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trating showers produced in the light materials, the
eGect of heavy meson production is considered small.
This is justified from the cloud chamber investigations
carried out at approximately the same altitude and in
approximately the same energy range. "

The results concerning the bremsstrahlung produced

by high energy cosmic-ray p mesons confirm the essential
correctness of the assumptions based upon which the
calculations were made.

We wish to thank Mr. R. Hansen of the High Altitude
Observatory at Climax, Colorado, for his very valuable
cooperation.
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The principle of equivalence is partly abandoned as a basis for general relativity, and cosmic time is
introduced as a new 6eld variable. Field equations are obtained which take account of the self-energy of the
gravitational 6eld. The central symmetrical solution of the new Geld equations shows a significant deviation
from the well-known Schwarzschild solution. It is free from singularities and gives a slightly smaller value
for the perihelion motion of planetary orbits. Other consequences of the new formalism are:

(a) A rigorous de6nition can be given to the concept of ether.
(b) The energy-stress tensor of gravitational fields can be defined in a satisfactory manner.
(c) The gravitational field energy of a particle is distributed continuously over the space and its integral

is equal to the gravitational mass of the particle.
(d) There are proper gravitational waves, generated by oscillating matter and propagating with the velocity

of light.
(e) There is a noticable ether drift which tends to increase the gravitational mass of a body of given inertial

mass.
(f) The ratio of gravitational and inertial mass of radiating energy is twice the corresponding ratio for

neutral static matter.
(g) Hubble's recession constant is equal to the reciprocal of the age of the universe.

An outstanding problem is to determine the coupling constant between the gravitational field and the
cosmic time 6eld. The value P= 1 is strongly suggested by cosmological considerations. An experimental
determination is possible if the rate of advance of the perihelion of the Mercury orbit is known more
accurately.

1. INTRODUCTION

HE general theory of relativity rests upon the
so-called prirscipte of equivalence which states

that: (a) It is possible to choose at every point of the
space-time continuum a frame of reference which is
Galilean at that particular point, i.e., in which special
relativity holds in the immediate neighborhood of the
point. (b) All frames of reference are equivalent in the
sense that there is no general physical property which
would distinguish one particular frame (or even a whole

class of frames) from among the others. '

The two statements have an entirely diferent stand-
ing. Whereas postulate (a) is firmly established and

supported by a considerable mass of experimental
evidence, postulate (b) rests upon an essentially nega-
tive statement which obviously cannot be verified
directly. In fact its validity has often been challenged

'A third postulate, often quoted in connection with the prin-
ciple of equivalence, requires that physical laws should have a
form which does not depend on the particular frame which one
happens to use. This is not really a physical-but an epistemo-
logical postulate; it expresses the belief that physical laws-can be
put in a particular mathematical form, the desirability of which
can hardly be disputed.

in view of certain conceptual difhculties which arise
from it both on the cosmical and local scales.

On the cosmical scale, postulate (b) is clearly in
conflict with one of the most important cosmological
principles known as Weyl's postulate, which necessarily
leads to the notion of absolute cosmic time. ' Although
no formulation of Weyl's postulate has ever been given
which would reveal that cosmic time has any noticeable
physical eBects, the conceptual conAict between the
two principles can hardly be denied.

On the local scale, it is a well-known weakness of
general relativity that it is incapable of dining the
energy-stress tensor of the gravitational 6eld in a satis-
factory manner. The only known quantity which can
be regarded as a substitute for the energy tensor is a
pseudo-tensor which, if the principle of equivalence is
accepted, can be transformed away in a suitable frame
of reference. Closely connected with this is the following
observation which was actually the starting point of
the present investigations.

See H. Bondi, Cosomtogy (Cambridge University Press, Cam-
bridge, j.952), p. 70.
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In Einstein's law of gravitation, '

C„=C,. =C, — C„

is a symmetric tensor. Here C, „denotes the partial
derivative BC /Bx„. He then proposes a modification of
Eq. (1) by adding the term C „to the right-hand side.
The purpose of the term is to replace Einstein's cos-
mological term and is supposed to be of the same order
of smallness as the latter, hence negligible in planetary

3 Roman indices go from 0 to 3. The metric ground form in a
locally Galilean frame is ds =dzo~ —~xP—d+2 —d&3 ~

4 F. Hoyle, Monthly Notices Roy. Astron. Soc. 108, 372 (1948)
and 109, 365 (1949).

the quantity T on the right is the total energy-stress
tensor which receives contributions from any source of
energy that is present. Thus if electromagnetic held
alone is present —no neutral matter —then one has to
put the Maxwell-Poynting tensor for T „, multiplied,
of course, by the constant of gravitation. This expresses
the fact that electromagnetic energy, like any other
other form of energy, creates gravitation. On the other
hand, if gravitational 6eld alone is present, i.e., in
"empty space, "nothing is put for T „, although it can
hardly be denied that gravitational fields contain
energy. If we accept the principle that every sort of
energy creates gravitation, then T „should never be
zero, not even in empty space, but should be equal to
the energy-stress tensor of the gravitational field if
other 6elds are absent.

On the intermediary (planetary) scale there is a
further difhculty connected with the principle of
equivalence, the problem of inertia. It is well known
that apart from local variations of the gravitational
6eld, a frame of reference which does not rotate with
respect to distant stars and nebulas is very nearly a
Galilean frame. This remarkable fact, first emphasized
by E. Mach, remains a most unlikely coincidence when
viewed in the light of the principle of equivalence. The
usual explanation, based on Mach's principle which
makes the distant stars and galaxies themselves respon-
sible for inertia, does not resolve the difhculties com-
pletely. What is obviously needed is some sort of
physical reality which, propagating in space and time,
would determine the frames of inertia at every point.

