
1724 LETTERS TO THE EDITOR

U —(2sr —4—sro) Rttb'/8 sr(1 —o). (3)

Here p and 0- are respectively the shear modulus and
Poisson s ratio of an isotropic crystal. In writing U, we
have put e, the usual lower limit of integration, ap-
proximately equal to f/2 Th.e general conclusions
drawn later are not particularly dependent on this
choice,

The critical yield stress, 7„will correspond to the
value of r when itU/i)R=O Th.us we obtain

r,=(ft/srRb) lnL(4R/i)+1j, (4)
where

k = (2sr —4—Ko)ttb'/8sr (1—0).

Equations (4) and (5) are derived for an initial edge
dislocation because it may easily be shown that a screw
or mixed straight dislocation will give a higher value
for v-,.

If we take for i' the result obtained by Foreman,
Jaswon, and Wood4 that

t = ttb/2sr (1 o)r—' (6)

where v is the theoretical shear strength, and use for
r the lowest value thus far derived, ' i.e., about tt/30,
we obtain

1=15b/sr(1 o). —. (7)

Now, from the theory of Furth, which assumes that
melting is due to the break up of a block structure, we
may write that

2R 6'/Q, —
where h. is the heat of sublimation and Q is the heat of
melting. Using Eqs. P) and (8) in (4), we obtain

r —L(2x.—4—sro) ttQ/24srs(1 —o)Ii)
Xjn{L12sr(1—o)A/15Q]+1). (9)

This formula is in principle applicable to unworked
materials close to the absolute zero. The yield strengths
of a few metal crystals such as Zn and Cd and of the
ionic crystal NaCl have been measured at very low
temperatures. One may also very roughly extrapolate
the data on other crystals to the absolute zero. The yield
strengths derived from formula (9) are at least an order
of magnitude too high. One may lessen the discrepancy
a bit by using the suggestion of Fisher that a single-
ended source near the surface should start to operate at
one half the stress needed for a double-ended source of
the same length.

There are two further ways to achieve lower results.
One is to assume that the crystal is not homogeneously
blocked and that there are some much longer blocks

crease in elastic and misfit energy. Making the simple
assumption that the mixed semicircular dislocation is
half edge and half screw, one obtains approximately for
U, and V:3
U~~L(2sr —4—sro)Rttb'/8sr(1 —o)]Lln(4R/f) —1], (2)

which are operative. Another, which is more interesting
and more likely, is to modify Fiirth's formula to read,
say,

2R=6(i./2)X/Q.

This assumes that the mechanism of melting is tied
intrinsically not only to the block size, but also to a
width between blocks, where the atoms are misfit and
may be expected to enter into the mechanism first.

The author wishes to thank Professor H. S. Tsien for
helpful discussion.
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HE general features of the superconducting state
are now well-established, although a good mathe-

matical or detailed physical description is lacking.
Pippard' has shown that the wave functions (range-of-
order) of the electrons in the superconducting state
extend over relatively large distances ( 10 ' cm) and
that the penetration depth does not vary much with
magnetic field. The latter implies that a linear theory, in
which only first-order changes of wave functions pro-
duced by the magnetic field are included, should be
satisfactory. As pointed out particularly by Slater, '
wave functions extending over large areas are favorable
for a large diamagnetisrn. While it is thought that the
Meissner effect (8=0) follows rather generally from
these considerations, it has been di%cult to treat a
specific model. One model, which is a modification of a
degenerate free-electron gas, is discussed below.

