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It also is possible to estimate A1 as does Morse' in a
semiempirical fashion from the known elastic scattering
cross section o.

&, noting that in the same approximation
as :'Eq. (40) the elastic scattering amplitude is
2fo(0)js(sero) With crt 4——Ss.ras' we obtain f,(0) =0.55tts,
which, substituted in Eq. (44), implies A&/As is about
0.05 at 0.6 ev in N2. Hence this method of estimating
A & indicates it is in fact negligibly small even at 0.6 ev;
in any event it supports the view that Eq. (46) is not
a gross underestimate of Ai/As.

Finally, we mention some other "near-field" eGects
which, like A1, depend on details of the short-range
interaction and are decreasingly important as. the
incident energy approaches zero. These sects include:
(1) distortion of the wave function by a very large
efs(r)Ps(r, s) interaction, such as was inferred (Fig. 4)
from the parameters of Duncanson and Coulson, "
thereby possibly modifying the estimate from Eq. (36)
of the ratio of the second to erst Born approxima-
tion; (2) the contribution, appearing in second Born

approximation, which the short-range spherically sym-
metric fs(r) term of Eq. (37) makes to the inelastic
amplitude A &', (3) electron exchange, which plays no
role in the "far field, " where the incident and atomic
electron wave functions do.not overlap. To sum it up,
our approximations are of such a character that for any
homonuclear gas, not merely N2, the cross sections of
Eq. (20) are increasingly reliable as the incident
electron energy decreases to zero, because with di-
minishing energy the long-range tail of the interaction
becomes increasingly important.
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The line width of the TP'3 and Tl~' nuclear magnetic resonance
in thallium and thallium oxide greatly exceeds the dipolar width,
and is a function of the abundance of the other isotope. The re-
sults can be interpreted in terms of an exchange interaction A II I~
between a pair of nuclear spins which exceeds th'e normal dipolar
interaction. The exchange between different isotopes leads to
broadening. Exchange between like nuclei should lead to narrow-
ing, but it was found that samples containing 98.7 percent Tl~'
still exhibit lines broader than the dipolar interaction. Two causes
are shown to exist: anisotropy of the chemical shift and pseudo-
dipolar exchange interaction. Analysis with the method of the
moments gives for the exchange interaction constant Ah '=17.5
kcjsec with a 30 percent anisotropic pseudo-dipolar character in
the hexagonal metal, and Ah '=12 kc/sec with less than 10

percent pseudo-dipolar character in thallic oxide. The oxide has
a chemical shift of +0.55 percent with an anisotropy of 34 percent
of this amount. The metal exhibits a shift of 1.56 percent with 16
percent anisotropy.

Ramsey's theory of the nuclear spin exchange via excited
electron states in molecules, is extended to solids. Most heavy
isotopes in metals and insulators should exhibit exchange effects.
From the anisotropy of the exchange, information about the
relative amount of p or d character of the electron wave function
in the solid can be obtained.

It is predicted that thallic oxide has a nuclear Curie point at
3.5X10 ' 'K. Whether it will become nuclear ferromagnetic or
antiferromagnetic depends on details of the electronic band
structure.

I. INTRODUCTION

"~N an earlier paper' an anomalous behavior of the
~ ~ TP" and Tl"' magnetic resonance lines in metallic
thallium had been noted, but no satisfactory explana-
tion was given at that time. It was found that the
width of the Tl"' resonance was about 10 times as
large as could be expected from 'the dipolar broadening,
but even more anomalous was the fact that the TP

~This research was supported by the Once of Naval Re-
search.
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~ N. Bloembergen and T.J. Rowland, Acta Metallurgica 1, 731
(1953)l

resonance was again much broader than the TP"
resonance. The two isotopes both have a spin I=-,', and
the magnetic moment of TP" is only one percent smaller
than that of TP'. Quadrupolar effects are thus excluded.
The only reason why the two isotopes could behave

differently seemed to be contained in the fact that they
occur in unequal abundance. Natural thallium contains
29.5 percent TP'3 and 70.5 percent Tl"'. Consequently
a TP" nucleus has fewer identical neighbors than a
TP" nucleus. The dipolar width of the Tl'" resonance
should therefore be smaller than that of TP". An
exchange interaction of the type Aisl& Is between the
n.iiqlear spins would act in the opposite direction.
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Whereas the exchange between like spins causes ex-
change narrowing, the exchange between unlike iso-
topic species would cause broadening. The eGect of
like and unlike magnetic ingredients with dipolar and
exchange interaction on the width of magnetic reso-
nance lines has been discussed extensively by Van
Vleck. ' If the exchange interaction between two thallium
nuclei were ten times as large as the classical dipolar
interaction, the observations in natural thallium could
be explained.

This required magnitude at first sight appears im-
probably large. The exchange type of coupling between
nuclear spins in molecules is well known both experi-
mentally'4 and theoretically. ' It occurs via the inter-
mediate excitation of electron orbits. Clearly similar
eGects could be expected in solids. The order of magni-
tude of exchange interaction is A= (8'hf, )'/AE where
8'hf, is the hyperfine interaction in the molecule or
solid and hE is an appropriate average distance of the
excited electronic state from the ground state.

In all observed molecular spectra the exchange coup-
ling is only a small fraction of the dipolar coupling.
In the HD-molecule, e.g., the exchange is 43 cps,
whereas the dipolar interaction is more than a hundred
times as large. In the molecule undergoing frequent
collisions in the liquid or the gas, the dipolar inter-
action averages aut to zero making the exchange eGect
observable. In a rigid lattice of light elements the
exchange eGect would be completely obscured by the
dipolar interaction. All observations on molecules have
been done on light isotopes, mostly H, D, F" and P".
The exchange interaction could be much larger for
heavier compounds. The hyper6ne interaction in atomic
thallium is, e.g., twenty times larger than for hydrogen.
If one makes the crude assumption, that the hyperGne
interaction in metallic thallium is also twenty times
as large as in the hydrogen molecule and that the
"average excited state"—the meaning of this expression
will be made more precise later in this paper —is the
same for thallium and the hydrogen molecule, an ex-
change interaction of 17 kc/sec is obtained between a
neighboring pair of thallium nuclei in the metallic
lattice. This would have the right order of magnitude
to explain the experimental observations. It might be
expected that in most compounds with predominantly
heavy isotopes the exchange effects mill outweigh the
classical dipolar interaction.

In order to test the hypothesis of a large exchange
interaction, experiments have been carried out on a
series of thallium samples with diGerent isotopic com-
positions, as the eGect of exchange interaction is
markedly diGerent between like and unlike pairs. These

' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
s E. L. Hahn and D. E. Maxwell, Phys. Rev. 88, 1070 {1952).
46utowsky, McCall, and Slichter, J. Chem. Phys. 21, 279

(1953).
s N. F. Ramsey, Phys. Rev. 91, 303 (1953);N. F. Ramsey and

E, M, Pnrcell, Phys. Rev. 85, 143 (1953).

experimental results are described in Sec. II. The
phenomenological theory is described in Sec. III and
the experimental results are interpreted in terms of this
theory in Sec. IV. It proved necessary to introduce a
tensor-type exchange, or pseudo-dipolar, interaction in
addition to the scalar interaction. Furthermore evi-
dence for the anisotropy of the chemical shift in
thallium oxide is presented. This type of anisotropy has
not been reported before in the literature.

In the remaining sections an atomistic interpretation
of the phenomenological exchange constants introduced
in Sec. III is presented. It is an extension of Ramsey's
theory' for molecules to the periodic lattice. The inter-
action is a kind of superexchange via intermediate
excited electronic states. A second-order perturbation
calculation in the electron-spin-nuclear-spin interaction
is required.

While this research neared completion, Ruderman
and Kittel independently put forward the hypothesis
of nuclear spin exchange in metals via the intermediary
of the conduction electrons. ' Their theory was de-
veloped along the same lines mentioned above. We ex-
tend their method to include the case of insulators and
the pseudo-dipolar interaction. The latter is especially
important in pure or nearly pure isotopes and gives
valuable information about the angular dependence of
the wave function in the solid. An interesting feature
of nuclear spin exchange is that theoretical expressions
for its magnitude can be given. A detailed study of the
theoretically simpler nuclear exchange may serve to
elucidate problems in magnetism related to electron
spin exchange.