To resolve these diTiculties which seem to be inherent
in the principle of equivalence, various modifications of
the formalism of general relativity have been proposed.
Without striving for completeness, I shall only mention
some of the suggestions that have been made more
recently. One is an attempt by Hoyle4 to incorporate
Weyl's postulate in the framework of general relativity.
Hoyle describes the motion of Weyl's cosmological sub-
stratum by a time-like vector 6eld C which is supposed
to be curl-free (in order to satisfy Weyl's postulate),
so that its covariant derivative,

dimensions. This in any case precludes any measurable
eGects and extricates the theory from the range of direct
experimental verification.

Another modification of general relativity has been
proposed by Rosen' and more recently by Kohler. '
These authors introduce a second metric tensor cor-
responding to a flat space-time which would provide a
sort of Galilean background to the gravitational metric.
This enables them of course to de6ne the gravitational
energy-stress tensor in a quite satisfactory manner.
Nevertheless, from the point of view of relativity the
procedure must be regarded as a retrograde step, since
it renders the introducing of the proper (gravitational)
metric tensor rather pointless, or at least somewhat
arti6cial.

The basic idea of the present investigations is similar
to Hoyle's: We introduce a scalar field variable v, called
cosmic time, and postulate an interaction between the
metrical and v 6elds. The interaction, however, is
supposed to be quite macroscopic, and certainly not of
cosmical smallness like in Hoyle's theory. The field
equations are obtained from Hamilton's principle, using
a Lagrangian which involves both the curvature scalar
and a scalar derived from the v 6eld. The 6eld equations
are then solved for the central symmetrical case, under
the assumption that the 6eld-generating body~is at
absolute rest, i.e., at rest relatively to the inertial
system determined by the gradient of r. We shall call
this inertial system the ether. According to this de6-
nition, ether is a state of motion determined uniquely by
the gradient of r at every point of the space time con-
firwum.

The central symmetrical solution has several inter-
esting features. First, it has no Schwarzschild-type
singularity but is continuous everywhere including the
origin. Consequently, its geodesics are not identical
with those in Schwarzschild's solution. Assuming that
planetary orbits are geodesics in the metrical field, one
obtains a perennial precession of the perihelion which is

t 1—(Pj6(2+P))) times the Einstein value, where P is
a certain positive constant. On cosmological grounds
there is some reason to believe that the value of the
constant P is 1. This would give for Mercury 40.5"
per century instead of 43", a value which is certainly
not ruled out by present experimental determinations.
For the deflection of light in the sun's gravitational
held one obtains the same value as in ordinary rela-
tivity, except for terms of second order smallness.

Another feature of the solution is that it is possible
to define with the help of T „and the 7- field an
energy-momentum vector density p" in such a manner
that the integral of p' over the whole space has a 6nite
value and in fact is equal to the gravitational mass of
the central symmetrical body. Thus the energy density
of neutral matter is continuously distributed over the
space, instead of being concentrated in singularities.

' N. Rosen, Phys. Rev. 57, 147 (1940).' M. Kohler, Z. Physik 131, 571 (1952) and 134, 286 (1953).
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The explicit expression for p" is

1
On (C Qs)—1(2csrt n bing s)

8~f(:
(2)

Thus the gravitational mass density is (1—v') &p, as
opposed to the inertial mass density which is p, . This is
a typical ether-drift eGect which, if it exists, cannot be
reconciled with the principle of equivalence.

If n is the angular distance from the south pole of the
ecliptic of the sun s direction of absolute motion, v, its
absolute velocity, and v, the orbital velocity of the earth
relatively to the sun, then the square of the absolute
velocity of the earth is between the values v,s+v, '
~2v,v, sino. , and the maximum seasonal variation of
the factor (1—v')-1 is

~
(1—v,s —v,s—2v,v, sinn) —

&

—(1—v.s—v,s+2v, v, sinn) &~ 2v,v, ~sinn~.

A seasonal variation of the same magnitude can there-
fore be predicted for the gravitational acceleration at
any point of the earth's surface. To estimate the mag-
nitude of the eGect, we have to know the direction and
magnitude of the absolute velocity of the solar system.
This was determined by Miller from ether-drift experi-
ments of the Michelson-Morley type, ' the positive
outcome of which is yet unexplained. According to
Miller n=7', v, =0.7X10, and since v, =10 ', the
relative magnitude of the above eGect is expected to be
1.7X10 '. This is perhaps just within the limits of ob-
servability with present-day experimental techniques.

In a frame which rests in the ether, the components
of the vector density (4) become

1+v'
p= p)

V2

2'0
p'= — -y,

1—v
(5)

Hence the gravitational mass of a high-velocity particle
with rest mass m is not (1—v') &m but (1+v') (1—v') 'm.
In the limiting case of photons v= 1, and therefore the
gravitational mass is double the inertial mass, i.e., the

7 The velocity of light is taken to be 1.
8 It is assumed in the calculations that there is no significant

ether drag by the moving body.
s D. C. Miller, Revs. Modern Phys. 5, 203 (1933).Miller found

for optical phenomena an ether drag coefficient 0.0514.

where ~ is the gravitational constant. In the case of an
ideal fluid with rest density p and isotropic pressure p,
resting in the ether, ' this gives

o=o'=u+3p, t'=o'=t '=0 (3)

If the Quid is moving with uniform velocity v relatively
to the ether' in the direction of the positive xi axis and
the pressure is negligible, then in a frame moving with
the Quid we get

apparent gravitational constant of radiating energy is
twice the gravitational constant of static mutter. The same
result can be obtained from formula (2) directly, if one
puts for T„ the energy-stress tensor of isotropic radi-
ation. The result is quite unexpected and it throws a
new light on the fact that Einstein's light deflection
value is twice the Newtonian value.

