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F(k) =Xp '——4sre'st/mcs, (3)

where Xo is the penetration depth and e is the electron
concentration. Actually, one should include 6rst-order
perturbation changes resulting from the field. We as-
sume that the energies of excited states and matrix
elements are similar to those of a normal degenerate
electron gas, except for the additional energy c required
for each excited electron. A modification of Klein's
treatment then gives
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between the Fourier component i(k) of the current
density of the electrons and the corresponding com-
ponent A(k) of the vector potential. If the gauge in A is
chosen so that divA= 0, then A and k are perpendicular,
and i(k) is parallel to A(k). Thus we may write:

(4sr/c)i(k) = —F(k)A(k). (1)

As pointed out by Klein and by Schafroth, the Meissner
effect is obtained if F(0))0. If Ap(k) represents the
source 6eld, the self-consistent solution is obtained from '.

Lks+F(k))A(k) =k'Ap(k). (2)

lf one assumes with London that the wave functions
are not modi6ed at all by the magnetic field,

The nature of the excited states in actual super-
conductors is indicated by the temperature variation of
the specific heat, thermal conduction, and electrical
conduction (observed in the skin depth at microwave
frequencies). These all indicate a density of "normal"
electrons in excited states, such as would follow from our
model. The energy e undoubtedly depends on tempera-
ture and goes to zero at the transition point. Semi-
empirical expressions for free energy and critical Geld
derived from a model of this sort are in good agreement
with experiment. ~ There is less justification for assuming
that the matrix elements of the magnetic interaction are
unchanged by the transition, but one would not expect a
change in matrix elements to alter the results in a
drastic way. Thus any model which gives correctly the
thermodynamical properties of the superconducting
state will most likely give the Meissner e6'ect.

' A. B. Pippard, Proc. Roy. Soc. (London) A203, 98 (1950).
s J. C. Slater, Phys. Rev. 51, 195 (1937);52, 214 (1937).
s H. Welker, Z. Physik 114, 525 (1939).
4 A completely filled band yields only a small diamagnetism even

when the energy gap is small. The author LPhys. Rev. 81, 829
(1951)j has proposed a one-particle model in which the electrical
properties can be described by a small number of particles with
very small effective mass. Klein's method as applied to this model
gives a large but not perfect diama netism. As pointed out by H.
Frohlich )Nature 168, 280 (1951), there is a small but tinite
residual 6eld in the interior of a massive specimen. Although such
a 6eld penetration is not ruled out by experiments, it seems
unlikely to occur. This is probably as close as one can come to the
Meissner eGect using a purely individual particle description. The
assumption of a "condensed state" goes beyond such a description.

s O. Klein, Arkiv. Mat. , Astron. Fysik 31A, No. 12 (1944).
e M. R. Schafroth, Helv. Phys. Acta 24, 645 (1951).' W. L. Ginsburg, J. Exptl. Theoret. Phys. (U.S.S.R.) 14, 134

(1946), Fortschr. Physik 1, 101 (1953).
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which may be evaluated approximately by replacing k
in the logarithm by an average value ~Xo '. We then
6nd:
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With e 5 &( 10 '6 ergs, ko 10 cm ', Xo 10 cm, we
find X 2Xo. Since the logarithm is slowly varying,
varies approximately as (EskT,) & or as rt "e

where ko is the magnitude of the wave vector of the
Fermi surface. When e= 0, this gives the usual Landau
diamagnetism. When e)0, F(k)—&Xp ' as k—+0. For k
such that Xok 1 and me/trt'k' 1, a good approximation
to F(k) is
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This expression (5) is valid over the range of k which

makes an appreciable contribution to the 6eld for
normal penetration phenomena. The penetration depth
is obtained from the integral
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~ XPERIMENTS have shown that the Landau
~ distribution is too narrow for electrons (e.g. ,

Rothwell, ' West s BirkhofP). Blunck and Leisegang, e

Blunck' and others, using essentially the same method
as Landau, have attempted to improve the calculated
distribution by inclusion of the so-called second moment
term which they obtained in an approximate for m by
using the semiclassical Bohr treatment of collision loss.
Apart from this improvement, however, their treatment
suffers from the same defects as the Landau theory.

Recently Pano' has given a complete formulation of
the general problem of the passage of charged particles
through layers of material thick enough to contain the
whole range of the particles, although the only solution
quoted which is specific to the Landau problem (thin
layers) is that of Landau himself. Fano states two of the
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Bg (x,E)
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errors in the Landau treatment, ~is. , use of approximate
probability distributions for energy loss and extension
of the upper limit of integration over p (energy loss) to
infinity. It is the purpose of the present note to indicate
an accurate method of solving the problem and to apply
this method to the energy distribution of protons.

The transport equation is

For protons, in general, Ep—L) e and the upper
limit of integration in the last term of (3) must be taken
as e and not Ep —L. It has been found essential to use
the correct upper limit here and this fact indicates a
serious defect in the Landau treatment since the latter
cannot be adapted for use with the correct upper limit.

The last term in (3) may be evaluated by expanding
out the binomial series (including 4 terms of the ex-
pansion), inserting the expression for w(p) (see Bethe), '
and carrying out the integrations. After combining the
result with the other terms of (3), one obtains

~ &min

g(x,E)w(E, p)dp, (1)
cjG(x,s) = —P(s—1)G(x, s—1)

where g(x,E)dE is the number of particles in (E,dE) Ep
is the initial energy, and e;„,e,„are, respectively, the
minimum and maximum amounts of energy which can
be transferred in a single collision. If the layer of
absorbing material is thin enough, it is justifiable to
regard the function w(E, p)—the probability per unit
length of an energy loss e—as independent of the
particle energy E.

