
compound-nucleus requirement of independent decay
at least om the average, rather than at all excitation
energies, and for any value of (F&,)A„/D, thus extending
the Wigner-Eisenbud result. This was accomplished by
assuming that the signs of the y~„, appearing in Wigner's'
many-level expansion for U are uncorrelated, quite
contrary to the conditions involved in Newton's U.
The collision matrix and its associated average cross
sections thereby obtained are similar to those deduced

by Bethe7 many years ago. In Bethe's derivation it
was assumed that the signs of the matrix elements for
the formation and decay of the various intermediate
levels are uncorrelated. When the levels overlap, both
results lead to average absorption cross sections of the
order of the nuclear area, in conformity with the
compound-nucleus concept, but they are restricted to
situations where all of the average partial level widths

(Fg )A for the channels c are less than D.
The recent extensive fast neutron total cross-section

measurements by Barschall, Nereson and others, and

'HE concept of the compound nucleus has been
useful for the understanding of many nuclear

reaction phenomena ever since it was first proposed by
Bohr.' Subsequent to this proposal, derivations were
given of the form of the collision matrix U describing
the compound nucleus under various conditions. In par-
ticular, Wigner and Eisenbud' derived by means of
their E-matrix theory a generalized one-level collision
matrix which revealed that if the average total level
width (I'q)A„' is small enough compared with the mean
level spacing D, then at all excitation energies in the
vicinity of the levels the nuclear system described by U
will decay in accordance with the well known one-level
Breit-Wigner resonance formula as a compound nucleus
independently of its mode of formation.

Recently there has appear'ed an interesting deduction

by Newton' of a form of U which satisfies the require-
ment of independent decay at all excitation energies
and for any value of the ratio (Fz)A,/D. The essentials
of his deduction involved consideration of only the
unitary and symmetry properties of U. It was shown
that this U implied that the square-roots of the reduced
level widths of the associated R matrix are of the highly
correlated form yq, = a~b„ the factor aq referring to the

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

~ A preliminary account of some aspects of this paper was given
at the September 1953 meeting of the American Physical Society
(R. G. Thomas, Phys. Rev. 92, 1094(A) (1953)g.

s N. Bohr, Nature 137, 344 (1936); Science 86, 161 (1937).
e E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).

The symbol ( )A„ is often used to denote averages with respect
to the levels ), the number of contributing X being roughly
(Fz)z,/D when this ratio exceeds unity, where D is the mean level
spacing.' T. D. Newton, Can. J. Phys. 30, 53 (1952).
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e E. P. Wigner, Phys. Rev. 70, 606 (1946).
7 H. A. Bethe, Revs. Modern Phys. 9, 69 (1937), Sec. 56D.
'H. H. Barschall, Phys. Rev. 86, 431 (1952); Miller, Adair,

Bockelman, and Darden, Phys. Rev. 88, 83 (1952); Norris
¹reson and Sperry Darden, Phys. Rev. 89, 775 (1953);94, 1678
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their interpretation by Feshbach, Porter, and Weiss-
kopf' have revealed that a complex square well potential
provides a satisfactory representation of the neutron-
nucleus interaction. One implication of this model is
that at certain excitation energies the mean partial
width (I'q„)A, for the incident neutron channel rt con-
siderably exceeds D, thus violating the criterion for
applicability of the Bethe collision matrix. The second
aim was therefore to find a U which would also be valid
in such circumstances. This was eBected by means of
the channel elimination procedure and reduced R-matrix
theory developed by Teichmann and Wigner. " In the
final form the compound-nucleus collision matrix leads
to expressions for the nuclear reaction cross sections
which are of the form predicted by Weisskopf" from
considerations of the compound-nucleus assumption and
the reciprocity theorem; these expressions are restricted
to circumstances where the mean of the (I'q, )s, for the
participating channels c is less than D. One object of the
present work may thus be stated as the determination
of the conditions for the existence of the compound
nucleus which has been assumed in the previous work.

There are observed to be certain nuclear reaction
phenomena which are not interpretable as proceeding
through the intermediary of a compound nucleus. Note-
worthy are the high-energy direct and exchange col-
lisions, the stripping and pickup reactions which are
prominent at intermediate energies as well. The signs
of the y)„associated with these processes no doubt have
significant correlations, although this matter has not
yet been quantitatively investigated. It is hoped that
the material presented herein will provide not only a
better understanding of the compound-nucleus processes
but also permit the inclusion of their contribution to and
effect on the non-compound-nucleus processes in the
theoretical interpretation of the latter.

II. NOTATION

Although the present treatment utilizes the various
R-matrix relations given by Teichmann and Wigner, "
it is desirable to introduce the modifications of their
notations that are indicated in Table I. The use of a
reduced width having the dimensions of energy, rather
than energy-times-distance, is natural and leads to
dimensionless quantities in standard notation for the
quantities characterizing the external wave functions at
the nuclear surface. The present notation will also
facilitate comparisons with the results of Feshbach and
Weisskopf. ""The R matrix will be dimensionless, and
its diagonal component referring to the entrance
channel will be related to the reciprocal of the im-
portant quantity f which appears in their work.

' Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).I T. Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952),
referred to as TW."J.M. Blatt and V. F. Weisskopf, Theoretical Nuclear I'hysics
{John Wiley and Sons, Inc. , New York, 1952), Chap. VIII.

'2 H. Feshbach and V. F.Weisskopf, Phys. Rev. 76, 1550 (1949)."Feshbach, Peasiee, and Weisskopi, Phys. Rev. ?1, 1451 (1947).

TABLE I. Relations between the present notation and that of TW.

Present notation

&Ac

~st
UC

C=PC UC

=Z,+8.'U,

~C

F„G.
'-=dido.

Teichmann and Wigner

y)„a, &

a,-&x,tat-&

O..a. &

n,a. &+P,a,&

PC
—a,b, = 1—a.b,
k,&F„k.&G,

' —=d/dr.

The regular and irregular external radial functions
for channels c are designated F, (p) and G, (p), respec-
tively, as is customary when discussing charged particle
reactions. "These quantities and their derivatives with
respect to p, =k,r, appear in the theoretical develop-
ment evaluated at the channel radii where r, =a,.
However, these four quantities are related through the
Wronskian,

Q= tan '(F/G),

which is the negative of the hurd sphere potentia-l scat
tering phase shift. The real part S of L appears as a
factor in the level shift expressions and is therefore
referred to as the shift factor while the imaginary part
I' appears as a factor in the level width expressions and
is referred to as the pertetrutiort factor If the energ. y of
relative motion in a channel is negative, the analytical
continuation of the outgoing wave 0 is the real,
exponentially-decaying Whittaker function W „, &~1(2p),
where rt =ZrZse'/As and kl is the channel orbital
angular momentum, so that"

S=pW'/W, P= 0.

The development actually involves the barred quan-
tities

L=L B=S+iP, —
S=S—8, P=P,

where the 8 are the real, constant boundary conditions
satis6ed by the proper solutions X), of energy Ez at the
radii a, of the channels c. The bar will always be

'48loch, Hull, Broyles, Bouricius, Freeman, and Breit, Revs.
Modern Phys. 23, 147 (1951).

'5 R. G. Thomas, Phys. Rev. 88, 1109 (1952).

so that it is actually necessary to introduce only three
independent quantities. For these we use the real and
imaginary parts of a complex quantity I. which is the
radius a times the logarithmic derivative at r =a of an
outgoing wave O=G+iF (omitting the subscript c):

L=pO'/0= S+iP,
S=p(FF'+GG')/(F'+G')
P=p!(F'+G'),
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omitted. The various quantities L„S„P„B„etc.
appear as the components of the diagonal matrices L,
S, P, 8, etc., these matrices being referred to respec-
tively as the logarithmic derivative, shift, penetration,
boundary-condition matrices.