In Sec. 7 it will be shown that the scalar quantity
r propagates in waves generated by nonstatic

matter. Thus inertial frames are aGected by every
change in the matter distribution of distant parts of the
universe, the disturbance being propagated with the
velocity of light. So our new formulation of general
relativity removes the most important conceptural
dBBculties which arise from the principle of equivalence,
without upsetting the logical structure of the theory.

The new formalism may also help in clearing up some
diKculties which have arisen in connection with recent
experimental 6ndings of Finlay-Freundlich. In the
early days of relativity Einstein predicted that the
Fraunhofer lines in light coming from heavy stars must
show a shift towards the red, in the proportion q= (gQQ)

*'.

Recent measurements of the sun by Finlay-Freundlich"
seem to indicate that at the central portions of the disk. ,
the observed red shift is considerably smaller than the
predicted value, but increases rapidly towards the limb,
eventually exceeding the Einstein value. It has been
suggested" that part of the observed effect is nongravi-
tational and is due to photon-photon collisions. There
is, however, a small residual red shift which may be
due to gravitational eGects and which is about one-fifth
of the Einstein value, a result which is also con6rmed
by observations on Sirius B.

At the end of Sec. 6 it will be shown that if one makes
the perfectly plausible assumption that in Bohr's fre-
quency relation,

Eg—Ei= hv,

v is to be measured not in metric but in cosmic time
units, then the higher metric frequency of light emitted
by an atom on the sun just compensates the red shift
to be expected and the observed gravitational red shift
should be zero. It appears therefore that the actual
(experimental) red shift of a photon is not 1/5 but 6/5
times the theoretical value. It is interesting to note
in this connection that Freundlich's deQection value for
photons in the sun's gravitational field also exceeds the
predicted value, by about the same amount. It is not
unlikely that the two discrepancies have a common
origin.

There are various cosmological models compatible
with the new field equations. One of them, corresponding
to P=1, is a particularly simple one. It has a linear
expansion law and has the constant energy density 3/2
when measured in absolute cosmical units.

' E. Finlay-Freundlich, Nachr. Akad. Wiss. Gottingen Math. -
physiic. Kl. , 1954a, No. 7 (1954)."E. Finlay-Freundlich, Proc. Phys. Soc. (London) A67, 192
(1954) and M. Born, Proc. Phys. Soc. (London) A67, 193 (1954).
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Z. THE FIELD EQUATIONS

The fundamental assumption underlying these inves-
tigations is that cosmic time v is not a mere coordinate
but a scalar field variable which has the property that
its gradient,

C„=r, „=Br/Bx„, (6)

is a time-like vector, g nC C„&0. Since we want to
derive the field equations from Hamilton's principle, the
fundamental problem is to find a suitable expression for
the world Lagrangian density in which the action of the
v 6eld has been incorporated. In postulating a Lagran-
gian we cannot very well reply on empirical considera-
tions since nothing definite is known about the inter-
action of the g n and 7- 6elds. In fact physicists have
never found it necessary (or even desirable) to postulate
the existence of a v field at all. Hence we must reply on
certain principles which are partly aesthetic (e.g. , formal
simplicity from the mathematical point of view) and
partly motivated by the results we expect to 6nd.

Let R „,„be the covariant Riemannian curvature
tensor and

Note also that C „„,does not involve higher than
second-order derivatives of v. Of course, a final justi-
fication of postulate (13) must be postponed until we
have explored some of its physical consequences.

Hamilton's principle requires that

r
(g+-,'PK) de =0 (14)

for any variation of g and v which vanishes at the
boundary of the domain of integration. Variation of

g „gives
5%= (R .—-', Rg .)8g"",

where
Rmn g Rrmns

8C is obtained from (10), (11), and (12). We have

Cmr Cm, r 2g (gsm, r+gar, m grm, s)Cna

and a routine calculation gives, using partial integration
and the relation 6g „=—g „g„,bg"',

R=g "g"'R „,„ (7)
+C "Kmn; r 2 gmnK) &g

the curvature scalar. The corresponding density is
written Hence the gravitational field equations are

Now put
%=A,&R, A= —detg „.

t
r

Cmn Cm; n Cm, n Cr'f
&mw

where
~mn k&gmn+P7'mn= 0a

Cmrsn =CmrCsn&

gmngrac

(10)

(11)

+gcmncr"+ gc"Cmn;r sgmnc (16).

T „ is the gravitational field energy-stress tensor, it
satisfies the conservation law

Clearly C „is a symmetrical tensor, T„., =0. (17)

C „=v, ~„=C.m.

With these notations, the following expression suggests
itself as a suitable Lagrangian density:

(13)

where P is a suitable constant. The numerical value of
the coupling constant p depends on the normalization
of v. and is left undetermined for the time being.

From the mathematical-aesthetic point of view it is
quite natural to combine the scalars R and C. Expres-
sions (7) and (11) have a very similar form, and a
glance at (10) shows that C „„,forms a kind of sym-
metrical counterpart to the tensor R „„,. In fact C „„,
has the symmetries

Cmnrs Cnmrs Cmnsr Crsmny

whereas R „„,has the well-known symmetries

Rmnrs Rnmrs Rmnsr Rrsmnp

+mnra++mrsn++msnr= 0.

This follows immediately from (9). (17) is a "weak"
conservation law, i.e., not an identity but valid only in
consequence of the field equations.