II. EXPERIMENTAL RESULTS

The equipment was the same as used in the earlier
investigation. ' A permanent magnet provided a Geld
of 5560 oersted in a 1~ inch gap. Field values were
always corrected for temperature variations (—1.0
oersted/degree). Experiments at a lower 6eld of 3288
oersteds were carried out with an electronically current-
regulated electromagnet. The pole faces were 5 inches
in diameter and the inhomogeneity across the sample
was always less than 0.2 oersted. It never contributed
significantly to the width of the observed broad lines.
The Geld was modulated at 280 cps and the nuclear
absorption was detected with a radio-frequency spec-
trometer of the Pound-Knight-Watkins type. ~ The
output of the 280-cps "lock-in" detector, which repre-
sents the derivative of the absorption curve, was re-
corded on an Ksterline-Angus recording instrument.
For the detection of the weak lines the time constant
of the lock-in was made as long as 30 seconds. The
scanning rate was usually about 2 kc/min, and it might
take as long as 90 minutes to go completely through a

s M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
We are indebted to Prof. Kittel for making this manuscript
available before publication.

~ R. V. Pound and W. D. Knight, Rev. Sci-. Instr. 21, 219 (1950).



NUCLEAR SP I N EXCHANGE I N SOLI DS 1681

resonance line. To obtain a more favorable signal-to-
noise ratio all data were taken at 77'K. A few checks on
the temperature dependence of the lines were made
between 77'K and 300'K. No dependence of the line
breadth on temperature was found.

The samples consisted of Gnely powdered metallic
thallium and thallic oxide. The metal particles had a
diameter small compared to the skin depth and were
suspended in paragon oil. The metal and the oxide of
natural abundance were obtained commercially (cp
grade). Enriched isotopic samples of TlpOp were ob-
tained from the AEC stable isotope division, which also
provided the mass and spectrographic analysis listed
in Table I.

The impurity content is low enough not to affect the
breadth or shape of the resonance. The amount of
paramagnetic impurity was high enough to provide a
conveniently short relaxation time in the oxide, avoid-
ing saturation eGects. The relaxation time in the metal
is determined by the interaction with the conduction
electrons. It may be estimated with the Korringa rela-
tion' from the observed relaxation time T~=2X10 '
sec in copper' at 300'K, and the known Knight shifts
of 0.23 percent for copper" and 1.56 percent for thallium.
One finds T~=10 ' sec in thallium at 300'K, and 3.9
X10 ' sec at 77'K. The contribution to the width
Ace/2tr from the 6nite relaxation time is therefore about
4 kc/sec at 77'K. This agrees qualitatively with the
absence of any temperature eGect on the observed line
widths in the metal, which are always larger than 16
kc/sec. Experimentally the effects of Tr are negligible.
It may well be that the Korringa relation gives too
small a value for T~ in thallium.

After data on the enriched oxide samples had been
taken, they were reduced by holding at 260'C in a
slow stream of pure hydrogen gas. Complete reduction
was established by weighing and the metal was ob-
tained in the form of a fine powder, directly suitable
for the nuclear resonance experiment. This procedure
had Grst been tested by the reduction of oxide of the
natural composition.

Data were taken on all samples, the oxide and the
metal with five diGerent isotopic compositions, each at
two external field strengths, H, ~=5560 and 3288
oersteds, respectively. Both the Tl'" and the Tl"' were

recorded. These isotopes have nearly the same gyro-
magnetic ratio" gppp/gpp3 —1.009838, and gpps=2srt /
H„,=1.546X104 sec ' oersted '. This last value is

determined on the assumption that in a concentrated
aqueous solution of thallium acetate H, =H, t. In
other words, this value is not corrected for diamag-
netism of the core or a small chemical shift of less than
two parts in ten thousand, which may exist in the solu-

P J. Korringa, Ph pica 16, 601 (1950).
'A. E. Red6eld to be published).
'P Townes, Herring, and Knight, Phys. Rev. 77, 852 (1950).
"H. S. Gotowski and B. R. McGarvey, Phys. Rev. 91, 81

(1953).

TAsLz I. Composition of enriched thallium samples.

Abundance
of Thos

(percent)

98.7&0.5
90.5w0.5

Quantity of
element in

grams

0.1014
1.7005

Dominant
1mpur1t1es
(percent)

Si: 0.08
Mn: 0.04

70.5

52.1~0.5

14.0%0.5

commercial

0.3230

0.4161

Fe &0.001

V &0.04

Fe &0.04
Mn &0.02
Si &0.08

tion and depends on the concentration of the acetate
ions." It was found that the resonance Geld in the
oxide was 0.55 percent higher than the external field.
This indicates a chemical shift of +0.55 percent in this
solid. The metal exhibits a Knight shift of 1.56 percent.

Typical recordings are reproduced in Fig. 1 for the
oxide in the higher field. It is seen at a glance that the
hypothesis of a large exchange interaction is correct.
The Tl" line becomes narrower, the smaller the Tl"'
concentration, and the Tl"' line becomes narrower, the
smaller the Tl"' concentration. For the 48 percent
Tl"'—52 percent Tl"' composition the lines are nearly
identical, as each isotope has the same average number
of nonequivalent neighbors.

The resonance in 98.7 percent pure Tl"' is of special
interest. One would expect a line narrower than the
dipolar width due to exchange narrowing between like
neighbors. The observed resonance is still several times
broader than the dipolar width and exhibits a marked
asymmetry. A similar type of asymmetry had been
noted previously in powdered tetragonal tin and was
interpreted as an anisotropy of Knight shift. The
hypothesis that the asymmetric line in the powdered
(TP")sOp is due to an asymmetry in the chemical shift
is confirmed by the recordings at lower Geld. Whereas
the dipolar and exchange broadening are independent
of Ho and the width of the Tl"' resonance in samples
with a relatively high Tp" concentration is Geld inde-

pendent, the width of the 98.7 percent Tl"' resonance is
much smaller at the lower Geld and the asymmetry is
markedly reduced. The integrated absorption curves
obtained from the experimental recordings are shown

in Fig. 2. The crystal structure of T1203 is cubic, "but
anisotropy is possible as the individual thallium nuclei
are not in positions of cubic symmetry. The unit cell
contains thirty-two thallium atoms. Eight of these are
located on the body diagonals of the unit cell and there-

fore have threefold axial symmetry. They have six
nearest neighbors at 3.35 A, and six others at 3.95 A.
The other twenty-four thallium atoms are in position
of low symmetry. They have four neighbors at 3.35 A,

"R. W. G. WyckotI, Strlctlre of Crystals (Interscience Publica-
tions, New York, 1931),p. 253,
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two at 3.48 A, four at 3.75 A, and two at 3.95 A. Other
neighbors are relatively much farther away.

Experimentally the distance between the maximum
and minimum in the derivative curve is most accurately
determined. This width between points of maximum
slope, A~, &, is unfortunately not accessible to direct
theoretical interpretation. The second moment of the
line,

(Av')A, = v'f(v)dv, f(v)dv=1,

I I I

TROOP f

98.7% THO51

Ho='3288 I ',

OFRSTFD ]' I

I I

TfpOp
98.7%T4
Ho= M6

has more theoretical significance, but especially the
contribution from the tails of experimental curves is
rather hard to evaluate with precision. The method of
evaluation has been described by Pake and Purcell. "
Table II lists the values of Av, g and L(hv')A„g&, deter-
mined as an average over several recordings. The ratio
in the last column of Table II should be 2.0 for a pure

-lO 0 l0 Kc/sec -20 lO 0 l0 20 kc/sec

FrG. 2. Integrated line shapes of the T13)~ resonance in TlgOs
with 98.7 percent Tl~~ at two diGerent Geld strengths. The dotted
curve (a) is the theoretical shape for powders with axial sym-
metry and (b) for lower symmetry. 25 percent of curve (a)+75
percent of curve (b) with the addition of a small amount of di-
polar broadening should be compared with the full-drawn ex-
perimental curve.