III. THE GENERAL EXPRESSIONS FOR THE
COLLISION MATRIX

The general expressions for the collision matrix in
terms of the E. matrix and its parameters yq„E~ as
derived by Wigner, Eisenbud, Teichmann, and New-
ton' ' " are summarized here in the present notation.
The collision matrix is conveniently written

U= QUQ,

the factors being the unitary, diagonal, potential-
scattering matrix, "

0=exp( —iy),

and the unitary, symmetric matrix

V= 1+2iP'*(1 RL) 'R—P&, (1b)

are given by the channel scalar products,

~..= (~.,L'v.); (6a)

the real part 6 of $ is referred to as the shift matrix and
twice the imaginary part —,F to the width matrix, their
respective components being given by the scalar
products

—,'F),„=(n),~,Pn„), 6),„=(ng*, (I.*R'L—S)n„), (6b)

wh ere
ny= (1—RoL) 'y), .

The components of the real, diagonal matrix E are the
proper values E~, and the real, diagonal matrix 8 is the
energy E times the unit matrix. By substituting (4) into
(3) one obtains

1 RL)—iR (1 RoL)-rRo+. g&~A &o (nz Xn~) (7)

If only one level is considered in the X sum, the sub-
stitution of (7) into (1) leads to the Wigner-Eisenbud
generalized one-level collision matrix. '

If the matrix R' is diagonal, (1) may be rewritten

which will also be referred to as a collision matrix. L
and P are the diagonal, logarithmic derivative and
barrier penetration matrices, the components of which
are given in II. It is often useful to separate the real,
symmetrical E. matrix into two terms

U =O' U'0',
where

0'= exp( —i'd),
y'= y —tan-'pRoP/(1 —RoS)j,
V' =1+2iP'& (1—R'L')—'R'P"*

Ls S'+ 'Pt

S'= LS(1—R'S) —RoP g/[1 —RoI. )',

P'=P/] 1—R'L['.

R=R'+R',

R'= Zx(v~X vs)/(K —E),

(2)
with

and the E' matrix as the sum of the contributions from
the remaining levels not included in the X sum, or if E'
is a uniform E. matrix, similar to Wigner's uniform E.
function, " as the difference (R.—R'). With this sepa-
ration,

—
Q is a potential scattering phase which includes the

contribution to the hard-sphere phase from 8', and P'
is a penetration factor similarly modi6ed. The com-
ponents of the width and shift matrices given by (6b)
simplify to(1—RL) 'R = (1—R'L)——'R'

+(1—RoL) '(1—R'I') 'R'(1 —LRo) ' (3)
kl'~o= k Z. 1'~"

~Lyse =2Pc Qxcppc j

&X,=pe &~pc,

~Ape Sc Qxcppc.

where
L' =I.(1—RoL,)

(8b)
By means of the procedure indicated in signer's paper
on resonance reactions' or in Appendix A of this paper,
it may be deduced that

The primes will henceforth be omitted.
If the symmetric matrix (E E) has no dou—ble

characteristic values, it may be put in the diagonal form
H =F—~~ il by means of a complex, orthogonal matrix
p 6

(1—R'I.') 'R'=Q), „A),„(y),Xy„), (4)

where the components of the symmetrical level matrix
A are obtained from the level matrix relation,

A= (E E $)——
II= T(E—

P) T&, -

A= T(II E) 'T—(5) so that

and the subscripts ), p refer to the levels X of 8'. Here
the components of the complex, symmetrical level
matrix,

alld
(1—RL)-R=g, (S,X~,)/(P. —E——,'if „), (9)

where
~v Qx Tv)«x

The Coulomb phase for charged particle channels has not The p and H are in general complex and energy de-
been included. e „, an „are in genera comp ex an energy e-

"E.P. Wigner, Proc. Cambridge Phil. Soc. 47, 790 (1951). pendent in contrast with the parameters p&„and E&, of
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the E matrix which are real and constant. From the
nature of the T matrix it may be deduced that'

It may be deduced that

(a,Aa) = (1—1)
—',

r„&2g, Z. ~S„,~s. (9a) where

A procedure for the determination of the 5„, and II„
has been indicated by TW. The H„are the roots of
the determinantal equation

(1—R(H„)L~ =0, (10a)

and the 5„, are the solutions of the associated homoge-
neous equations,

[1—R(H, )L]B,=0, (10b)

with the normalization

(8„, (L+LRL)h, ) = 1, (10c)

IV. NEWTON'S COLLISION MATRIX

Newton's collision matrix' satisfies for any value of
(Fq)A,/D the requirement that the probabilities for the
various modes of decay be independent of the formation
mode ct ul/ excitatiom energies. A much simpler deriva-
tion of this matrix may be obtained by proceeding
directly from the R-matrix expressions (4) and (1b).
From these expressions it is evident that if the ratios
(V„/V„,), s, NNl, are to be independent of t, the Tx,
must be factorizable as

p'Ac &Abc)

so that the collision matrix becomes

V= 1+2i(GXG) (a,Aa),

the dot denoting diGerentiation with respect to energy.
This procedure leads to essentially the same results as
obtained by Kapur and Peierls" using complex, energy-
dependent boundary conditions B,=L, (unbarred)
rather than the real, energy-independent 8, of the
E-matrix theory.

t-'= Qg ag'/(Ex —E).
Newton's collision matrix is therefore

V=1+2i(GXG)/(l+~ —-,'ir), (13)

which closely resembles the collision matrix for the
one-level R matrix. As noted by Teichmann, " this re-
semblance is to be expected because with the y)„given
by (11) the R matrix reduces to the expression (bXb)/t
which is of rank one as is the one-level R matrix,
(yxXyx)/(R). —R).

According to (13) the various reaction cross sections
resulting from incident waves of angular momentum
M are

o. &'& = (s./k ') (2l+ 1)(4F,F~/I') sin'r, (14)
where

r=tan '[-',F/(1+6)].
It was also shown by Teichmann" that these cross
sections may readily be averaged if a&2 ——a„2= 1 and
if the levels are uniformly spaced by an amount D, in
which case

1= —(D/~) tan (~Z/D).

tA'ith this expression for the quantity t the averages are
found to be

(a„t'&)„„=(&/k.s) (2t+ 1)(4r,r,/r')
(~r/2D) [1+(~r/2D) $

X (15)
( ~/D) +[1+( r/2D)y

By choosing the B,=5, at a particular energy of in-
terest, the level shift 6 will vanish at that energy and
will be negligible in the vicinity of it. Therefore, in the
region of overlapping levels where ~r/2D))1, (15)
simpli6es to

where the vector
G= I'&b, ( „'')„„=(/&, )(21+1)(4r,r,/r),

and the scalar product with respect to levels,

(a,Aa) =Q),s a)A),pal)

being a function of energy but not of the formation
mode. With this form the components of the $ matrix
simplify to

by=i axapy,
where the channel scalar product

l.= —~y-,'ir = (b,Lb),
z= —g.S.b' r=p r„r,=2G

's G. Breit, Phys. Rev. 69, 472 (1946). In this paper Breit has
also succeeded in deriving an expansion similar to (9) for a certain
nuclear model having an arbitrary number of channels."P.L. Kapur and R. Peierls, Proc. Roy. Soc. (London) A166,
277 (1937).

and the total absorption of the /th partial wave is

(a.&")A Q$(o, (&'l)A, ——(s/k, ') (2l+1) (4I',/I').