Leaving g „unchanged and varying ~ one obtains
the supplementary field equation,

Cmn 0

Since the term ~PC in (13) is macroscopic, of the
same order of magnitude as R, it cannot replace the
cosmological term, like in Hoyle's theory. Therefore,
when dealing with the cosmological situation we shall
have to add another term of cosmical smallness to the
Lagrangian. Instead of the usual —yA&, where y is a
small constant of dimension (length) ', we shall add
the term —yr 'A& to the right-hand side of (13), where

y is an absolute constant provided that the unit of
cosmic time is adjusted to the unit of metric length. It
is assumed here that r is measured from an absolute
origin so that at the present epoch it has a very large
value (in ordinary units). The final form of the Lagran-
gian is therefore



G. SZEKERES

Hamilton's principle gives the cosmological Geld equa-
tions

Rm~ 2R—g~n+N'~a+ per 'gmn=0,

where T„„is defined by (16), and

PCme +2+&M 0

(2o)

(21)

where F is a function of t=x4 alone, rs=xiP+xpP+xpP,
and E is a constant. In addition we require that
also r shall be a function of t alone. In a strictly
uniform universe we may even expect to 6nd E=O
and d7/dt=///= const. I am going to show now that the
field equations have in fact solutions of this simple
form. Sy adjusting the unit of cosmic time to the unit
of metric time (i.e., by using a suitable normalizing
factor for 7) we can make n=1, and hence

In the next section it will be shown that there exist
simple cosmological solutions of these equations and a
particularly simple model is obtained if / =1 and y has
the value —,'.

3. COSMOLOGICAL MODELS

In order to obtain some information regarding the
constants P and y we begin with the discussion of some
simple cosmological models which are compatible with
the field equations. Our standpoint is that a cosmo-
logical model is "empty, " i.e., if, derives al/ its energy
from its gravitational field. Later on we shall verify the
correctness of this view in the case of a central sym-
metrical neutral body.

In all what follows, Greek sufhxes shall run from 1 to
3 only. For reasons of uniformity it is desirable that in
a cosmological model the line element shall have the
form"

z
gpp —1, gp//

—0 g//
——

) 8//„+ x//x„( F
1rPZ ) '

hence by (16),

Tpp ———,', (F'/F)', Tp„——0,

T"= l L(F"/F) '(F'/—F-)'jg".

These, together with (20) and (25)—(25"), give

(—:.~--:)(F'/F)'+-,'v~'=0,

(26)

(26')

(27)

(lP 1) (F"—IF)+(l '.P) —(F—'/F)'+lv~ '=o (28)

Finally, (21) gives

F/ F// (F/) P

+ sPI I +2&r—'=0. (29)

Equation (27) shows that F must have the form"

P ~a
)

and the equations give the relations

(—:.e——.') '+!v=0,
(-:~—1)( '- )+(-:——:.~) '+!&=0,

—
pPPu (n' —n)+ sPu'+ 2y =0.

(3o)

Eliminating p from the 6rst two equations, we get,
assuming that n@0,

P= g/(3~+2); (31)

Similarly, we obtain from (9), (11), (22), (23), and
(24):

Cp ——1) C„=0) Cpp
——Cp„——0, C„„=—-,'F'b„„

C;= ', (F'/-F) C= -'(F'/F)'

Cp";, = —4(F'/F), C„"; =0, Cpp;p=Cp;p=0,

C .; o = 2((F"/F) (F'/F)' jg/- '

2~ ~Pv&

Ov

= p(F'/F)~"

For the metric tensor we put

gu
= ~"F(~)

The only nonvanishing ChristoGel symbols are

(22) hence, by the first equation,

v = p~'(3~ —4)/(3~+2) (32)

(23)

(24)

The third equation is also satisfied by these values, and
we get a one-parameter family of solutions.

Discarding n=0 which gives y=0 and leads to a Rat
space, the most promising solution is the one corre-
sponding to n=2 which leads to a linearly expanding
model. It gives

and they give

Rpp '(F"/F) '(F'/F——)'-Rp„—0/-——
R"= Ll (F"/F)+ l (F'/F)'7g",

R= 3F"/F,

—1 7=2
and the line element becomes

ds'=dP t'Q dx '. —

Properties of the more general model,

(33)

hence
Rpp —pgppR= —

p (F'/F)',

Rpp, g gppR Op

R" pg..R= L (F"/F)+—4 (F'/F)'j—g".
~ Reference 2, p. 102.

(34)gpp=1, gp„=0, g„„=—t 5„„, n&0

"Apart from a constant factor, which however can be made 1
by a trivial transformation of the space coordinates.

(25)
will be investigated in the last section. For later refer-
ence we note the following formulas which follow easily

(25")
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from (24), (26), (26'), (30), (31), (32), and (34): Since 7 only depends on t, we obtain by (6), (9), (11)
(38), (39)

=-'et
2

Ov
Cp= ~', C„=O, C'=g '~', C&=0, Cpp= r",

To'= —,'onot ', T",= ,',n—(3n 4)—t 'b„„

T= T",=-',n(3n —2)t '.
(36)

C 0—
g
—1~« C„,=C,I'= 0,

1 g

2 g

4. THE GRAVITATIONAL FIELD OF A CENTRAL
SYMMETRICAL BODY

1 g

2fg

1 gC„'= —— r'$—„,
2g

and the nonvanishing Christoffel symbols are

p 1g

00 2f
0 1g'=-—4

p0 2g

Vp

1f' 1
4H.+-—(1 f ') 4—(&"—b4) (—39)

2 f

We proceed now to integrate the 6eld equations
under the assumption that the cosmological term can be
neglected and that the metric tensor has the form

g«= g go.=o g"= —9"+(f—1)Gu (37)

where for abbreviation we have put

P„=x„/r,

and f and g are functions of r= (xio+xoo+xoo)l alone.
We also assume that v. depends only on t, or in other
words that the body is at rest relatively to the ether.