Percent
abundance +ext in

Ti%06 oersted

Tl» resonance

»m sI
kc/sec

L&»')A J~
kc/sec

98.7
90.5
70.5
52.1
14.0

98.7
90.5
70.5

Percent
abundance

T]203

29.5
47.9
86.0
86.0

5560
5560
5560
5560
5560

3288
3288
3288

5560
5560
5560
3288

8.3
10.5
20.
32.

&60.

5.6
7.4

18.0

T13o3 rsonance

48
33
14
11

8.4
9.5

14.
17.

&20.

5.9
7.5

14.0

19
17.5
11
10

TABLE II. Line width of nuclear magnetic
resonance in T1203 in 77'K.

»msf
I.(»'&Avl~

1.
1.1
1.4
1.9
3.

2.5
1.9
1.3

pull inward from their unperturbed positions. The dis-
tance between the maxima is reduced by 21 percent in
this case.

Turning to the corresponding results in the metal, it
may be remarked at the outset that these are quali-
tatively similar to those in the oxide, although there
are important quantitative differences. The data in
Table III were collected from a set of recordings which
are not reproduced, but are similar to those for the
oxide shown in Fig. 1.

The lines are broader than in the corresponding oxide
samples, indicating a larger exchange interaction. The
lines again change gradually from approximately
Gaussian to Lorentzian character as the unlike isotope
concentration decreases. Again the case of 98.7 percent
pure TP~ is of special interest. No pronounced exchange
narrowing is observed. On the contrary, the line is
about seven times as broad as the dipolar interaction

Gaussian and 0 for a Lorentzian type of curve. If an
effective second moment for the Lorentzian is identified
with the square of the half-width at half-maximum
absorption, the ratio would be 1.15. It is seen that
qualitatively the character of the line shape changes
from Gaussian to Lorentzian, as the abundance of the
unlike species is reduced. Of course, the table does not
give an indication of the asymmetry discussed
previously.

Data for the 52 percent —48 percent composition at
low fields are not listed. In this case the Tl"' and Tl"'
resonances are not entirely separated, as the exchange
interaction becomes comparable to the energy diBerence
between the unperturbed TP' and TP' resonance. The
integrated derivative curve gives the absorption line
shown in Fig. 3. It should be noted that as the two
resonances begin to coalesce, the resonance maxima

's G. E. Pa)te and E. M. Purcell, Phys. Rev. 74, 1184 (1948).

I

Tg
203

I

Tg
205

cA
I= l.a-
Z.

I

-2

FzG. 3. The T1IIII and Tl~s resonance in T1~03 in a low magnetic
Geld. The integrated experimental line shape is given by the full-
drawn curve. The two resonances have shifted from the unper-
turbed positions at ~1 on the horizontal axis and begin to merge.
Dotted curves (a) and (b) are two theoretical shapes, represented
by Eqs. (23) and (25), respectively.
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TABLE III. Line vridth of nuclear magnetic resonance
in metallic thallium at 77'K.

III. PHENOMENOLOGICAL THEORY OF LINE
BROADENING AND LINE SHAPE

Percent
abundance

THOS

98.7
90.5
70.5
52.1
14.0

98.7
90.5
70.5

Percent
abundance

'QSN

70.5
52.1
14.0
14.0

Hext, ln
oersted

3288
3288
3288

5560
5560
5560
3288

Tl~o~ resonance

»nil
kc/sec

20
23
33
54

&60

16.7
19
33

T12o3 resonance

&60
54
27
25

L&»&&Avl&
kc/sec

17
20
24.2
28.5
33

15
16.8
24.2

»mal
E&»'&Avl~

1.2
1.2
1.4
1.9

)2

(a) Second Moment Calculation

The basis for a quantitative interpretation of the
results is Van Vleck's theory' of magnetic resonance line
broadening. The Hamiltonian for a system with two
magnetic ingredients is, in Van Vleck's notation,

%=3'„+X,+Xg;p,

K,=gPH Q Iz;+g'PH Q Izg,

(1)

(la)

x,„,g ——Q A@I; I,+ g AI pII,"Ip

+p A, I I,"Ip, (1b)

for the nearly pure isotope would lead to predict. This
time, however, the width is not much dependent on the
field strength and the asymmetry is not pronounced.
This is shown clearly by the experimental derivative
curves, reproduced in Fig. 4. Perhaps the slight asym-
metry in the higher field and the small field dependence
could be attributed to the anisotropy of Knight shift
in the hexagonal metal. Each thallium atom has six
neighbors at 3.401 A and six neighbors at 3.450 A in the
almost ideally close-packed structure. The major cause
for the line broadening, however, must be found
elsewhere. It will be interpreted in terms of a pseudo-
dipolar or tensor-exchange interaction.

The lines in the lower field in thallium of natural
abundance begin to overlap appreciably but even the
30 percent Tl'" line is observable. In the 50 percent—
50 percent composition, however, no resonance was
observed. Apparently the exchange interaction has the
same magnitude as the unperturbed splitting. The
process of which the onset was shown in Fig. 3 for the
oxide, is so advanced in the metal, that an extremely
broad unobservable structure results. The interesting
sects which may occur at still lower fields will be dis-
cussed in the next section. A complete merger of the
two lines may be expected for fields less than 10'
oersteds. One trial run in the metal of natural abundance
at H=1600 oersteds has been made. It would be neces-
sary to cool to liquid helium temperatures to determine
the structure with any precision.

This qualitative description of the experimental re-
sults has shown what factors should be considered in
the theory of magnetic line broadening in these pow-
dered thallium and thallium oxide samples. They are:
ordinary dipolar interaction, pseudo-dipolar interaction
and nuclear spin exchange between like and unlike pairs
of nuclear spins, and anisotropy of the chemical or
Knight shift. The inQuence of the Qnite spin-lattice
relaxation time can be neglected.

+g (gg'p'r, l, '+8,„)—[I; Ip 3r;I, —

X (I,"r;~ ) (II,' r, ~ )$+ g (g"p'rI g
'+8k. (.)—

f I)]l

X [II,' IE.—3r~ ~

—'(I~'r~ «) (Ii"r„g.)j.
In our case the unprimed symbols may refer to Tp"

and the primed symbols to Tl'". X, is the Zeeman
energy in the magnetic field H. The exchange and di-
polar interactions are separated into pairs of primed
and unprimed variety alone, and into mixed pairs.
The 8's represent the pseudo-dipolar interaction. The
mean square absorption frequency of the unprimed
resonance is given by

h'(u')A =g'p'H'+ 'I(I+1)p 8 '-
+ ',I'(I'+1)Q C;-' (2)

8; = —-', (8;+g'P'r; ')(3 cos'0; —1) (2a)

C,q ——2;q —(8;q +gg'P'r, q ') (3 cos'8;q —1), (2b)

where 8; is the angle between r and H. The exchange
interaction between equivalent spins does not con-
tribute to the second moment. Certain simplifying
assumptions will now be made to bring (2) into a form
which will permit direct comparison with the experi-
mental results.

In the powders the contribution of each spin pair has
to be averaged over all angles 8. Using

(3 cos'8 —1)A,=O, ((3 cos'8 —1)')Av

it is seen that the exchange and the dipolar interaction
between unlike spins contribute independently to the
second moment. This result would still be approxi-
mately true in many single crystals when each spherical
shell contains a sizeable number of atoms.

In powders the eGective 6eld H may depend on the
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(4)

8;, is the relative isotropic shift. For positions of axial
symmetry 8 „-=0, for positions of cubic symmetry
6,„=0. The terms in b,„and8,~ will rriak. e a contribu-
tion to the second moment, which is proportional to
the square of the resonance frequency vo and inde-
pendent of the dipolar and exchange contributions.