If p= ka»1, many partial waves contribute so that the
usual approximate procedure" for summing these may
be applied to obtain

( ).=2(.'") = '(I+p ')'(4F/F)' (16)

It is apparent that if there are many channels for ab-
sorption so that F))4F„(o,)A„becomes much less than
the magnitude ma' suggested by the compound-nucleus
concept, and it does not seem likely that this is a con-
sequence of the special assumptions made in connection

ss 7, Teichmann, Phys. Rev. 77, S06 (19SO).
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with (15). This tendency for the absorptions to vanish
is evidently due to destructive interference of the
various contributing levels caused by the extreme cor-
relations of the signs of the y),„ the arrangement of
these signs being the same at each level to within a
common factor &1. Such destructive interference is
also evident in the results obtained by Kalckar, Oppen-
heimer, and Serber" as well as Bohr, Peierls, and
Placzek. ~

In view of this defect, we shall seek another form for
the compound-nucleus collision matrix. However,
Newton's result does show that the requirements of
independent decay and of absorption cross sections of
the order ~a' cannot be satisfied at all excitations, and
therefore that the appropriate form can be expected to
satisfy these only on the average.

V. "BETHE'S COLLISION MATRIX"

Bethe has derived an. expression for the averages of
the reaction cross sections which is valid even if the
levels overlap provided that all of the average partial
level widths (I'q, )A, are smaller than the mean spacing D.
His derivation is based on the assumption that the
signs of the matrix elements for the formation and
decay of the various intermediate nuclear states are
uncorrelated, and the result thereby obtained shows
that the excited nucleus will decay on the average with
probabilities which are independent of the formation
mode'and that the average total absorption cross sec-
tions will be of the order of magnitude of the nuclear
area, in conformity with the compound-nucleus
hypothesis. Although the concept of a collision matrix
had not been introduced at the time of his work, the
form of this matrix can of course be inferred from his
equations. The purpose of this section is to rederive
Bethe's result using the more rigorous E-matrix theory
and to show that in this theory the signs of the p&, for
the states of the compound nucleus must be considered
as uncorrelated. ~'

The set of equations (10) for the determination of
the parameters of the collision matrix can be solved
approximately in the case of uncorrelated signs and
overlapping levels by the standard perturbation-theory
procedures such as those reviewed by Morse and
Feshbach. '4 However, for simplicity we shall use a less

rigorous procedure which leads to essentially the same
result.

With'the recognition that in the case of interest the
nondiagonal components of the P matrix given by (6)
will be smaller in absolute magnitude than the diagonal

"Kalckar, Oppenheimer, and Serber, Phys. Rev. 52, 273 (1937).
ss Bohr, Peierls, and Placsek, Nature 144, 200 (1939).
~' These signs should be random for those X in an energy interval

of width comparable to (Pzl+ centered at the energy Z of interest.
According to the TW sum rule, Zp yp, ppg

——0 if sWt so that they
cannot be completely uncorrelated with respect to arbitrarily
large energy intervals.

~ P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, New York, 1953), Vo1. II,
Chap. 9.

components, one can attempt an expansion of the
matrix expression for A given by (5) in a power series
about the diagonal part e=E E —P+—P' whose com-
ponents are eq=Eq+di, E— —isa'&„where $' is the non-
diagonal part of (. The result is that

A = e '+e '$'s '+
and therefore

(1—&I) '&=Qx(vi. Xv~)/e~

+Xi,s), '(v~Xv, )b.„'e, '+ (18)

the components of which are

L(1—&L)-'&].~= E~(v~,v~~/e~)

+i g, P, Pi(yi, y&„/e~) X P (y„,y„~/e„)+ . (18a)

For simplicity we have set 8,=1., (unbarred) so that the
level shift matrix may temporarily be disregarded, and
the expressions given by (8a) for the resulting com-
ponents of $' have been used to arrive at (18a) from
(18). We proceed now to determine the conditions for
the validity of the approximation (19), below, for the
collision matrix which is obtained by neglecting all but
the first term of (18) or (18a). For this determination
the sum over the channels c of (18a) is considered in
two parts: (1) the contributions from the channels s
and f; (2) the contributions from the remaining
channels. If the p=X terms are added to the p, sum of
(18a), which it is permissible to do if the total level
widths are much larger than the spacings, the con-
tribution from the channel t is observed to be
iP~+„y„P/e„ times the contribution from the first
sum of (18a).By replacing this p, sum by an integration,
it may readily be estimated as m(&„P)Av/D. The con-
tribution from the channel s may be determined in a
similar manner. The magnitude of the contribution from
the s and f channels together is thus —',w(I'q, )„,D-'
+ s7I (Fig)A D ' times that from the first sum of (18) or
(18a). In the consideration of the contribution (2) from
the remaining channels, it is evident that no two of the
same y)„appear multiplied together. Since the signs of
these are presumed to be uncorrelated, the most-
probable value of this contribution is zero; its root-
mean-square magnitude may be estimated as follows:
The rms magnitude of the contribution to the com-
ponents of $' from the remaining channels may be
estimated as equal to —,'(pq)A„ the average magnitude of
the diagonal components of $, divided by the square
root of the number of open channels c/s, t, this number
being approximately equal to (I'&/I'z, )A„ the average
being with respect to both X and c. The magnitude of
the contribution from the p, sum of e„, the individual
terms having random signs, may be estimated as
(2w/(I'q)A, D) . The rms magnitude of the contribution
to the second sum of (18a) from these channels is thus
estimated as the channel average of (w(1'&„)A,/2D) & times
the first sum. A necessary condition for the validity of
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the approximation

(yAXyA)
V= 1+2i2'& Q p$ (19)

is therefore that all of the ratios 7r(I'&„)Ae/2D must be
much less than unity, as imposed by the contribution
(1).The third and higher terms of the expansion (18a)
are proportional to the square and higher powers of
these ratios. If the level shifts A~ are included in the
denominators of (19), it is apparent that the ratios
Ã(AA )A„/D must also be less than unity. Equation (19)
is recognized as the many-level approximation to the
collision matrix which is valid in general when the
total level widths are much less than their spacings. 6

It is also noted that this result corresponds to the
equality condition of the relation (9a).

The reaction cross sections obtained from (19) are

~s~t7xa Ypegktgpt

Following the procedure indicated by Bethe, the aver-
ages of these with respect to an energy interval 8, which

is large compared with the total widths, are found to be

where the
T,=2m(I')„)A„/D

are quantities similar to Weisskopf's transmission
factors. "Evidently the decay of the compound nucleus
is on the average independent of the formation mode.
By summing over decay channels t, the total absorption
cross section for the lth partial wave is obtained, "

the sums being now restricted, to levels within the
interval 8. For each level in the ) sum there will be
about (I'A)A„/D levels contributing from the p sum and
thus about 5(1'A)A„/D' pairs altogether. In view of the
random nature of the y)„signs, the contribution from
the terms with ) / p, will be proportional to the square-
root of this number of pairs in contrast with the number
5/D of contributions from the positive-definite terms
with ) =p. The cross-product terms may therefore be
neglected so that

(, "l),= (m/k, ') (2l+1) (T,T,/g, T,), (22)

number characteristic of nucleon motion within the
nucleus. Under these conditions the transmission factor
is T= (4k/E), which is of the order of magnitude unity
at moderate and high energies, and the summing pro-
cedure leading to (16) indicates that the total absorp-
tion is of the order of magnitude of the nuclear area.
However, it is noted that when T, is of the order unity,
the ratio m(1'A, )A„/2D is also of this order, and the ex-
pansion (19) is not valid. It is also noted that trans-
mission factors calculated from (22) can exceed unity
for high energies (that is, if 4k exceeds E) in violation
of the requirement that the collision matrix be unitary.
The next two sections are devoted to the development
of an alternative procedure which avoids these diK-
culties by dealing with an expansion similar to (18a)
except for the nonappearance of the objectionable con-
tributions from the s and t channels in the P' matrix.
This avoidance is accomplished by means of the
channel elimination procedure and the reduced E.-matrix
theory of TW. The result thereby obtained is similar to
(22) though valid under the less restrictive condition,
imposed by the channel contribution (2) above, that
the mean with respect to channels c of the (I'A, )A, be less
than D; the transmission factors that are obtained
cannot exceed unity and are of the form proposed by
Weisskopf.