From (37) we obtain

g"=g ', g'"=o, g""= o..+(1 —f ')M. ,
—(38)

C r
g

1&»» C——
g 2(&»»)2 r (g)2»f ig=o(&»)o

1 1g" 1(g'q' 1 f'g' 1 g' 1
Co",,————

I

—
I
—— +-—r'+-r",

4&g) 4 fg

l

—r 4»
g2

1(g')', g' „fg, g

(g») o

2Egi

1 (g" (g'i' 1 f'g' 2g')+-—I"',
fg&g Egi 2 fg r g)

1 (1g" 1(g')' 1fg' 1g'i 1
co „,,=—

I

——+-I —
I

—— +-—I."+—.'".
4&g) 4 fg

Kith these values one obtains

They give the following expressions:"

1- 1g" 5(g') 1f'g' 1g'-
Too=- ———+-I —

I
+- ——( ')'

f 2g -8&g& 4 fg

(40)

I

Roo ogooR= g1 —f '+r- —
r2 f2 To.= —-'(g'/g') r'r"4,

+-:g '( ")'—lg '.' ", (41)

(41')

Ro»» o go»»R 0»

1 g 1
R" og"R= —+ (f 1—)—4—5——

rg r'

1g" 1(g'~' 1 f'g'
+f ' ———+-I —-I +-

2g 4(g) 4 fg

(4o') 1 1(g ) 1f
T..= —-I —"

I

—--(r")' u.
g 8(g ) 4g

1 1(g' ~' 1f
fg 8~g-

1 3g" 7 (g')' 3 f'g' 3g' 1+-—r"+—r"'.
fg 2 g 4~g& 4fg r g-

(42)
' See P. G. Bergmann, Introductioe to the Theory of Relativity

(Prentice-Ha11, Inc., New York, 1942), p. 201. Hence, using the field equations (15) and (18), we
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obtain from (40)—(40"), (41)—(41"), and (42)

f') 1 g" 5 (g'&'—
gl 1-f-+r—I+Pf ' -——-I —I—f) 2 g 8&g) 4fg

1 g+-—(.)+-pg-(") --:Pg-""'=0, (43)
r g

(g'/g') r'r" =0, (44)

terms
2m p m' (m')

g=l — + —+ol —I,
2yP r' E 2)

2m 8+3P m' (m' )
g
—'= 1+ + —+ol —

I,
r 2+P r' E r')

where m is a constant. From (49) we get

(52)

1 g 1 1(g' &' 1f———+-,u —1)+Pg ' -I —'
I
—--(")' =0

rg r' 8&g ) 4g

1g" 1(g l' 1 f'g' 1(g'—1

2 g 4Eg) 4 fg 2r(g f)

(45)

2m 16+2P —P' m2 (m'~
f=1+ + —+OI —I,

r 4+2P r' ( r')
2m 6P+P' m' (m'y—+ol —I.
r 4+2P r' & V)

(53)

+ep(g')'f 'g '( ')' 'Pg —'("-')'=o,

-3g" 7(g'&' 3fg' 3g' „ f „,+- ."+-."'=o.
-2 g «g& 4fg ~ g- g

We shall see presently that m is the gravitational radius
of the attracting body.

Equation (51) can be brought to a more manageable
(47) form by making the substitution u=1/r and regarding

I as a function of g. We obtain

These equations can be satis6ed with g'=0, but then

(43), (45), and (46) give f= 1, r"=0, i.e., a Qat space.
Discarding this possibility we assume g'@0; hence, by
(44), r"=0 and r'= const. Using a suitable scale factor
for r, we may put r'=1, and the Geld equations (43),
(45), and (46) become

dg Q d~g 2ZP —N4

dr n' dr' I' (u')'
(54)

where u'= du/dg and u"=d'u/dg'. This transforms (51)
into the linear equation

g (g+kp)u"+cpu' 4(p/g') (—g+4P)u= o (55)

The initial conditions are, by (52),

u(1) =0, u'(1) = —1/2m. (56)
1g" 5(g'&' 1fg'

+pg ——-I —
I
—— +-—=0, (48)

f
g', ,(g')'

f= 1+r Pr-'——

g

g", (g'&' g', (g')' (,g') '—= r ', rl —I+—+-,'rp ——I 1+-,'r—
I

. (50)
— g &g) g g'-E g)

These are three equations to be satisfied by the func-
tions f and g. Substituting f and f'/f from (49) and
(50) into (48), we obtain

( 1Pi g" 2 g' (g'i'
I
1+--

I +
2g) g rg Eg) .

(g'l'(, Plt (, g l
+I —

I I 1+-:—II 1—lpr —l=o. (51)
&g) I g) E g')

The same relation is obtained if f'/f is expressed from
(49) and substituted into (50). This shows that Eqs.
(48)—(50) are compatible.

Equation (51) can be satisGed by a power series
which is regular at r = ~ . If the unit of time is chosen
so that g(~) = 1, then the power series begins with the

The general solution of (55) is

1P&' ( 1pi'
u=c~ exp l

1
2g) & 2g)

1pl'--( 1P)&
+c2exp —

I
1+--

I I
1+--

I

—1
2g) E 2g)

Noting the boundary conditions (56) we obtain

( 1P)&
L1+(1+-,'p) —l$

I
1+——

I
+12' 2g)

1P&:
&«xp I

1+--
I (1+lp)'—

2g)
1Pq~—I:1—(1+lp) *']

I
1+--

I
—1

2g)

Xe PL(1+-:P)'*—(1+lpg ')'*3 (57)

Hence u(g) increases monotonically from 0 to +~ when

g decreases from 1 to 0. In particular g(r)) 0 for r) 0
and there is no Schwarzschild type singularity of-the
metric terIsor at some finite distance from the origin.
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We proceed now to work out some of the geometrical
and physical consequences of the solution.