A priori we have no knowledge of the quantities A.

and 8 which have been introduced in a strictly phe-
nomenological way. Anticipating results of the 6nal
sections, it is assumed that their magnitude decreases
very rapidly with distance between the two components
of a pair. In fact they decrease exponentially with r in
an insulator, and they decrease as rapidly as the dipolar
interaction in the metal, or proportional to r '. Ke
shall therefore restrict the sums to the twelve nearest
neighbors (2= 12) in both the metal and the oxide. In
the former the omission of further lattice sites will
introduce an error of. about 20 percent as a quantitative
evaluation of the complete pure dipolar sum for the
thallium lattice shows. The error in the oxide for the
exchange and pseudo-dipolar contributions is much
smaller than this.

It will also become clear from the atomic theory of
exchange between a nuclear spin pair, that the inter-
actions are proportional to the g-factors of the two
nuclei:

Ag —gg '2;; —g g

&'=gg '&"=g'g '&' '
Since (g—g')/g 1 percent, it is assumed gg' '=1.
Furthermore it is assumed 'that all twelve nearest
neighbors are equivalent which is true for a fcc lattice,
but is an approximation for the actual thallium and
T1203 lattices. In taking the numerical values of g and
g' equal for computational purposes, it should be kept
in mind that their diGerence, however. small, is re-
sponsible for the important distinction between like
and unlike spins.
I', 'If two diGerent isotopes happened to have the same
g-value, they should be considered as equivalent neigh-

orientation of the crystallite,

H=(l'+t'") H,

where I" is the unit dyadic and 6~ is the chemical shift
tensor, which has a 6xed relation to the crystallographic
axes. Since

I
SI((1, the omission of terms quadratic in

ISI leads to

I&I = I&-sI {1+~'.+~-(3 cos'~ —1)
+8„y sino' cos2$}, (3)

where 0 and t3t specify the orientation of H with respect
to the chemical shift ellipsoid. The chemical shifts in
the three principal directions are
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bors in the context of this paper and exchange broaden-
ing would not occur. It cannot be overemphasized that
the Pauli exclusion principle between identical particles
and related concepts do not enter into the discussion of
nuclear spin exchange. The spin orientation only of the
nuclei, whose orbits never overlap, is exchanged via
intermediate electrons.

Introducing the relative concentration f for TP" and
1 f fo—r TP' in the completely random mixture of
isotopes, the second moment expression (2) for the
TP' resonance with respect to its center of gravity,

v, =gPh 'H. -t,(1+—&;s),

becomes for z=12 nearest neighbors at a distance a,

Van Vleck,

+ver= s~~Avrssi=
h(d, v')A„

(9)

If this Lorentzian is cut oG at a frequency

For extreme narrowing, when this ratio is large com-
pared to unity, the line assumes a Lorentzian shape
near the center,

f(v) ={1+(v —v,)'hv. rr
—'}—',

with an eGective half-width

4 4
(hv')A, =g'p'h 'H' —8„s+—8„„'+3''

5 15

v,.=) (~/2)siAh-',

the correct value for the second moment is obtained.

12 27' The numerical constant X is of the order of unity. Its
(1 f) (g+gsps~ —s)s (6) actual value depends on the detailed model of exchange

ls s narrowing. "
This formula will be used to interpret the observed
values of the second moment.

[(Av')g„7i/[(Av')„„7'=1.41
= 1.51
= 1.66
= 1.94

for f=1
for f 0.5

for f=0.25

for f=0.1.

The ratio would be 1.32 for a Gaussian distribution.
For small f the fourth moment tends to dominate the
square of the second moment. This is the dilution effect,
discussed by Abraham and Kittel. For f=0.1, however,
the dipolar terms become of equal importance with the
exchange broadening terms, and a more potent narrow-

ing mechanism will take over. Exchange narrowing domi-

If'~l«l J3+g'&'o 'I, b« I~ I& I&+I'&'~ 'I.
This limiting case is identical with the exchange nar-
rowing for one isotopic constituent considered by

'4 C. Kittel and E. Abrahains, Phys. Rev. 90, 238 (1953);M. A.
Ruderman and C. Kittel, reference 6.

(b) Line Shape and. Fourth Moment

Van Vleck has given a complete expression for the
fourth moment, but this quantity cannot be determined
experimentally with any precision. The following dis-
cussion of two limiting cases proceeds along the same
lines as Kittel's argument. "

Extreme exchange broadening, I fV. I))IB+g'P'a 'I.
The dominant terms in the fourth moment are those in
A4. With the same simplifying assumptions this domi-
nant term is found from Van Vleck's general expression
to be

(Av4)A„=(9/4) (Sf+11f')24h 4. (7)

Using only the dominant term 3'' in the expression
for the second moment, one obtains

(c) Line Shape and Anisotropy of the Chemical Shift

It was already mentioned that the line shape in the
oxide for f«1 is predominantly determined by the
anisotropy of the shift rather than the exchange narrow-
ing. The problem of the line shape in powder samples
due to anisotropy in the resonance condition has al-
ready been solved elsewhere by the authors. ' The same
solution applies to powder line patterns in the presence
of anisotropic g-factors and quadrupole broadening in
fields of nonaxial symmetry. Since an incorrect line
shape has been published in this Journal, " the deriva-
tion will be outlined briefly, in a slightly improved form.
The resonance frequency is given by

v'= vis cos'8+ vss sin'8 cos'g+ vss sin'8 sin'P (11)

Without loss of generality it is assumed that v&) v2& v3,

and these quantities are given by Eq. (4). The polar
angles 8 and P determine the direction of the field H
with respect to the axes of the resonance frequency
ellipsoid. When the differences between v~, v2, and v3

are small, Eq. (11) reduces to

v = vi cos'8+ vs sin'8 cos'P+ vs sin'8 sins'. (12)

Transform from the variables 8 and P, to the set v and
0=0'. The line shape in a powder is given by

8(4,8) .
8'(v) = sin0d0.

8(v,8)
real values

The limits of integration are determined by the
condition of physical reality. The integration is to be
extended over all real values of 0 which are compatible
with a given real value of v. The final result can be

"P.W. Anderson, J. Phys. Soc. Japan 9, 316 (1954)."C. Kiknchi and V. W. Cohen, Phys. Rev. 93, 394 (1954).
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brought into the form of the tabulated'~ complete
elliptic integral E(sinn). The normalized line shape
functions are

with
f(v) =sr (p ps) b(VI —p2) *E(sl nn)

(13)

(d) Line Shape in Small External Fields

Finally, we turn to the question of the line shape in
small external fields, when the exchange interaction
becomes comparable with the diGerence of the un-
perturbed energies. Van Vleck's expressions do not
apply to this case, as the Hamiltonian has to be trun-
cated in a different manner, when A;A ) (g g')PH. —
The exchange between like spins commutes with the
total Zeeman energy, but the exchange between unlike
pairs does not so commute. The two spins in a pair
would be considered as nonequivalent if g~II~Wg2H2.
If the exchange energy between such a pair of nuclear
spins with different g-values in the same field or the
same g-value in diferent fields is small, the problem can
be treated by a perturbation procedure, i.e., the Hamil-
tonian can be truncated in the usual manner described
in Van Vleck's paper.

» E. Jahnke and F. Emde, Tables of Fsenetsoas (Dover Publica-
tions, Inc. , New York, 1945), pp. 52-85.

sin'n= (v2 —vs) (v1—v)/(v1 —v2) (v —vs) for v1) v) v2,

f(v) = sr (v1—v) & (v2 —ps) 'IC(sinn)
with

sin'n= (v —vs) (v1—v2)/(p1 v) (V2 vs) for v2) p) p3,

f(v) =0 for v+vq or vgv3.

For axial symmetry v3= v2, the shape function reduces
properly to

f-(P)=2(» —») '(P —») ' (14)

These theoretical shapes are shown as dotted curves in
Fig. 2.