VI. THE REDUCED R AND U MATRICES

In the present notation the basic R-matrix relation,
Eq. (6') of TW, is

'U=R($ —BU) =RE.
According to this expression the value 'U of the radial
part of the wave function on any particular channel
surface is linearly related by the components of the R
matrix to the derivative quantities X) and the boundary
conditions 8 of all channels. Following TW the channels
are separated into groups e (eliminated) and r (re-
tained), whereupon the matrix relation (24) reduces to
two submatrix relations,

'U, =R„Q,+R,„Z„, 'U„=R„„'Z„+R„,'Z, . (25)

It is to be noted that the subscripts e and r refer respec-
tively to the groups of e and r channels, rather than to
particular channels. If the group. of e channels com-

prises only reaction and negative-energy channels,
which have no incident waves, then its logarithmic
derivatives at the nuclear surface are known to be those
of an outgoing wave 0 or a negative-energy function W,
so that

(o, "&)A,= (m/k, s) (2k+ I)T,. (23)
I.= Z."U. '= X).'U. ' B.=L, 8,. (26)— —

When the bombarding energy is greater than the barrier
height, the penetration factors Et= ha, and the strong-
coupling theory (see Sec. IX) suggests that the ratios

(yA ')A/D= (rrEu) ' where K=1)&10"cm ' is a wave

'e This sum includes compound elastic scattering (see Sec.
VIII).

where
Ur +rr+rq

(R„=R„,+R„Q,(1 R,.L,) 'R.„——

@er= (1 ReeLe) Rer

(27)

As usual the bar will be omitted. By substituting (26)
into (25) and solving, one obtains
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A= (E Z P)—— (30a)

in which the components of the complex, symmetrica
level matrix $= —6+-,'il' are given by the scalar
products with respect to eliminated channels only,

6,= (vt;,L'-y, .), (30b)

in contrast with the corresponding expression (6a) in
which the scalar product was with respect to all
channels; as before the components of the real, diagonal
matrix E are the proper values E), and the real, diagonal
Inatrix E is the energy E times the unit matrix. Ex-
pressions similar to (6b) are obtained for the com-
ponents of the total width and shift matrices I' and 6
of the eliminated channels. The derivation of (29),
which is lengthy though straightforward, is indicated
in Appendix A. Henceforth we shall consider that E'=0,
so that Eqs. (29) simplify to

@„=Qi„(y&„XY„,)A),„, (29a)

(R.,=pi„(y)„XY„,)Ai„. (29b)

The expressions for (R,„and U,„have been given here
for completeness and will not be needed in the further
developments.

If there is only one f channel, the entrance channel,
and if E'= 0, (29a) reduces to the quadratic form

tRr P hie Yir+ xeVer (31)

8,„is referred to as the reduced 2 function and is related
to the quantity f„, which appears in the work of Fesh-

(R„„is the symmetrical reduced E.matrix; it is not neces-
sarily real as is the ordinary E matrix.

By means of the procedures indicated in the various
papers on the E.-matrix theory, it is possible to obtain
directly from (27) the general expressions for the col-
lision matrices; they are

V„=1j2iP„*'(1—5I„,L„) '(R„„P„'*, (28a)

V,„=2iP,161.„(1—L„(R„„)-'P„'. (28b)

U„„ is referred to as the reduced collision matrix; it is
not necessarily unitary as is the ordinary collision
matrix. As in the deduction of (4), the inverse of the
channel matrix appearing in (27) in the definitions of
R„„and (R,„can be expressed in terms of the inverse
of a level matrix A:

N.„„=R'„„+R'„,L',Q',„+pi„(cog,Xcu„„)Ai„, (29)

where

~xr ter++ reL ee7xe j
p I

and
@er Zae(&aeX&ler)&ieq

where

&ie= (1 + eeLe) Qi eq L ee Le(1 It eeLe)

As in (5) and (6) the components of the symmetrical
level matrix A are obtained from the matrix relation

bach, Peaslee, and Weisskopf:"

61.= (f.-&.)-'.
VII. "WEISSKOPF'S COLLISION MATRIX"

(31a)

61„,(Z) =Z„„(t:). (3&)

This result is particularly useful because the latter
components are analytical functions of the complex
energy 8." Thus the diagonal components of the E
matrix are meromorphic functions, the imaginary parts
of which are non-negative on the upper-half plane and
nonpositive on the lower; their poles Eq are confined to
the real axis and have negative residues —y~,'. In this
connection frequent reference will be made to the pole
strength flection" 2e s, for channel c which is defined as
the sum of the p)„' per unit energy interval of the E&,

M E. P. Wigner, Ann. Math. SS, 36 (1951);SS, 7 (1952).

If the signs of the y)„are uncorrelated, the arguments
used to justify the approximation (19) to (4) and (1)
may also be used to justify the approximation

(R„„=pi(y„„xyg„)/(Eg+ai—E—-', ii'g) (32)

to (29a), the widths I'i and shifts Ai of this expression
being the diagonal components of the total width and
shift matrices for the eliminated channels. However,
(32) is valid under the less restrictive condition that
the means with respect to X and c of the partial level
widths and shifts for the eliminated channels be less
than the spacings, because the contributions to the
second sum from the channels s, t have been eliminated
in the expansion corresponding to (18a) for the com-
ponents of (R„„.

When the F~ are much larger than the spacings D, it
is permissible to replace the individual widths and
shifts in (32) by suitable averages with respect to an
energy interval of size comparable to the (I'g)A, .'

I' =(I' ) „—=F(E), 6 =(6 )„,=A(Z). (33)

Both F and 6 are expected to be mildly energy-de-
pendent because of the presence of the energy dependent
factors I' and S in the individual contributing terms
and of possible systematic long-range variations of the
reduced widths of the eliminated channels. This ap-
proximation is reasonable because it is not expected
that the individual level widths and shifts will deviate
significantly from one another, and the results obtained
are usually not sensitive to the actual values of F and h.
We will also apply (33) in those circumstances where
the 1 & are narrow or comparable to D by allowing the
I' and 6 to vary in an appropriate manner from level to
level.

Approximations (32) and (33) together lead to the
interesting result that the various components of the
reduced E matrix can be obtained approximately by
simply evaluating the components of the ordinary R
matrix at the complex energy h=E —6+—r2ir:
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averaged with respect to an interval of appropriate
length.

The following procedure will now be used for the
determination of the various components of the collision
matrix. For the determination of a particular diagonal
component, one eliminates explicit reference to all but
the channel referred to by that component, while for
the determination of a particular nondiagonal com-
ponent, one eliminates explicit reference to all but the
two channels referred to by that component. First we
consider the diagonal components.