Instead of the Laplace transform used by Landau we

apply the Mellin transform to define a transform func-
tion G(x,s) satisfying

in which
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A good approximate solution (correct to terms in x')
Xg(x,I.)w(p)dp G(x,s) —w(p)dp, (2) f @ (4)

.
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with I.=E+p.
The range of integration over e is split up by choosing

&~ such that the first three terms of the binomial ex-
pansion are adequate for all values of e between ~;„
and eq.'
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and ap(s) gives small correction terms:
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The first three terms on the right hand side of (3)
provide a Gaussian approximation to g (x,E) with

roughly the correct half-width. P The third (second
moment) term must be worked out by an accurate
quantum mechanical method, analogous to the Bethe
stopping-power calculation for the first moment.
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The solution (6) is inserted into the inversion formula
for the Mellin transform to yield a relation for the re-
quired distribution function:

1 r'"+'
g (x,E)= — exp L

—s logE+ (s—1)log ('Ee—xP)
2x'b ~—i~+8

+at(s)x+as(s)x'ids. (8)

An experimental number eersgs energy plot for protons
in Al, taken from the work of Reynolds et al. ,

"is shown
in Fig. 1. In order to compare this with results obtained
from the numerical evaluation of (8), one plots the
quantities X(x,E) defined by

z L. D. Landau, J. Phys. (U.S.S.R.) 8, 201 (1944).' U. Fano, Phys. Rev. 92, 328 (1953).
s For electrons the last term in (3) introduces large corrections

and must be worked out to a sufhcient degree of approximation.
This term gives rise to the characteristic asymmetry of the
distribution. In all cases for electrons z, =-', (8—zzzc')))Eo —I.,
the upper limit of integration must be taken as Zo—I. and so
contains the transform variable itself. The result is a considerably
more complicated transform equation than (3). Furthermore for
electrons the zero, first and second order moment terms will not
be the same as they were for protons and a diiferent ze(z) must be
used in calculating the last term of (3). In the accurate calcula-
tions, therefore, it is not possible to use the same method of solu-
tion for heavy particles and electrons as is done by Landau. The
solution for electrons will be presented elsewhere.' H. A. Bethe, HzzzzdbzzcIz der Physz7t (Verlag Julius Springer,
Berlin, Germany, 1933), Vol. 24, Part 1, p. 516.

"H. K. Reynolds et a/. , Phys. Rev. 92, 742 (1953).

Ep

1V(x,E)= " g(x,E)dE. (9)

The integral distribution obtained in this way from
the present calculations is seen to 6t the experimental
result very closely. The agreement is even better when
one notes the initial energy spread of the incident
particles shown on the right of Fig. 1. The slight
asymmetry of the experimental curve is present also in
the theoretical result.

N(E)

Search for 15-Mev Gamma Radiation from
N"+tf and Be'+n, V. K. RAsMUssEN, JQHN R.
REEs, M. B. SAMPSQN, AND N. S. WAI I. /Phys.
Rev. 96, 812 (1954)j. The subscripts cr and y were
interchanged at the bottom of the first column of
page 813. The statement as to the relative prob-
ability of 0. and y decay should read "I is cer-
tainly less than 100 I"„and is probably less than
101

0.4oo
E (MEU)

'

FIG. 1.Curves for the energy distribution of 0.4263-Mev protons
after passing through 3.795X10 ' 8/cms of Al. X(E) is the number
of particles with energy greater than E, normalized to 1 incident
particle. Curve I gives experimental results from the work of
Reynolds et cl. Curve II has been calculated on the basis of the
present theory. Curve III has been calculated on the basis of the
Landau theory. Curve IV shows the initial energy spread of the
protons of curve I.

The distribution obtained from Landau's theory is

also shown in Fig. 1. In view of the important omissions

in this treatment it is not surprising that the Landau

curve is unsatisfactory. It is worth noting that for
electrons the Landau theory gives a distribution which

is too narrow, whereas for protons the distribution is

much too wide.
The author is indebted to Dr. D. N. F. Dunbar for

making the experimental results available prior to
publication.
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Recombination Processes in Insulators and
Semiconductors, ALBERT RosE LPhys. Rev. 97,
322 (1955)j. In item 5 of the section labeled
"Summary" on page 333, read "usually" instead of
"always. "

Average Number of Neutrons Emitted During
the Spontaneous Fission of Cf'""', W. W. T. CRANE,
G. H. HIGGINs, AND S. G. THoMPsoN )Phys. Rev.
97, 242 (1955)$. The first sentence should read
"The average number of neutrons per spontaneous
fission of Cf'" has been found to be 3.53&0.15 ~ ~

instead of "The average ~ has been found to be
3.10+0 15 .

Origin of Nitrous Oxide in the Atmosphere,
P. HARTEcK AND S. DoNDEs (Phys. Rev. 95, 320
(1954)j. It has come to the attention of the authors
that Adel' (the discoverer of nitrous oxide in the
atmosphere) has also discussed the origin of nitrous
oxide in the atmosphere. Bates and Witherspoon'
have theoretically examined the photochemistry of
the constituents of the atmosphere. The results of
Bates and Witherspoon quantitatively refiect the
idea of photochemical processes causing the pres-
ence of nitrous oxide in the atmosphere, similar
to our own views, and question the adequate