Equations (13) and (14) have to be replaced by more
complicated expressions, if the relative shifts are not
small. Equation (11) has to be used instead of (12).
To obtain the distribution of nuclei over. the resonant
frequencies v, every frequency in (13) and (14) has to
be replaced by its square and a factor 2v must be
added. The final expression for the intensity distribu-
tion should also take into account that the radio-fre-
quency fieM is not quite perpendicular to the internal
field, but makes an angle p. For each crystalline orienta-
tion one has to multiply by sin'x, which may be ex-
pressed in terms of 8 and p. For large axial anisotropy,
Eq. (14) has to be replaced by the powder line shape
function,

f (p) p(p12 p22) 1(V2 p 2)
—b

( (v'- v2') (PI'- v') )
XI 1—

I (»)
2v'(v1+ v2)' )

The problem of large exchange between nonequiva-
lent spins is a dificult one. In the limit of very large
exchange one could follow Pryce' and consider the
di6erence in the spins as a small perturbation. The
Hamiltonian, from which we omit the dipolar inter-
actions to avoid lengthy computations, can be split in
the following manner:

~.+&-=PUNCH+ (1 f)g—'H'j(ZsI s+Z'I. A )+d('=
+P(gH —g'H')L(1 —f)Z I*'—fZ'I*']. (16)

The interaction with the radio-frequency field was
formerly split into the contributions of two different
species. This should also be changed:

pHrf(g gjIej+g pk'Iek')
=pH. (l(g+g')(Z I*+K I. )&

+L2PH. I(g—g') (EA —ZA I*A )j (17)

The operator between square brackets will always
change the sign of the exchange energy between unlike
spins. It produces satellite absorption at frequencies
of the magnitude of the exchange frequency and will

henceforth be omitted. The commutator of the first
term on the left-hand side of (17) with the Hamiltonian

(16) can now be calculated, and expressions for the
second and fourth moments derived, using Van Vleck's
Eqs. (7—10) and (17):

(av') =h 2P2 (gH g-'H')'f (1
' —f). —

Here hv= v —v„where the centroid frequency is given

by
v.=72 'p(fgH+ (1—f)g H'). (19)

In writing the Hamiltonian (16), this result was
anticipated so that (Av )A„is minimized. The simplifIca-
tion that all spins have the same total angular mo-

mentum, I, has been made. The expression for the
fourth moment becomes

&»')"=& 'p'(gH g'H')'(f'(1 —f)+ (1 f)'f—)—
+ (gH g'H')'A'f(1 f—)saI(I+1), —(2o)

(av4)A„——(v4)A„—v,4—6P.2(av2) A,

—4P'h '(gH —g'H')'v, f(1—f) (1—2f).
It has been assumed that the exchange interaction has
the value A for z nearest neighbors, and vanishes for
all other pairs. The last term gives a measure for the
asymmetry of the absorption around the centroid. It
vanishes properly when f= 2, since a symmetrical ab-
sorption pattern should result, when the two isotopes
occur in equal concentration.

The dominant term is the second term on the right-
hand side and the fourth moment is seen to be larger
than the square of the second moment by a factor of
the order sA'/(gH —g'H')'. In analogy with the dipolar
exchange narrowing, one may interpret this that there
is a narrow line at the centroid position with an effective

"M. H. L. Pryce, Nature 162, 538 (1948).
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width (gH g'H—')'/As'*. In the simple case of just
two spins it is easily verified that in the limit of large
exchange the absorption spectrum consists of a pair of
lines, each a distance (gH g'H—')'/4A from the central
position.

Considerable care should however be exercised, as a
finite absorption over a region (gH g'H')—h 'P cannot
generally be excluded by the calculation of the moments
alone. The example of the case of three spins, two of
which are identical with gyromagnetic ratio g~

——g2
——

g
while the third one has g3, illustrates this. A complete
quantum mechanical solution can be given in this case.'
Our interest is in the situation for very large exchange
energy between the unlike spins A(Ii+Is) Is. For

the absorption spectrum consists of three
lines, one at the average position (sg+-,'g, )h 'PH and
two satellites symmetrically located at t (4/3)g ——',gsj
Xh 'PH and gsh 'PH. The intensities of these lines are
in the ratio 4:90:9.Thus no definite conclusions can
be drawn from the calculation of second and fourth
moments alone, unless the truncation process of Eqs.
(16) and (17) can be refined. This is even more true if
the exchange interaction is not large, but comparable
to the difference in Zeeman energies. To obtain a semi-
quantitative idea what can be expected in this case,
refuge is taken to less rigorous, approximate methods.

A well known approximation in exchange problems
is the introduction of an effective field. Consider the
resultant magnetization M of the unprimed variety
and M' of the primed variety. In the absence of exchange
between mixed pairs these will precess independently
in the magnetic field H. The exchange coupling be-
tween M aud t&i' is taken into account by an effective
field XM'= AM'/giga' acting on M, and )tM acting on
M'. The equations of motion for the two spin systems
become

dM/dt=A,

'graf

MX (H+—)tM')),
dM'/df =A-'gP'(M'X (H'+) M) ),

with the two eigenfrequencies

v= ,'(gH+g'H')Ph '+-,'Ph '-(g'M, +gM, ')

+ -,'Ph '[(gH —g'H')'+ 2 (gH —g'H') (gM.
' g'M.))—

+X'(g'M +gM ')')'*(21)

serious. The solution (21) gives erroneous results for
the nuclear two-spin system, where the average ex-
change fields are small compared to the fluctuations.

In order to obtain a better idea about the change in
absorption for intermediate values of the nuclear spin
exchange, it is assumed that the system can be repre-
sented by a model of a rotating magnetization which
changes at random intervals from the frequency vo

=gHPh ' to the frequency vp' g'H'——Ph ' and vice versa.
The magnetization is a continuous function of time.
The fluctuating exchange fields are responsible for the
transitions which have a probability per unit time of
the order of the exchange frequency. Such a model has
been discussed by Slichter. ,

" by Archer" and by An-
derson" with three entirely diferent mathematical
methods. They all discuss the case that the oscillator or
rotating magnetization spends equal time at the two
frequencies, and the transition probability to jump from
vo to ~0' or uo' to vo is the same. Anderson and Archer
derive the spectral distribution from the correlation
function for the freely radiating oscillator, whereas
Slichter starts from the magnetization driven by an
external harmonic field. Slichter's method is by far the
simplest and covers in addition the case that the oscilla-
tor is subjected to other external damping mechanisms
at each of the two frequencies. Furthermore his method
can be readily extended" to the situation that the
oscillator spends a fraction f of the time at frequency v

and a fraction f'= 1 f at the fre—quency i ', correspond-
ing to the fractions of the primed and unprimed isotope.
The transition probability for a frequency jump is
assumed to be proportional to the probability f or
f' of the oscillator frequency after the transition:

(22)

Unfortunately the numerical factor cannot be derived
in a rigorous manner and is assumed to be unity.

The generalization of Slichter's equation for the
absorption curve is

r+r'+(r '+r' ') '(nr'+n'r)
d(i) ~Re (23)

(1+n'r') (1+nr) —1

This approach has been used frequently to discuss the
ferromagnetic resonance of the two spin systems in
ferrites. " In the case of large exchange it gives the
correct resonance condition at the "average" frequency:

with
n = Ts ' 2rri (t vp)—,

— —
n'= Ts' ' 2rri (v vp')—— —(24)

~=(fgH+(1 f)g'H')Ph ', —

f=g'M, (g'M, +gM, ') '.

Above the Curie point the omission of the fiuctuations
in the exchange fields, i.e., of terms quadratic in the
transverse components of the spins, is however very

'9 See, e.g., R. K. Wangsness, Phys. Rev. 91, 1085 (1953).
Further references to the literature are given in this paper.

In the limit of large exchange 7. —+0, a single narrow
resonance at the average frequency results. For z —+ ~
two separate resonances occur. T2 ' and T2' ' represent
the widths the separate resonances would have, if
there were no frequency jumps. T2 and r should be of
the same order of magnitude, but the ratio is not deter-

"Gutowski, McCall, and Slichter, reference 4. fEq. (41).j
2' D. H. Archer, thesis, Harvard University, 1953 (unpublished).
~ H. S. Gutowski and A. Saika, J. Chem. Phys. 21, 1688 (1953).