R'=P) y)'/(E —E), (36)

it is possible to develop a useful representation for the
approximation (34) which is expected to be rather
accurate when the absorption width is small (as well as
large) compared with the mean level spacing D. The R'
function has the property that in an energy interval I
containing the energy E of interest and of a length such
that D«I«s(ds/dE), where s(E) is the strength of R
in the vicinity of E, its poles Ez and residues —pz'
are equal to those of R whereas outside of I they main-
tain the same statistical distributions as within and
thus will in general differ from those of E which may
evidence long-range Quctuations. The strength s of R'
is thus everywhere equal to the strength s(E) of R at
the energy K R' has therefore the useful property of
approaching i7rs(E) when evaluated at a complex
energy whose imaginary part is large compared with D,
as is evident by replacing the sum over levels in (36)
by an integration for the evaluation. The E.' function
is then added to and subtracted from the right side of
(34) and the sums in the combination (R R') approxi-—
mated by integrations, whereupon one obtains

R(E)=R'(8)+R(8)—mrs(E), (37)
in which

R(8)=R"'+iR' = s(Ei)dEi/(Ei, 8) (37a)—
is the Stieltjes transform'r of s(E), the inverse of which

"D. M. Widder, The Laplace Transform (Princeton Vniversity
Press, Princeton, 1941).

Diagonal Components

If there is only one r channel, the reduced collision
matrix given by (28) together with (1) becomes the
reduced collision function for the r channel; it is con-
veniently written (the r subscripts being omitted)

0'= exp( —2&) (1—SL*)/(1—(RL). (35)

It may be noted that if the reduced R function is ap-
proximated by one level of the diagonal component of
the R matrix of (34), Eq. (35) reduces to the familiar
one-level approximation to the collision function as
given by Feshbach, Peaslee, and Weisskopf. "

By the introduction of Wigner's statistical R function
gI i7,26

1s

s(E 6—) = lim (1/m)R™(8).
r o,

(37b)

V, i ——i2P&(n. , P&E—',

the determinant being

Z = (1—L,61.,) (1—L,Gt„)—L,(n, PL,

(39)

The approximations (34) may be used for the various
(R components, the Fq and hq now including contri-
butions from the partial widths and shifts of all but the
s and t channels. When (1'q)A„))D, it can be shown by
means of Radamacher's theorem" that

~

S.„~s averaged
with respect to all possible choices of the random signs
of the pz, is equal to 2m-s, s&D/(Fz)A„, which is negligible
compared with the product (R„(R«——B,Bg=x's, st.
Equation (39) may therefore be replaced

ouse) t
V.i=2iP.& Q p$

" Ei+~i

The representation (37) has the expected behavior in
the two extremes: I'&)D, (R=R; I'«D, (R=Rn'+R'.
The former result may be obtained simply by replacing
the sum over the levels of E by an integration; according
to (35) the corresponding collision function is

U= exp( 2i—4i) (1—RI*)/(1—RL), (38a)

the bar having been placed over U to indicate that (R

has been replaced by B. This function manifests no
resonances and is essentially constant in the interval I.
In the latter extreme, the term 8 ' represents the net
contribution to R from the levels outside of I; in the
limit I'=0, it is the principal part of the integral of
(37a). The collision function (35) for this case is con-
veniently rewritten

U = exp (—2'') (1—R'L'*)/(1 —R'L'), (38b)
where

L' =L/(1 —Ra'L)
and

y'=y —tan 'tR ~P/(1 —R e5') j
is the negative of the actual potential scattering phase
shift. For example, in the collisions of slow neutrons
with nuclei, the potential scattering term appearing in
elastic scattering is found to be modified by a factor
(1—R"') by which the radius is multiplied; according
to (3'Ib) the average of the reduced widths y&P of the
resonances is DR' /m.

Nondiagonal Components

For the evaluation of the st nondiagonal component
of U, one can eliminate explicit reference to all but the
s and t channels by introducing, the reduced R matrix
with components tR... (R~i, (R, i into the expression (28a)
for the reduced collision matrix. By inverting the two-
channel matrix (1—(R„„L,), one finds the nondiagonal
component of the V„„matrix to be
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rather than 2P,p)„' and —S,p)„'. The equality alter-
native of (9a) is then satisfied. As shown in the next
section, the expressions for the average reaction cross
sections which may be deduced from (40) are of the
same form as those derived by Weisskopf. " We will
therefore refer to (40) with the modifications indicated
above as Weisskopf's collision matrix, although it was
not explicitly considered by him in this manner.
Finally it should be noted that although the non-
diagonal components of V have been expressed in the
expansion form (9), the diagonal components have not.
No particular significance is attributed to this departure
other than that it does appear to make V unitary.

VIII. AVERAGE CROSS SECTIONS

Scattering and Absorption

Convenient expressions for the energy averages of
the cross sections for scattering and absorption of an
incident beam of particles have been given by Feshbach,
Porter, and Weisskopf. ' For the lth partial wave and in
units of (z/k') (2l+1) they are:

&")"=2-&U)"-«*)";

& -)"=& IUI')"—I«&"I';

( .&"=1—& I
UI'&;

total,

total elastic,

potential elastic,

compound elastic,

absorption,

compound-nucleus
formation, (-.);=1—

I &U)"I'

U is the diagonal component of the collision matrix
which refers to the incident beam, The cross section for

where
e),.——(1—L,R,) 'y)„.

SinceLg, =siz.&Fq,)A,D ' —z.&d,&„)A„D ', itisapparent
that as expected (40) di8ers from (19) when the ab-
solute magnitudes of these quantities approach or
exceed unity. There is the additional difference that the
widths and shifts in the denominators of (19) include
contributions from all channels. However, when
(Fi&A„))D, this difference is negligible and for con-
venience the widths and shifts of (40) may be regarded
as the respective totals, as in (19).The collision matrix
thereby obtained has the advantage of being a valid
approximation when &Fi&A,«D as well as when &Fi)A„))D.
One would also presume it to be reasonably accurate
when &Fi&A„D, although in this case one can refer
directly to (39). However, it is noted that this form of
the collision matrix may violate the relation (9a),
although to order of the channel mean of the ratios
(Fz,&A,/D, which necessarily must be small. This slight
defect is readily amended by considering the partial
widths and shifts which contribute to the respective
totals to be

(41)

R' =z s tan (z h/D), (44a)

then it is not dificult to include the residues of the poles
of

I
Ul' in the contour used to derive (43). The result

is that

(1—l&U)" I') '=(1—&IUI')A) '+(1—~ ') ', (44b)

where
ro =exp (—2z-F/D),

F being the total width for absorption, and therefore
the remaining cross sections are

where

&"&"=T'L(1- )/&1 — + T)),

& -& =TL~2'/(1 —~+~2') j,
(45)

(45a)

is the transmission factor in the form proposed by
Keisskopf. "This result has already been obtained in a
somewhat different manner by Snowden and White-
head"

According to (45) the relative probabilities of com-
pound elastic scattering and absorption are mT and

ss W. Schiitzer and J. Tiomno, Phys. Rev. 83, 249 (1951);
Marcos Moshinsky, Anais acad. hrasil. ciSnc. 25, 343 (1953).

29 S. C. Snowden and W. D. Whitehead, Phys. Rev. 94, 1267
(1954).

compound-nucleus formation is by definition the sum
of the absorption and compound elastic scattering cross
sections, and it may be veri6ed that the total elastic
scattering is the sum of the potential elastic and com-

~ pound elastic cross sections.
In view of the fact that all of the poles of the collision

function are situated in the lower half of the complex
energy plane, with the exception of those on the real
axis associated with bound states, " the path of inte-
gration involved in the averaging of U may be displaced,
without crossing polis, far enough upwards so that R'
becomes essentially equal to iz.s(E), and therefore
(R=R according to (37). If the average is with respect
to an energy interval I such that D«E«s(ds/dE) ', it
may be presumed that the contributions from the con- .
necting sides of the contour eGectively cancel and that
8 is nearly constant on the displaced path, in which case

(U)A, = U, (43)

the quantity U being given by (38a). The interval I
must also be small enough so that the external functions
5, I', and p may be considered as constants. It is then
evident that &os)A„&o„,&«, and &oo)A„are obtained by
simply substituting U for (U)A, in (42). This result has
already been noted by Feshbach et al.