5. PLANETARY ORBITS

The equations of geodesics are, by (39),

The eGect of the disturbance can most conveniently be
computed by Herschel's method. I.et e be the eccen-
tricity, u the length of the the major semiaxis. co the
longitude of the major axis of the instantaneous orbit,
and 0 the true anomaly. Then we have

d'x„(1 f' 1 1y (dr~ '
+I +

ds' E2 f rf r) Eds)
and

r=a(1 e')(1—+e cos0) '

d0/dt =h/r'

1 ( 1& (Cx~l 1 g (Ch) where h'=nsa(1 —e'). By (62), the radial disturbing

3

d't g' dt dr—+ — =0.
8$ g ds dS

(59)
which gives"

F= (1+e cos0),
r'h' 2+P

If we note that
dXhh dShh dt

ds dt ds

d& Fh—= ———cosg=-
dt em

cos0(1+e cos0),
r'he 2+P

d'x d'x„(dt~ ' dx d't (d'x„g' dx„dr) h dty '

ds' dt' (ds) dt ds' & dh' g dt dt) kds)

hence

da) dec r' m P
cos0(1+e cos0).

d0 dt h h'e 2+P
by (59), we obtain from (58), after cancelling by (dt/ds)'
and writing v'= g, (dx„/dt)',

d'x„(1 f' 1 1) (dry 1 ( 1)+ I + Ii. l

—
I
+-I 1—14"

dts E2 f rf r) Edt) r E f)
m2

6M = lC)

2+P h'

For a complete revolution

I

+——$„—— —=0. (58') and the rate of advance of the perihelion due to the
disturbance is

If we assume that m/r is small, this gives by (52) and
(53):

d'x„m m (dr ) ' (mq"+—e„= 3—
I

—
I 1+oj —

I

dhs r' r' Edh) E r )
2m (my" ( p ym'

v' 1+O( —
( +I 2+

r' (r) E 2+P) r'

(m) 2m (m) dr dx„
x 1+oj —

I t.+- - 1+ol —I—
Er) r' (r) Ch Ch

The equation shows that ns is the gravitational radius
of the attracting body, i.e.,

(61)

where M is the mass in ordinary units. The terms on
the right-hand side of (60) represent radial and tan-
gential disturbing accelerations. They are identical
with those in general relativity with the exception of
the term IPms/(2+P)r']$„which represents a radial
outwards disturbing accelerations whose magnitude is

1 P m'

2v 4+2P h'

~M —
I

3
2v E 4+2P) h'

(63)

Thus, by measuring the rate of advance of the perihelion
of planets or asteroids it is possible to determine the value

of the couPling constant P exPerimentally.
For geodesic null lines, v is very nearly 1 and (60)

becomes

der 3m (dr i (m'l
+ 1-I —

I 1+ol —
I

dhs r' . Edh) . Er)
2m dr Cx„(mq

iyO~ —
~

=0. (60')
r' dt dt ~ r )

This represents a perennial motion of the perihelion in
a sense opposite to the motion of the planet. Therefore
it must be subtracted from the Einstein value 3m'/h',
and the total rate of advance is

Z= pm'/(2y p)~.
"See W. H. Besant, Dynamics (G. Bell and Sons, London,

62 1902), p. 207.
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Here the term which depends on p has disappeared and hence, introducing the variable u= 1/r,
the equation gives the same result for the deflection of
light in the sun's gravitational field as the general, f'

theory of relativity.
0

6+p m' (m'yT„= —+oI —
I,

4+2P r4 &") (64)

6. GRAVITATIONAL ENERGY

(41), (41"), (52), and (53) give the following ex-

pression for the components of the gravitational field

energy-stress tensor:

u t'u )' &t' 1 u)
' u' g- —,-spIJ, . u' '

~u'g) E 2u'g&

1 u" 1 1 1 u 1P u
X — +— —— ——— dg

2 (u')'g 4 (u'g)' 8 (u'g)' 16 g (u'g)'.

Lg'(u')' —g'uu' —-',pu'j 'I u' ———
I

T0„=0, (64')

(64lf)

~1 1u' 1u 1 u~
X

I

—u"+ P I
dg. (68)

L2 4g 8g' 16 g')

Now we obtain for

Apart from numerical factors they have the same form
as Maxwell's energy-stress, tensor in Coulomb fields
which lends a strong support to the correctness of
postulate (13).

Consider now the vector density

U= g'(u')' —g'uu' —-',pu',

by differentiating with respect to g and substituting for
u" from (55),

d U/dg = 2g'u'u" g'uu" —+2g'(u')' (2g+—-,'P) uu'

p"= (P/8m-a) (Ci,C~) '(2C"2„"—C"Z), (65) 4g+p 1 p
g'(u')' —uu' ———u'

2g+P-

p =p'= (P/87r~) (2Z p' Z) p&=—0.