NUCLEAR SPIN EXCHANGE I N SOLI DS

mined in this model. It is believed that Eqs. (22)—(24)
give a fairly reliable description for interme:d. iate values
of the exchange coupling, although the model is strictly
not applicable. For To ' ——Ts' ' ——0 and r==r' Eq. (23)
reduces to the shape function of Archer-Anderson: Magnetic

Abundance field in
(percent) gauss

Dipolar
and

pseudo-
dipolar

Aniso-
tropic Ex-
shift change

Total
theory

Ob-
served

Classi-
cal di-
polar
alone

TABLE IV. Contributions to the second moment of the Tl~'
and Tloo' resonances in Tloo, . All (hvo)o„contributions are in
units (kc/sec)'.

with

GOgCOp

0 (oo)Coo =
M +2oo (2oo8 —cop )+Mo

oo = 2orLv —-', (vp+ vp') g,
too= 2oro (vo vo ),
Gag= 7

—1

(25)
98.7 Tl»5
98 7 Tl»s
90.5 Tl»&
90 5 T]»5
70.5 Tl»~
52.1 Tl»6
14.0 Tl»5

86 Tl&al
47.9 Tl»3
29.5 T1203

5560
3288
5560
3288
5560
SS60
5560

5560
5560
5560

&9
&9
&8.6
&8.6
&7.6
&6.6
&4.6

&8.2
&6.6
&5.0

60
- 22
60
22
60
60
60

60
60
60

5.4
5.4

39
39

121
220
353

65
240
320

70
32

104
66

185
285,
415

130
305
383

70
35
91
54

196
290)400

118
310
360

4.5
4.5
4.3
4.3
3.8
3.3
2.3

4.1
3.3
2.5

IV. COMPARISON OF THEORY AND E]EXPERIMENT

With the aid of the formulas developed in the pre-
ceding sections the experimental results may now be
used to obtain numerical values for tht: phenomeno-
logical quantities introduced.

The best starting point for the discu;;",."ion is the ob-
servation of the second moment in t.'he nearly pure
isotope, 98.7 percent TP". One can put j=0 in Eq. (6).
Minor corrections because f=0.013 cani be made after-
wards. The second moment consists of a 6eld-inde-
pendent contribution from the dip()J.ar or pseudo-
dipolar broadening and a contribution from the aniso-
tropy which is proportional to the squ:a, re of the field.
These two contributions can be separated because
observations at two di6erent field str(.'ngths are avail-
able. It turns out that for the oxide the. anisotropy is so
much larger than the dipolar contribution, that only
an upper limit can be given for the n.magnitude of the
latter. In the metal the pseudo-dipolar interaction is
dominant, but an anisotropy of the E.night shift is still
noticeable (compare Fig. 4). The anisotropy broadening
is not a6ected by exchange, but the: dipolar part will
be exchange-narrowed. In order to obtain the correct
contribution to the second moment the line must be
integrated from the center to a distance of the order
of the exchange frequency, Eq. (1(lI), or to about 40
kc/sec in our samples. It is diflicultt to obtain reliable
values for the contributions from the tails and the
pseudo-dipolar second moment vaay be somewhat
underestimated. Fortunately the ea:change narrowing
is not severe, especially not in the metal, where the
effective "narrowing factor" Eq. (8) is about two. This

figure is estimated from the ratio of experimental
widths of the Tl" resonance in 9'Jl.7 percent and 14
percent Tl"' sample. If there wen: no pseudo-dipolar
interaction, the narrowing factor would have been 14
and the line shape would have been ~determined entirely
by the anisotropy. The observed second moment in the
50 percent composition serves to det:(:rmine the exchange
constant A, which is the remaining unknown parameter
in Eq. (6). Then this equation can 'be used to calculate
the second moment for the Tl"' an.d. Tl"' resonances in
all other compositions and at other' Geld strengths. The
results for the oxide are compiled i&i Table IV, for the

TABLE V. Contributions to the second moment of the TP5
resonance in thallium at 77'K. All contributions to (nv )o„arein
units (kc/sec)'.

Magnetic
Abundance field in

(percent) gauss

Dipolar
and

pseudo-
dipolar

Aniso-
tropic Ex-
shif t change

Total
theory

Classical
Ob- dipolar

served alone

98.7 Tl»5

90.5 Tl»5

70.5 Tl»&

52.1 Tl»~
14.0 Tl»5

5560
3288
5560
3288
5560
3288
5560
5560

200
200
189
189
170
170
148
105

100
35

100
35

100
35

100
100

14
14

102
102
312
3)2
570
910

314
249
391
326
592
517
818

1105

300
220
395
280
590
590
820

6.2
6.2
5.9
5.9
5.3
5.3
4.6
3.3

metal in Table V. It is seen that very good agreement
with experimental values in the next to last column is
obtained. For purposes of comparison the last column
contains the contribution from the classical dipolar
interaction alone, which thus far was usually considered
the important broadening agent in solids. Its inadequacy
in the present case is striking.

The numerical values for the exchange interactions
between nearest neighbors in the oxide can be found
from Table IV and Eq. (6). They are

~A ~h
—'=12 kc/sec, —2.2(Bh—'(0.35 kc/sec.

This latter ambiguity arises from the fact that there
may be constructive or destructive interference with
the ordinary dipolar interaction. Neither can the sign
of A be determined by these experiments. A'n inde-
pendent determination of the exchange interaction is
possible from the inward shift of the resonance at lower
field strength with the aid of Eqs. (23) or (25). In Fig. 3
the integrated experimental line is compared with these
theoretical expressions. The dotted curve (a) corre-
sponds to Eq. (23), and the dotted curve (b) to Eq.
(25). The distance between the maxima of absorption
is reduced to 79 percent of the distance of the unper-
turbed Tl'" and Tl"' resonances. This determines 7..
If one takes orr(vp' —vp)=2. 38, the theoretical curves
give the correct position of the maxima. With Eq. (22)
this value of r leads to ~A ~h '=9.6kc/sec in fair agree-
ment with the value derived from the second moment.
The discrepancy is undoubtedly due to the uncertainty
in the numerical factors. The value

~
A

~
h '= 12 kc/sec
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is more reliable and should be retained. Curve (a) gives
much better agreement with experiment, since it in-
cludes the additional broadening T2 ', not associated
with frequency transitions. The very good Qt was ob-
tained by taking r/T2 0.6.——

To evaluate the exchange constants for nearest
neighbors in the metal, twenty percent is subtracted
from the contribution of the exchange and dipolar
broadening to account approximately for the eGect of
farther neighbors. Then Eq. (6) gives the following
values

) A
~

= 17.5 kc/sec and 8=+4.5 or —6.5 kc/sec,
as compared to the classical dipolar constant g'P'a '= 1

kc/sec. At the lower field strength in the 50 percent-
50 percent composition of the metal s.r(vo' —vo) =1.42,
which results in a broad unobservable line shape. The
anisotropy of the shift in the hexagonal metal amounts
to 8,„=0.08 percent. Consequently, 'the anisotropy in
the Knight shift

(Av„—hv~)/hv;, =0.24 percent/1. 56 percent
= 16 percent.

The evaluation of the anisotropy constants for the
shift in the oxide is much more complicated. In the
powder specimen one is clearly not concerned with the
orientation of the shift ellipsoids in the crystal. Only
the axial ratios of the ellipsoids are important, but the
oxide has two diferent types of thallium atoms in the
unit cell. Eight atoms on the body diagonal have
ellipsoids with rotational symmetry and require one
anisotropy constant. Twenty-four atoms of lower sym-
metry have other ellipsoids, all 'with the same axial
ratios. This requires two additional constants. Further-
more it is conceivable that the isotropic shift of the
atoms of first kind is not the same as for the atoms of
the second kind. This would lead to an additional
contribution to the second moment, which has not been
considered before in this paper. Clearly the experi-
mental curve of Fig. 2 cannot yield these four inde-
pendent constants. Experiments at much higher field
strengths would be necessary to give a better deter-
mination of the line shape. Data on single crystals
would hardly be more revealing. For an arbitrary
orientation of the external field there would be sixteen
diGerent resonance curves. This difhculty is inherent
in the large number of atoms in the unit cell.