No such simple results of a general nature can be
obtained for the quantity (I Ul'&A~, which also appears
in (42), because its poles are situated in both halves of
the 8 plane. However, by assuming that the y),' of E'
are all equal and the levels E& uniformly spaced by an
amount D so that
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(1—w), respectively. The following interpretation of
these probabilities has been suggested by Porter 3'

According to Weissiropf" st a period 2rrh/D may be
attributed to the compound nucleus. Since the decay
rate for absorption is I'/h, the probability for absorption
in this period is (1—w) while that of no absorption is w.
At the end of each period the system is presumed to be
in a configuration for decay into the entrance channel
from which it was formed, and the probability for
penetration through this channel is the transmission
factor T, a quantity which by definition cannot exceed
unity. Therefore, the chance of the occurrence of com-
pound elastic scattering in one period is mT. The
periodic motion of the compound nucleus is repeated
until there is decay either one way or the other.

Both the detailed calculation by means of (44a) and
the interpretation involving the attribution of a period
to the compound nucleus depend upon the assumption
of a uniform level spacing. This assumption may be
questioned because the alternative view that the
behavior of the compound nucleus is "chaotic" would

imply that as in the familiar one-level resonance formula
the relative probabilities for these decays are T for the
entrance channel and the corresponding transmission
factor 27rI'/D for absorption. In this case, the prob-
ability for compound elastic scattering is relatively
larger than mT, especially when m«1 or equivalently
2vri'/D&)1. This alternative view may correspond to
something like a random distribution for the level

spacings. Unfortunately there is scant experimental
information regarding this distribution, and the true
behavior may lie anywhere between these extremes.

Reactions

The average reaction cross sections may be obtained
from (40) in the same manner as (22) was obtained
from (19), the only difference in the result being that
the transmission factors are now 2'/D times the level
averages of the I'q, of (41):

T =4R' I',/ ~

1—B,L,
~

'. (46)

It may be verified that this T is the same as that of
(45a). In other words, the channel transmission factors
are just h'/s. (2l+1) times the corresponding cross sec-
tions for compound-nucleus formation. This is the well

known conclusion arrived at by Weisskopf" by con-
sidering the quantity defined as (o.z)&„ in (42) as the
cross section for the actual formation of a compound
nucleus and by applying the reciprocity theorem to the
hypothesis of independent decay. In the present de-
liberations we have attempted to show in what circum-
stances these considerations are valid.

As a conclusion to this subsection, an application is
mentioned of the collision matrices (19) or (40) in

which the signs of the y)„are uncorrelated. If the reader

Bs C. E. Porter (private communication).
"Victor F. %'eisskopf, Helv. Phys. Acta 23, 187 (1950).

will refer to the general expressions (4.6) or (4.7) given
by Blatt and Biedenharn" for the differential cross
sections of nuclear reaction products, he will notice that
there occur sums of products in which /~=32, l~' ——l'2',

J~=J2 and products in which one or more of these
equalities are not satisfied. If these cross sections are
averaged over an energy interval which is large com-
pared with (I'q)A„, then the arguments used to derive
(22) from (20) can be applied to show that the latter
products are negligible compared with the former. As
noted by Blatt and Biedenharn, the resulting expression
with just the former products is the basis of the treat-
ment by Hauser and Feshbach" of neutron inelastic
scattering.

1. The Strong-Coupling Theory

In this theory, the strength function may be approxi-
mately represented by the .monotonically decreasing
function'~

s(E)= (7rKa) 'E) 8;— —
=0 E&—8, (47)

where
K= )2M (E+T+B)/h')&

I

is the wave number characteristic of the motion of a
nucleon of mass M in a nucleus excited by the capture
of a nucleon of energy E; T is the corresponding kinetic
energy for an unexcited nucleus; and 8 is the binding
energy of the nucleon to the nucleus. The Stieltjes
transform of (47) is

R(E—Z+-', ir)
1 (1+x)'+y'

= (hs/2MasT) &(x iy) —log-
2s. (1—x)'+y'

where

1
+i 1——tan ' ——tan '

1+x
(48)

x= L-', T/II'+-.'r']'[(II'y-,'r )-'*+II]l

y = [-,' T/I'I+ 1st' '](LIIs+' I")*'—II]l

II=E 5+T+B, —
the inverse tangents being evaluated in the first quad-
rant. According to the estimates of Appendix B, the

3' J. M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952), in particular reference 13.

es W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).

IX. THE POLE STRENGTH FUNCTION

According to the results of the last two sections, the
pole strength function s(E) and its Stieltjes transform
(37a) are decisive in the determination of the behaviors
of the various average reaction and scattering cross
sections. The expressions for s(E) and its transform are
discussed in this section for various interaction repre-
sentations of current interest.
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absorption width I' is generally much Iess than the
characteristic kinetic energy T, which is expected to
be about 20 Mev, so that the above expression may
accurately be approximated by

A(E 6—+stir) =s(E 6—) logL(H&+2'&)/(H'* —T&)j
+i rrs(E —6), (48a)

which is. independent of F. In typical cases, the real
and imaginary parts of this transform are of about the
same magnitude. It should be emphasized that in this
theory the potential scattering is not given by the

, hard-sphere formula but by that which is obtained
from the phase shift —p' of (38b)."

In the Feshbach-Weisskopf continuum theory, "it is
assumed that R=i/Ea, which corresponds to constant
K and constant strength s extending in energy from

to ~, and to a wave function of the form

exp( —iEr) at the nuclear surface. ' A more realistic
function would be of the form exp(E' —iE)r with a
damping coeKcient E' of about the same magnitude as
E.' This modified wave function corresponds to an 3
of the form (48a).

2. The Compjlex Square We11 Representation

As monotonic strength functions such as (47) do not

appear to be in accord with the recent experimental
results on total neutron cross sections, ' it is tempting to
consider nonmonotonic functions such as

s(E) = (1/2~)P, i.,'W„/$(E„—E) +-',W„j, (49a)

with transforms

R(8)=Q i '/(E —h 'iW„) —(-49b)

which are similar to ordinary R functions with levels

p and reduced widths i „'.The calculations of Bohr and
Mottelson" provide some justification for the general

form of (49a) on the basis of a shell model with level

positions E„and core couplings proportional to 5'„.
This analysis also indicates that

i „'=)s'/Ma', (49c)

which is the characteristic
'

single-particle reduced

width. This magnitude is to be expected since in the

limit of no coupling, (49b) should reduce to a single-

particle Efunction and s(E). to a sum of delta functions

each of total strength )'t'/Ma' at the positions E„of the

single-particle levels. Moreover, if the coupling is large

compared with the single-particle level spacing re'E/
Mu, it may be shown by approximating the sum in

(49a) by an integration that the strong-coupling value

(47) for the strength is approached. It is also evident

that if the 5'„are su%ciently small, the corresponding

expansion parameters s.(I'x,)A„/2D=n. s,P, of Sec. V can
exceed unity, especially in the vicinity of the single-

particle levels p.
~ Aage Bohr and Ben R. Mottelson. , Kgl. Danske Videnskab.

Selskab, Mat. -fys. Medd. 27, 16 (1953).