We shall show now that

(66)

where T=T„". Using the frame of Sec. 4 in which

Cp = 1 C&=0, we get 4g+ p
U.

g(2g+P)

Hence, observing the boundary conditions (56),

1
4~ I' pr'dr=35 =

0 K

By (37), (41), (41"), (49), and (50),

1 t' 1g" 3(g'q' 1fg' 1 g'l
T=—

I

———+-I —I+-
fg& 2 g 4&g& 4 fg

( 1g" 1(g'j' 1 f'g' 1g'l
2~"-~=(fg)-:I ——+-I —I+-

2 g 2Eg) 4 fg r g)

U=g'(u')' —g'uu' —-,'Pu'= (4m2)-'(1+-,'P)-'g(g+~P).
(69)

(67) Similarly, we get from (55):

1 1 u' 1 I 1 I 1 I' 1 I
p =- —— . (70)

2 4 g 8 g' 16 g' 4g+-,'P 8 g(g+-,'P)

Substituting (69) and (70) into (68) we get

(2~o' &)r'«= 'm(—1+'P) -g '(g+-'P) dg-
=2m/p,

= g+rg' ',Pr'I —
I

(1+—-', r-g') —'
(gj

1g 1r'g ' 1g
xI ———+-I—

2g 4Eg rg

, t'g' ~
' , (g')' &

+srI —
I
+i'6rp

Eg) g4 /

which together with (66) gives the desired result. It
can be shown similarly that any other linear com-
bination of 0 and 2 in (66) would give an in6nite
value for the integral (67).

Equation (67) shows that if we deftrte p" to be the
gravitational energy-momentum density vector then the
integral of p' over the whole space is equal to the gravi-
tational mass of the body. This is an expression of the
fact that the total mass of rteutral matter comes from the

ertergy of its gra~itatiortal jield.



To compare our result with the Newtonian theory of
gravitation, consider the energy-stress tensor of a
perfect fluid. with rest density p, and isotropic pressure p.
We have, in absolute gravitational units,

/t7 mn= ga ttplmln+P (Nmttn gmn)]

where I is the world direction of the Quid. "It follows
that in a Galilean frame with respect to which the Quid
is at rest,

P&e'~ ~= tt 3P
8~~ Sex 8~~

Hence assuming that the Quid is at absolute rest,

EI—Eg ——

b'av.

(73)

From this it follows immediately that the observed
Einstein shift is zero, provided that photons behave
like particles with rest mass zero and velocity 1.

The geometrical significance of q is that it gives the
ratio of the units of local "metric" or "proper" time
and "cosmic" time. If therefore we make the assump-
tion, as suggested at the end of the introduction, that
in Bohr's frequency relation

8] E2= hP)

v is expressed not in metric but in cosmic time units,
then measured in metric time units the relation takes
the form

p= (2+oo—g) =tt+3P,
Sxr(

(71)

which verifies formula (3) of the introduction. It shows
that not p, but tt+Bp is the gravitational field-producing
density from the point of view of Newtonian attraction.
In the case of isotropic radiation of density p, one has
p=-stt which gives p=2tt, i.e., twice the inertial mass
density.

If the Quid is moving with velocity ~ relatively to the
ether, say in the positive x& direction, then

C'= (1—n') ', C'= —n(1 —e') '* C'=C'=0,

which by (65) gives

p'= (1—~') '(t +3P), p'=~(1 —~') '*(t —P)
p'= po =0. (71')

From this, formula (4) follows immediately. The for-
mula shows the curious fact that from the point of view
of gravitational attraction particles behave roughly as
if they were moving with velocity 2~ instead of v rela-
tively to the ether. This explains the appearance of the
term 3p in formula (71). To the (inertial) rest mass
density one has to add a gravitational mass correction
due to the kinetic energy of the particles of the Quid
relatively to the ether.

Finally, consider the quantity

gm„= gmn+Vmn, r = t+ q, (74)

where g „ is the metric tensor corresponding to the
line element dt' (dxis+—tgxss+dxos), and the quantities
p „, p are suKciently small so that products can be
neglected. Using the notations

PT ) POL P ts& F)

we get
+mn= s Vmn s (Vm, n+Vn. , m)+sV, m, n~ (75)

(74')
where

gmng2/gx gx —gs/gt2 (c12/clx 2+go/gx 2+cls/clx 2)

We also have, from (74),

C„=C +oo, „,
where CO=1) C„=O for y@0)

Cm~= Cm, ~—C.

1 /'
'P, m, n 2 (Vom, n+Von, m Vmn, o) q

V. GRAVITATION'AL WAVES

Let us assume that the Geld is weak and the frame
very nearly Galilean and resting in ether, i.e.,

q = (C„C")-'.

In the central symmetrical Geld it has the value

g= gl = 1—( /rrts)+0(m'/r'),

(72) ;n m p 70+sV, m, o

Hence, writing

y —Vo+sV, o (76)

when r is large, and it can be regarded as an expression
for the gravitational potential. Thus in the present
theory it is possible to define the Newtonian potential
in an invariant way. For small r, we have from (57):

V-('0)'Liog(~/r) 3 '

which shows roughly the behavior of the gravitational
potential near the origin.

"H. Weyl, Space Ttrrte Matter (Dove-r Publ-ications, New York,
i922), p. 205.

for the covariant d'Alembertian of y and using (751),
Geld equation (18) takes the form

4=-',R, o. (77)

A remarkable feature of this wave equation is that,
unlike the gravitational wave equations of general
relativity, it holds in an arbitrary frame of the form
(74) and there is no need to impose further auxiliary
conditions upon the coordinates. " It should be noted
"For a criticism of such axuailiary conditions see F. A.

Kaeinpffer, Can. J. Phys. Bl, 501 (1953l.
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in this connection that (77) is the outcome of the
secondary field equation (18) which has no counterpart
in ordinary relativity. The approximate equations cor-
responding to the primary field equations (15) can be
obtained from (75) and

7mn 2'p, m, n, o 2 (bm(QÃ, n+bn~ pm)

+4bmo( Ton+'YO. n Vn, 0)

+-'( vo-+vo, -—v-. o)

——,'(&0 ., 0+go.. .o
—y, o, o). (78)

They determine the change of the local gravitational
field under the inhuence of the incoming 4 waves.