We have tried to 6t the experimental curve as well
as possible with a line shape of axial symmetry alone
LEq. (14), dotted curve in Fig. 27 and separately for a
line shape for less than axial symmetry LEq. (13),
dashed curve in Fig. 27. It is seen that 75 percent of the
latter curve and 25 percent of the former gives an ex-
tremely good fit with the experimental shape. In the
case of axial symmetry the anisotropy parameter is
determined by the second moment alone 6, =0.063
percent. This gives an anisotropy of the chemical shift

(hvii —Eve/d, v~, =0.19/0, 55=34 percent,

In the case of lower symmetry the two parameters are
determined by the second moment and the shift of the
center of gravity of the line with respect to the maxi-
murn using (4) and (6) one finds 8,„=0.061 percent
and 8„~=0.03 percent. The uncertainty in these
numbers is rather large, especially in 8„~. Yet it can
be said that conclusive evidence for the anisotropy of a
chemical shift has been found, and that the anisotropy
has some no@axial symmetry.

The inhuence of exchange between the Tp" nuclei
with different chemical shifts has beeg. ignored in this
discussion. If the exchange interaction were very large
compared to the difference in chemical shifts an average
resonance frequency for all thallium atoms in the unit
cell would be observed. Since the unit cell is cubic, this
average would show no anisotropy. The experimental
results indicate that the exchange interaction does not
produce such a complete averaging. Its inhuence at
the higher magnetic field is probably small, but at the
lower Geld the exchange energy and the difference in
chemical shifts are comparable. It seems a hopeless
task to treat the exchange interaction between the
various nonequivalent Tl"' nuclei in the unit cell
adequately. This points again to the desirability to in-
vestigate the aoisotropy of the chemical shift in simpler
structures.

It has been shown that all experimental data can be
interpreted satisfactorily in terms of the phenomeno-
logical theory. This interpretation indicates that the
discussion of the Knight shift in thallium and its alloys
as given in a previous paper (reference 1) remains essen-
tially unchanged. The broadening of the line in alloys
may in part be due to exchange between unlike nuclei.
The shifts at the lower 6eld strength reported in refer-
ence 1, are not reliable, however, because of the co-
alescence of the two thallium resonances at low fields.

The gradual change in shape from Gaussian to
I orentzian with increasing concentration of like neigh-
bors has been discussed before. It is" in semiquantitative
agreement with Eqs. (7), (8), and (9). It remains to be
shown that the numerical values, found for the ex-
change constants zt and 8, are reasonable ones in terms
of an atomistic theory.

V. ATOMISTIC THEORY OF NUCLEAR SPIN EXCHANGE
COUPLING IÃ SOLIDS

Ramsey and Parcell have shown that the nuclear
spin-electron spin interaction will give rise in second-
order perturbation theory to an exchange-type of
coupling between nuclear spins in molecules. Ramsey's
theory for this type of interaction in molecules can
readily be extended. to periodic lattices. Ruderman and
Kittel have already given the extension for the nuclear
spin coupling by the conduction electrons in a metal.
The analogous process for coupling in an insulator via
excited electron states will be derived here along similar
liney,
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The electrons in the solid may be adequately de-
scribed by one-electron wave functions of the Bloch
type, "normalized over a large volume V:

with

~;(k,k') =a (k', k)
= (l6sr/3)g~p~pgq(R;)N~. e(R;). (29)

f~——e'"' N~(r), V ' fg*iPgdo =1
4

(26)

16m
Xr;s= pgxpxI; S&(r,)+2pg~p~

3
XI; {Sr;-'—3r;—'(S..r;)r;}, (27)

where r;= r—R; is the radius vector from the nucleus i
to the electron. The Bohr magneton P h:xs a negative
value. The nuclear spin j produces a simile{,r interaction.

The second term represents the cia', ssical dipolar
interaction between two dipoles. It wa.s omitted in
Kittel's paper. It vrill be shown to be responsible for
the pseudo-dipolar interaction in the ne&:t section. For
the time being consider only the first term. When the
wave function has a 6nite value at the n~ucleus, there is
an interaction corresponding to the hypt. r6ne structure
in atomic S-states. In second-order pert&Irbation theory
the change in energy of the system due: to the Hamil-
tonian (27) is

p~p, Q~*s'~xls(p~s)(4~*s(xls~f~s')
X{E(k)—E(k') }-'.

The summation is over all excited states k' and the
two spin orientations s'. The interest ick in terms which
depend on both nuclear spins. The transition to the
intermediate excited state is due to spin i and the
transition back to the ground state due to spin j, or
the role of i and j is reversed. To obtain the total energy
perturbation caused by the introduction of nuclear
spins i and j, the summation over all initially occupied
states k, s has to be performed. The three-dimensional
8 function in (27) makes the evaluation of the matrix
elements simple. The summation over the two electron
spin orientations in the initial and intermediate states
can also be performed readily. The integration over the
volume V cancels the normalization factor in (26) and
the result is

SC, 6""=I;.I;L2 Regggg a, (k,k')

XA;(k', k)e't~ —~'& u" "~'{E(k)—E(k') }—') (28)

"See, e.g., F. Seitz, modern Theory of Solids (McGraw-Hill
Book Company, Inc. , New York, 1940), p. 348 ff."j;n subscripts k and k' will often stud for k and k'.

Nz(r) has the periodicity of the lattice. '4 Exchange and
correlation eGects are neglected in this treat;ment.

A pair of nuclear spina is introduced at positions R;
and R; in the lattice. The perturbation of the wave
function by the nuclear spin-electron spin interaction
is considered,

The complex conjugate is added because the role of i
and j can be interchanged, resulting in twice the real
part. The expression between square brackets in (28)
represents the previously introduced quantity A;, and
is generally valid for all periodic lattices. The diGerence,
e.g. , between metals and insulators becomes apparent
in the evaluation of the sums over all occupied initial
states k and all unoccupied intermediate states k'. To
gain insight into the magnitude of the quantity A;; some
simplifying assumptions about the k-dependence of the
integrand wil1 be made. These restrictions are not
essential and many re6nements on them could be
introduced. More complicated integrals would then
have to be evaluated.

For the case of an insulator the assumption is made
that the occupied band is narrow compared to the gap
between the top of this band and the bottom of the
conduction band, and that this gap is uniform for all
directions E,))E&. The energy of a conduction electron
in this band and all higher bands is represented by
E~ =k"k'/2ns', where k' assumes the value 0 at the
bottom of the band and runs to infinity, m' is the ef-
fective mass. Lower filled bands are assumed to have
such a large energy diGerence with the conduction
band that their contribution is neglected. With these
approximations one has

EI,. EI, Eo+k "—k2/2——rrs'. (30)

The last integral can be evaluated by contour integra-
tion in the complex plane and gives an exponential
factor. The upper limit of the 6rst integral is the top
of the 611ed band. For a Wigner-Seitz sphere of atomic
volume e„which accommodates one electron of given
spin orientation, one has

kg ——2sr(3/4z. z.)&. (31)

The spherical approximation is clearly not valid near
the zone boundaries, but it allows for a simple evalua-

Furthermore a suitable average,

(a;(kk') a;(kk')).«= (~ ~;,~'),„, (29a)

over the two bands is introduced. This is not simply
the arithmetic mean, as the quantities are weighted
with the inverse energy diGerence between the two
states. With these simpli6cations the integrations over
k and k' can be carried out in spherical coordinates.

If one writes R;;=R;—R;, the result of the angular
integrations is

~kg

Ass= —((6;;~') -'rn''fs'7r 4R" ')~ sin(kE@)kdk
0

X)~ sin(k'E, ;)O'Lk"+2mE 5 ') 'dk'
0
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k =3isrv, '*, Ep ——h2k '/2m'. (33)

The integration of k is from k to infinity, to include
all overlapping higher bands.

There are a few scattering processes with k=k'=k,
which give a very large contribution, because the
energy dominator becomes very small; but these
partially cancel. Ruderman and Kittel' have shown

how the integrations give a finite result:

A;r —— 2'—
(~ Dg~') mA'rr 'R 4h '"

XLsin(2k R;;)—2k R;; cos(2k~, ,)). (34)

Since most of the contribution comes. from scattering
processes near the Fermi level, (~ 6;,~') A, in the metal is
effectively an average over the Fermi surface.