It has been shown by Wigner" that the reciprocal
logarithmic derivative of any real continuous potential
of finite range may be expanded as an R function. The
8 function for the complex square well potential should
therefore be a special case of the expansion (49b). In
fact by setting the i „' and W„equal to constants with
respective values ls'/Ma' and W, and by choosing the
level positions to be E~= (js'/2Ma') (P—s)'s' —Vs with

p ranging from 1 to oo and Vs an arbitrary energy, the
expansion is obtained for E=Z ' tanZ, where

Z'= (2M ''/h') L(E—Sy V,)+-,'s(r+ W)],
which is just the expression for the reciprocal logarithmic
derivative of a complex square well wave function of
zero relative orbital angular momentum. It may also
be shown that the corresponding expansions for complex
square well wave functions of arbitrary angular mo-
mentum kl may be obtained with the same i „' and W
if one sets the boundary condition 8= —/; the level
positions, however, occur at the values E=E„which
are associated with the zeros of the Bessel function
F~ t(p„t) where p= (2Ma/js)'(E 6+Vs—)'*. The rela-
tion between (R and the logarithmic derivative f for
this boundary condition is given by (31a).

The expansion (49b) for 8 suggests a "giant reso-
nance" interpretation for the average cross-section data.
If the width I'+W~ is small compared with the single-
particle level spacing, one may over a limited energy
range approximate the 8 of (49b) when substituted in
the U of (38a) by one shell level p plus a real, constant
8' contribution from the remaining levels. Resonance
formulas are thereby obtained for scattering and ab-
sorption in which the entrance channel width is given
by the single-particle width 2'�„'/~1—8'L~' and the
absorption width by I'+W„; the level spacing is that
characteristic of a single-particle potential. By averag-
ing over these giant resonances, the averages of the
strong-coupling theory are obtained. In applications the
interpretation is complicated by the fact that there will
be one such resonance for each partial wave that is
eGective.

The complex square mell representation for particle-
nuclei interactions at intermediate energies has been
considered by many physicists. "For a recent account
of the interpretation of the neutron interaction cross
sections in terms of it, the reader is referred to the
paper by Feshbach, Porter, and Weisskopf. ' The main
results of the present investigation in this connection
are the demonstration of the relation to the 8-matrix
or resonance theory and the theoretical indication of
the dependence of the imaginary part of the potential
on the absorption width. Francis and Watson'~ have
investigated formally the matter of equivalent two-body

"E.P. Wigner, Am. Math. Monthly 59, 669 (1952).
6 Ostrofsky, Breit, and johnson, Phys. Rev. 49, 22 (1,936).

H. A. Bethe, Phys. Rev. 57, 1125 I'1940); Robert E. Le Levier
and David S. Saxon, Phys. Rev. 87, 40 (1952); D. M. Chase and
F. Rohrlich, Phys. Rev. 94, 81 (1954)."N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953).
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potentials by considering the multiple scattering of an
incident beam of particles traversing the target nucleus.

As an alternative to the introduction of the con-
tinuous, nonmonotonic s(E) of (49a), one may suppose
that the behavior of the average total neutron cross
sections is due to the presence in the R function expan-
sion of strong shell levels in addition to the usual weak
levels which are needed to explain the narrow reso-
nances. Such a state of affairs is depicted in Fig. (1a).
where the strength s is represented by the height of the
vertical lines for the individual levels; the represen-
tation of the strength function (49a'l is shown in Fig.
(1b). The former situation is actually somewhat un-
realistic because of the strictly formal nature of the
E-matrix levels. A mixing of the weak and strong levels
is to be expected, the consequence of which is the dis-
solution of the strong levels and a modulation of the
strengths of the weak levels, as indicated by Fig. (1b).
Experimentally it is not easy to distinguish between
these two alternatives because when the imaginary part
of the potential is relatively small, the average total
cross sections depend primarily on the real part of 8,
which is essentially the same in the two cases. Direct
determinations of s would therefore be desirable. This
can be done by studying the behavior of the (pz, ')A„ for
individual resonances" and by measuring the deviations
from the simple exponential dependence of the trans-
missions involved in the measurements of total cross
sections, these deviations resulting from the Quctua-
tions, caused by the presence of many unresolved reso-
nances, of the actual cross section about its average. '

3. Surface Absorption Model

A nucleon-nucleus interaction of current interest is
one with a finite surface absorption in addition to the
volume interaction; this absorption can be represented
by a pure imaginary delta function potential of strength
ink'/2Ma appended to the complex well volume inter-
action. By integrating the wave equation across this
surface, one finds that the logarithmic derivative is
changed by a finite amount —in/a. The R function just
outside of this surface is, therefore,

(50a)

where 8 is the 8 function for the internal potential.
According to the inversion formula (37b), the strength
function corresponding to (50a) is just 1/m times the
imaginary part of 8+,

s(Z —Z) =~ '(Z-'-+nip-I')/(1+n'IZ-I') (Sob)

In the consideration of such a model, Bohr and Mot-
telson'4 have given an alternative derivation of (50b)
for the case where R is real.

's Carter, Harvey, Hughes, and Pilcher, Phys. Rev. 96, 113
(1954).

~ R. G. Thomas, to be published.
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Fro. 1. The strengths s=y&P/D of the levels of two nuclear
models are represented by the heights of vertical lines at the level
positions. u: There are strong, widely spaced levels in addition
to weak levels of the strong-coupling type with narrow spacing;
b: As a result of mixing of the strong and weak levels of a, the
strong levels are weakened and their weak neighbors are strength-
ened.

~ L. Wolfenstein, Phys. Rev. 82, 690 (1951).

X. CONCLUDING REMARKS

Although this investigation has primarily been con-
cerned with magnitudes and energy dependences, it
may be appropriate to include a remark concerning the
angular distributions of the products of the decay of
the compound nucleus. It has been a common miscon-
ception that the theory of the compound nucleus
predicts that these distributions be isotropic. It should
be stated that there are no indications from the present
treatment that this is necessarily so. This matter has
already been thoroughly investigated by Wolfenstein"
as well as Hauser and Feshbach" who show that the
theory of the compound nucleus requires only that these
distributions be symmetric with respect to a plane per-
pendicular to the beam direction when averaged over a
suKcient number of resonance levels. This symmetry is
indeed a consequence of the lack of correlations of the
signs of the y)„.These authors also show that a sufhcient
condition for isotropy is that the energy levels of the
compound and residual nuclei be suKciently dense and
have a dependence on their respective spins J which is
proportional to 27+1 for the range of J values that can
participate. According to reference 45, signi6cant de-
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partures from such a dependence may occur at moderate
energies. More general conditions of a necessary nature
for isotropy are not known at present.

A concluding remark concerning the non-compound-
nucleus processes may also be appropriate. It has been
shown that if the signs of the yq, for the nuclear levels
are uncorrelated, for any manner of excitation these
levels will superpose in such a way as to form a com-
pound nucleus; it has been a common belief that for
the region of the configuration space where the nuclear
interactions are very strong, these signs will indeed be
uncorrelated. However, there is a nuclear surface region
where the interactions are not particularly strong and
non-compound nucleus processes, such as stripping and
pickup, can occur. The R-matrix theory, being general,
can account for these processes if the channel radii are
extended to the limit of the nuclear interactions, but if
this is done, the signs of the y)„would become correlated
and some of the deductions in IX concerning the
strength functions would lose their validity. A tractable
approach to the theory of nuclear reactions may
therefore be one where the channel radii are small

enough to permit the application of the compound-
nucleus theory to the internal, strong-interaction
region, the e6ects of the nuclear interactions in the
external region being accounted for by the running-
wave Green's-. function method. " The collision matrix
would be expressed as

U= Up+AU,

where U|.- represents the compound-nucleus contribu-
tion and dU the additional contribution from the
external interactions. As a erst approximation the
wave functions of the compound nucleus system could
be used in the matrix elements for the evaluation of the
components of AU, rather than plane waves as in the
Born approximation. "The equivalent two-body repre-
sentations, such as the complex square well, would be
particularly useful for this purpose. According to (51),
the resulting collision cross section will contain con-
tributions proportional to ~Ucj' for the compound-
nucleus processes, to ~AU~' for the non-compound-
nucleus processes, and to the interference terms
UchU*+Uc*DU. 4' It is evident that the interference
contributions will vanish if averaged over an energy
interval containing a sufficient number of levels of the
compound nucleus.