We assume that in the superconducting state a finite
energy c kT, is required to excite electrons from the
surface of the Fermi sea, and that electrons so excited
behave much like excited electrons in the normal state.
This model has been discussed in a qualitative way by
Welker' and others. An adequate description of the
"condensed" superconducting state probably requires
going beyond a one-particle model. 4

To avoid introduction of a boundary, we follow the
method of Klein' and Schafroth in which an infinite
medium is considered and the sources of the magnetic
field are introduced in the interior. A relation is derived
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F(k) =Xp '——4sre'st/mcs, (3)

where Xo is the penetration depth and e is the electron
concentration. Actually, one should include 6rst-order
perturbation changes resulting from the field. We as-
sume that the energies of excited states and matrix
elements are similar to those of a normal degenerate
electron gas, except for the additional energy c required
for each excited electron. A modification of Klein's
treatment then gives

3 ko
XosF(k) =1———

2 k

"o
( kott+-,'k+me/trt'k

N(1 —u') log~ ~du, (4)
I

[ kou —-', k (+me/ask)

between the Fourier component i(k) of the current
density of the electrons and the corresponding com-
ponent A(k) of the vector potential. If the gauge in A is
chosen so that divA= 0, then A and k are perpendicular,
and i(k) is parallel to A(k). Thus we may write:

(4sr/c)i(k) = —F(k)A(k). (1)

As pointed out by Klein and by Schafroth, the Meissner
effect is obtained if F(0))0. If Ap(k) represents the
source 6eld, the self-consistent solution is obtained from '.

Lks+F(k))A(k) =k'Ap(k). (2)

lf one assumes with London that the wave functions
are not modi6ed at all by the magnetic field,

The nature of the excited states in actual super-
conductors is indicated by the temperature variation of
the specific heat, thermal conduction, and electrical
conduction (observed in the skin depth at microwave
frequencies). These all indicate a density of "normal"
electrons in excited states, such as would follow from our
model. The energy e undoubtedly depends on tempera-
ture and goes to zero at the transition point. Semi-
empirical expressions for free energy and critical Geld
derived from a model of this sort are in good agreement
with experiment. ~ There is less justification for assuming
that the matrix elements of the magnetic interaction are
unchanged by the transition, but one would not expect a
change in matrix elements to alter the results in a
drastic way. Thus any model which gives correctly the
thermodynamical properties of the superconducting
state will most likely give the Meissner e6'ect.
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Frohlich )Nature 168, 280 (1951), there is a small but tinite
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unlikely to occur. This is probably as close as one can come to the
Meissner eGect using a purely individual particle description. The
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2 t'" dk

~ ~ o k'+F(k)
(6)

which may be evaluated approximately by replacing k
in the logarithm by an average value ~Xo '. We then
6nd:

3 me)io
t

&'ko ))i=0.77)tp — log~ 1+
2 kskp ( me)I, p)

(7)

With e 5 &( 10 '6 ergs, ko 10 cm ', Xo 10 cm, we
find X 2Xo. Since the logarithm is slowly varying,
varies approximately as (EskT,) & or as rt "e

where ko is the magnitude of the wave vector of the
Fermi surface. When e= 0, this gives the usual Landau
diamagnetism. When e)0, F(k)—&Xp ' as k—+0. For k
such that Xok 1 and me/trt'k' 1, a good approximation
to F(k) is

3 ms ( kskkpy
XosF(k) =- log~ 1+

2 l'tskko ( me )
This expression (5) is valid over the range of k which

makes an appreciable contribution to the 6eld for
normal penetration phenomena. The penetration depth
is obtained from the integral
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~ XPERIMENTS have shown that the Landau
~ distribution is too narrow for electrons (e.g. ,

Rothwell, ' West s BirkhofP). Blunck and Leisegang, e

Blunck' and others, using essentially the same method
as Landau, have attempted to improve the calculated
distribution by inclusion of the so-called second moment
term which they obtained in an approximate for m by
using the semiclassical Bohr treatment of collision loss.
Apart from this improvement, however, their treatment
suffers from the same defects as the Landau theory.

Recently Pano' has given a complete formulation of
the general problem of the passage of charged particles
through layers of material thick enough to contain the
whole range of the particles, although the only solution
quoted which is specific to the Landau problem (thin
layers) is that of Landau himself. Fano states two of the