Equation (77) shows that the + waves propagate
with the velocity of light and are generated by oscil-
lating matter. In fact, if tension-free matter with rest
density p, is present, then E=8mxp, , and (77) becomes

When a particle moves in the ether, then gravitational
mass is continuously annihilated in the front half and
created in the back half of the field of the particle. "
In other words, the ether drift transforms particles
into a dipole with respect to the creation charge so that
the ether drift vector forms the axis of polarization. In
order to account for Eq. (82), the strength of the dipole
ought to be equal to nsv, where m is the gravitational
rest mass of the particle and v its absolute velocity.

dh2 t (dxi2+—dxP+dx32), (83)

for some positive constant o,. The equations of a geo-
desics passing through the origin in any direction are,
by formula (35) of Sec. 3,

8. PROPERTIES OF THE COSMOLOGICAL MODEL

We shall investigate now some properties of the cos-
mological model found in Sec. 3. Its line element is

0'=4mxC Bp/Bx (79')

The wave equation (77) has an interesting corollary.
We have seen in Sec. 6 that the gravitational mass
density p' is not strictly proportional to the inertial
mass density, as postulated by the principle of equiva-
lence, but the ratio of the two densities depends on the
state of motion of matter. Since inertial mass is con-
served, we cannot expect the same to be true for the
gravitational mass. The rate of creation of gravitational
mass density is given by the expression p", . Using a
frame which rests in ether we obtain

1
n p(g Ck)—1(2crg n Cng ) — g n ~

8m' 4m~

hence, by (75) and (75'),

4= 4wcBp/Bt

In an arbitrary nearly Galilean frame which is not
resting in ether, it takes the form

d'r +dr dt
+ ——0,

ds' t dsds

d2h (dry
'—+-,'nt —'( —

~

=0
ds Ldg)

An integral of this is

(dt's ' (dry '

(ds) 4ds)

which, with (84'), gives

d't ) dt's
'

t—+-,'n/ —
/

=-,'a.
ds' &ds)

This gives, on integration,

dt/ds= f1+ (b/t) )&,

where b is a constant. Hence, by (85),

(84)

(84')

pn gn ( ~ ~n )
4~a 8+~

1
E, p.

Sex

dr/ds= b'* t

dr/dh= (b/t)'. (b.+ t-)-'.

(80) Since the velocity of light is c=t ', the velocity of the
particle with respect to the frame (83) is, at the time t,

Combining (77) and (80), we find

N= —4vr~p", „. (81)

The equation shows that the creation rate of gravita-
tional mass can be regarded as the "charge" which is
responsible for the generation of 0 waves.

If matter of density p, is present, then Eq. (80) takes
the form

p", = Bp/Bt. —(82)

One can give the following interpretation of this
peculiar relation.

w=L1+(t/b) j-i. (86)

The particle slows down and at t= ~ comes to a rest.
If at time to the velocity was eo, then by (86)

bn = tong/ (1—po2)

hence
i=ioLio'+(1 —io')(tlto) j '. (87)

"Preliminary calculations made on the Geld of central bodies
in absolute motion con6rm the existence of such an effect. There
seems to be a continuous inwards fiux of gravitational mass in the
front half and an equivalent outwards Rux in the trailing half of
the particle.
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This shows that if the particIe was at rest in the frame
(83) then it will always remain so. Therefore (83) can
be regarded as a suitable frame to describe cosmic
phenomena. But the (metric) distance between two
points with 6xed coordinates increases with time, hence
the model (83) represents an expanding universe.

For a particle with rest mass m, we obtain from (87)

cosmic units is a pure number and the density has the
constant value 23. The simplicity of this result lends a
strong support in favor of the value n=2.

To compare (90) with experimental values, it is
more convenient to use the conventional coordinates
y„=t& x„at the 6xed epoch t. The density in these
coordinates and in ordinary units is

m(1 —e') ~ =m(1 —wo~) ~[1—&o2+&02(&0/&) ~)~
&

or, if E is the energy of the particle,

Z= 80[1—eo'+ap'(t/tp) j'*.

In the limiting case of photons, co=1; hence"

or

1 30!
p
~ f 2

4~k 3n+2

p ] 2

16xx

(91)

(91')

Swap =P (2+00 g)
3n+2

(90)

by formulas (31) and (36). If the gravitational radius
is measured not in metric length but in units of the
cosmologically more satisfactory space coordinates x„,
then we have to multiply the quantity (90) by t &:

Sext ' p=
3CE+2

$Q 2 (90')

This gives the density in "cosmic units. " If, in par-
ticular, n=2, then the gravitational mass measured in

"The method used here for calculating the red shift is based
on the particle picture of photons. It has the advantage that its
applicability is not restricted to any particular type of frame.

v= vp(tp/t) &~.

This expresses Hubble's law and shows that the value
of the recession constant is -,'n/t. If a=2, the recession
constant is simply 1/t.

The model (83) represents a universe with uniform
matter distribution. The density of gravitational energy
at some epoch t and in gravitational units is

if +=2. This is half of the value found by Hoyle. In
Hoyle's corresponding formula,

p P 2

8m'

T is a constant and so is the density in ordinary units.
Because of the expansion of the universe, this can only
be true if matter is created continuously, which is
indeed a basic conclusion of Hoyle's theory. From the
present theory it appears that "continuous creation"
is largely a matter of interpretation and depends on the
units in which energy is measured at various epochs.
In fact, if measured in absolute cosmic units, as ex-
plained above, then the total energy of a 6xed region of
the universe remains constant, apart from statistical
Quctuations. This of course does not imply that the
number of protons and electrons in a fixed region must
remain constant. This would only be true if the gravi-
tational radius of a proton, measured in cosmic units,
would remain a constant, which is very doubtful, to say
the least. The size of elementary particles, however, is a
question which by its very nature lies outside the scope
of a purely gravitational theory.