4' The R-matrix theory is based on the standing-eave Green's-
function method. In fact, the components of the R matrix are the
values of the Green's function at the entrances to the various
pairs of channels.

"See, e.g., E Gerjuoy, Phy. s. Rev. 91, 645 (1953).
~ The effect of the compound nucleus on the stripping con-

tribution has been considered by N. C. Francis and K. M. Watson,
Phys. Rev. 93, 313 (1954); J. Horowitz and A. M. L. Messiah,
J. phys. et radium 14, 695 (1953);and W. Tobocman, Phys. Rev.
94, 1655 (1954).

with L'„given in connection with (29). The inversion
procedure' ' is to assume an expansion

with

(1—R'-L'-) '= 1+2"(v"XP-)~",

Pre L ee'yie

(A2)

and level coeKcients A„„which are presumably func-
tions of the energy. By multiplying both sides of (A2)
by (1—R'„I.'„) one obtains

(vi.Xp~.)+g (v,.xp,.)A„,
Eg—E

(~~.xp, .)
A„,gi„——0, (A3)

Xjxv

after making use of the identities

M(xxy)N = (MxxSy),
(xXy) (zXro) =i (xXtt)

(A4)

in which x, y, s, m are arbitrary vectors, 3f and E are
arbitrary matrices, the transpose of the latter being 8,
and f= (y,z) is a scalar product over channels; the $i„
are given by (30b). Equation (A3) may be rearranged
to read

)i„A„„
Z(yi, exp, .) — +Ay. —Q =0 (ASa)

XV

which is satisfied if for all X, v

(&i,—&)&i.—Es 6„&,.=4.
The matrix equivalent of this set of equations is (30a).
The expansions (A2) and (A1) are then substituted into
the expressions (27) for (R„„and 61„.By repeated appli-
cations of (A4) and (ASb) these complicated expressions
finally reduce to those of (29).

APPENDIX B. ESTIMATES OF THE TOTAL
REACTION VGDTH

The following procedure for estimating the total
nuclear decay width is essentially the same as that
previously used by Weisskopf. 44 A compound nucleus
of excitation energy E~, total spin J, emits particles of
spin i with relative orbital angular momentum M, in
groups of energy e, leaving the residual nucleus with

' V. F. Weisskopf, Phys. Rev. 52, 295 ()937).

APPENDIX A. DERIVATION OF EQ. (29)

It is necessary to invert the submatrix (1—R„L,) in
(27). With the separation (2) for the R-matrix, one finds

(1—R, L)—'=(1—Ro L) '(1—R'„L', ) ' (A1)
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total spin I and excitation energy (Ec 8—e—), where
8 is the binding energy of the emitted particle to the
ground state of the residual nucleus; s=i+I is the
channel spin. Sy assuming that the levels in the residual
nucleus are su%ciently dense so that the sum over
levels can be replaced by an integration, the total width
for the decay of a compound-nucleus level of spin J
becomes

Ec—&

r~=Q Dc~—(Eo)
Ila 2x Js

(81)
Dz'(Ec 8 e—)—

Dq and D~ being independent of the spins J and I,
respectively. By noting that

Zr. (2I+1)= (21+1)(2l+ 1)(2i+1)

o c(e) = (x-hs/2Me) Qg(21+1)Ti,

is the cross section for the inverse process of compound
nucleus formation when the residual nuclei of excitation
(Ez 8 e) are born—bard—ed by particles of energy e,
where M is the reduced mass, one obtains

F=
(2i+1)MDc(Ec) t

xc n sac(e)de
(83)

Dg(E,—8—e)

which is independent of J and identical to the original
expression given by Weisskopf. In order to arrive at
an order of magnitude estimate of F, it is assumed that
Dc(E)=D~ (E)= c&(exp (—E/T) both functions having
the same factor c and temperature T, at least in the
region of excitation energies where the main contri-
butions to the integral in (83) arise; furthermore it is
assumed that the energies of the emitted neutrons are
all equal to 2T, their average, that o.z(e) =era', being
independent of the state of excitation of the residual

4s Claude Bloch, Phys. Rev. 93, 1094 (1954). There is also
expected to be an additional factor expL —(j+xs)'/2o ) in the
dependence of the level densities on the spina j (and I). Ac-
cording to estimates made of the dispersion coefBcient a using the
individual-particle model, Bloch finds significant deviations from
the 2J+1 dependence due to this factor for values of J as low as
three and nuclear excitations less than 12 Mev.

where Dg and Dg are the mean level spacings of the
compound and residual nuclei with spins J and I,
respectively, and T&, is the transmission factor for
channel /e. It is necessary to make the reasonable
assumption that the level densities as a function of spin
are proportional to the spin statistical factor, 4' at least
over the range of participating spin values:

Dc~ =Dc/(2&+ 1), Dzr =Drr/(2I+ 1), (82)

As a typical example, we put a=8)&10 " cm, T=3
Mev, for neutron decay, obtaining F=2.5 Mev.

The usual statistical-theory assumption thato. ,c(e)
is independent of the state of excitation of the residual
nucleus being bombarded in the inverse process is
subject to question because it implies an eventual
violation of the Wigner sum rule" P yq '&3k'/2M@'
By considering this rule, an upper-limit estimate for F
can be made which should not be exceeded by the
estimate (84). If in the alternative expression for the
width, P, 2I',yq, ', the barrier factors are replaced by
a mean value (4Ma'T/h') ' corresponding to I=0
neutrons of energy 2T, and the remaining sum replaced
by the above sum rule, one concludes that

1'& (36A'T/Ma') &. (85)

For the example cited above, F&8.5 Mev. It should
probably be required that (83) be considerably less
than the right side of (85) because the negative-energy
channels, which do not contribute to the width (I'=0),
are to be included in the sum rule. As the temperature
T is expected to be a monotonically increasing function
of the excitation energy, an energy will ultimately be
reached where (83) exceeds (85). In the example, this
energy would correspond to T=4.4 Mev.

In the usual statistical-theory applications, the tem-
perature enters in an expression which refers to the
product of the reduced width and the level spacing
rather than to the level spacing itself. This is because
oc(e) is generally assumed to be independent of the
state of excitation of the residual nucleus. Although the
actual nuclear temperature is expected to increase
monotonically with the excitation, the above considera-
tions show that it may preferable to use a more nearly
constant temperature to represent this product. There
is indeed experimental evidence that the temperature
referring to this product actually decreases with in-
creasing excitation indicating that the 0&(e), or equiva-
lently the (y&„')A„, for the bombardment of excited
nuclei decrease considerably with the excitation of these
nuclei. 4~

46 By substituting in this formula the estimate 2s=20E/A, the
energy unit being Mev, and a=1.4)&10 133& cm, D. C. Peaslee
obtains P=(4/3)EcA & exp(—8/T). Because of a misprint, a
different formula was given in a publication by him LPhys. Rev.
86, 269 (1952)g. As a result the I' of his Table I are somewhat
overestimated. However, the factors f were also overestimated so
that the qualitative conclusions of his paper remain essentially
unchanged. PD. C. Peaslee (private communication). g"B.L. Cohen, Phys. Rev. 92, 1245 (1953).

nucleus, and that E,&&B, so that one obtains"

r=2(2i+1)MT'a'rr '=/r 'exp( —8/T). (84)