The main difference between a metal and an insulator
is the exponential factor in the latter case. The exponent
contains the square root of the energy gap. Whereas
the magnitude of the interaction drops oG as E;, ' for
the metal, like the dipolar interaction, the exponential
decrease in the insulator makes the "nearest neighbor
only" assumption a good one in this case.

The quantity ~h;;~' calculated from Eqs. (29) and

(30) is related to the atomic hyperfine splitting r"":

p ~«p ~f8( (
(2I;+1)(2I;+1)

(35)

where P;=I';"/I', is a numerical factor of the order of

unity. P, is the electron density at the nucleus in the
atom in the s-state with hyperfine splitting v"", while

P " is the corresponding density in the solid, suitably
averaged over valence and conduction bands. For a
metal P'" is approximately equal to the density pro-
duced at the nucleus, if all electrons were at the Fermi

TABLE VI. Sign of the exchange interaction.

Structure
Nearest
neighbor

Next nearest
neighbor

tion of the integral and is consistent with earlier
approximations. The final result is

2;;=——,'(~A;;~')A, m'h '~ 'R;; ')sin(kQ;~)
—kQ,;cos(k@;;)j exp( —h '(2m'E, ) lR,;}. (32)

In the case of a metal there is no energy gap and a
conduction electron near the top of the Fermi dis-
tribution may be scattered into a state with approxi-
mately the same energy. The integration over k is now
from zero to k, the value of the wave number at the
Fermi level Ep. For one conduction electron per atomic
volume v,

surface, because these electrons give the major con-
tribution in the integral leading to (34). The exchange
interactio:o between a pair of atoms in a metal in the
quasi-free electron approximation is proportional to
n ')Pm', vthereas the Knight shift is proportional to
n, P,m'. A different combination of the quantities $ and
the effective mass, or $ and the density of states, occurs.
In principle both (w, $) and m' can therefore be deter-
mined. Th.t.. spin-lattice relaxation gives the same com-
bination o,t $ and m', as the Knight shift.

The fact:or n, ' appears in (35) because of the nor-
malization icondition (29). Taking R,; =n, in (34), it
is seen froni (33) and (35) that A;; has the order of
magnitude ()f the square of the hyperfine splitting over
the Fermi e]iergy.

For insula tors the interaction between nearest neigh-
bors will in;general be somewhat smaller. The ratio of
the exchange with respect to the classical dipolar inter-
action incre'uses rapidly for heavier isotopes as the
effective electron density P"' increases. Kittel esti-
mates that tbis ratio is unity for silver. It is about 15
for thallium. ,For a pair of sodium atoms the exchange
interaction w(auld be roughly 5 percent of the dipolar
interaction, but for a sodium-thallium pair it would
again be of thee order of unity. These qualitative esti-
mates hold ft'.)r elements as well as compounds, for
molecules as well as coherent matter, for metals as
well as insulat|. ~rs. In molecules with a low-lying ground
level and in in;sulators with a large forbidden gap the
sects will clea].ly be smaller, but nuclear spin exchange
should always give marked e6ects, whenever heavy
isotopes are pre:sent.

The sign of the exchange interaction is determined by
the function —&,inx+x cosa with @=k~R;; in insulators,
and @=2k R;; i&x metals. For a b.c.c. insulator we have
A;;&0 for nearest neighbors, but A;,)0 for next
nearest neighbors. Since the nearest neighbor inter-
action dominates due to the exponential factor, the
nuclear magnetic: moments will tend to align parallel.
Other data for the f.c.c. structure and for metals are
compiled in Ta,ble VI. It is seen that the nuclear
moments in a b..c.c. metal would tend to align in two
antiparallel systems. In the case of metals the align-
ment of the nuclear spins is however also determined in

part by the first-order spin interaction with the con-
duction electron spins, as discussed by Frohlich. "This
and the long-rarq~e character of the nuclear spin ex-
change makes a prediction of nuclear spin ordering in
metals difFicult. The simpler case of insulators allows
the prediction t4at the b.c.c. and f.c.c. lattices of
nuclear spins wi;Ll show a ferromagnetic ordering at
very low temperatures. The Curie point of the thallium
oxide with h 'A;, ==1.2)&10' cps and @=12would lie at

Insulator

Metal

bcc
fcc
bcc
fcc

T,=2sAI(I+1)/3k=3. 46X10 ' 'K. (36)

"H. Frohhch and F. R. N. Nabarro, Proc. Roy. Soc. (London)
175, 382 (1940).
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Its band structure is more complicated than the present
treatment allows for. It is only a reasonable guess that
it will become nuclear ferromagnetic, but the occurrence
of some type of nuclear alignment below this tempera-
ture is certain to exist, independent of the shape of
the specimen. The moot question of alignment by di-

polar interaction alone is not involved. "
Unfortunately the relaxation times to es't, ablish ther-

mal equilibrium will become prohibitively long in
insulators at such low temperatures. Experimentally
metals would be more suited for the investigation of
nuclear magnetism at extremely low temperatures, but
here the theoretical situation is less certain. .

Although the simplifications made in obtaining Eqs.
(32) and (34) are too crude to allow an s,ctual calcula-
tion of A;; even for simpler structures than thallium
and thallium oxide, we wish to show th."it the order of
magnitude is in agreement with the exper. 'imental values.
Using the geometry of a f.c.c. lattice with 12 nearest
neighbors at 3.45)&10 cm for both rn, etal and oxide,
the known atomic hyperfine splittings" in the 6ss ls
state, v "=0.4 cm ', an effective mass equal to the
free electron mass, one obtains for th.e metal A: 'A;;
=2.2 kc/sec. Agreement with experiment is obtained
when )=2.8. The effective electron density must be
taken 2.8 as large as in the atomic 6s" 7s state, or 1.5
times as large as in the 6s' 6p 'Pj state. To obtain the
correct Knight shift of 1.56 percent, $=-1.64 should be
taken. The discrepancy merely points to the inadequacy
of the quasi-free electron model in this case. There is
no justi6cation for an attempt to derive a better value
for the effective mass.

If one assumes the same eGective density and the
free electron mass for the oxide, Eq. (32) gives agree-
ment with the experirnerital value jt 'A@——12 kc/sec if
the energy gap is taken as E,=0.12 ev. The experi-
mental data and the theoretical expressions can thus
be made to agree with reasonable values of the physical
constants.

The problem of crystalline anisotropy for which there
is no room in the spherical approximation can be dis-
cussed in a formal xnanner by expanding the wave
function Pi, and the energy denominator in a series of
spherical harmonics consistent with the crystalline
symmetry. For a crystal with axial symmetry one
could, e.g., write

ft.= (Ng+skcrrlti, cos8i„+ )e'"'.
X{E(k')—E(k))—'=E-'+DEi, '-', (3 cos'8t,.—1)

+AEt, '-', (3 cos'8t, .—1)+
where 8i„is the angle between the wave vector k and
the crystallographic axis c. Repeating the calculation
of A;; with the addition of these terms gives upon

"J.A. Sauer and A. N. V. Temperley, Proc. Roy. Soc. (London)
176, 203 (1940);J.H. Van Vleck, J. Chem. Phys. 5, 320 (1937);
J. M. Luttinger~and L. Tisza, Phys. Rev. 70, 954 (1946).

~'P. Brix and H. Kopferman, Lundolt-Bornstein, Zahleemerte
und Funhtjones I 5 (Springer, Berlin, 1952).

integration terms depending on the angle between R;;
and c. The spin dependence of the interaction still has
the scalar product form. The magnitude of the exchange
constant will depend somewhat on the orientation of
R;;. It will not be possible to observe this effect with
the techniques described in this paper. Only the average
exchange interaction for a number of neighbors is
measured. Therefore no explicit calculation will be
presented.

The pseudo-dipolar interaction does not have its
origin in crystalline anisotropy, but in the tensor char-
acter of the dipolar interaction of the second term in
the Hamiltonian (27). The important differences caused

by the angular dependence of this interaction must now
be considered. The terminology "anisotropic exchange"
which has often been used to denote the pseudo-dipolar
interaction in papers on electron magnetism has been
avoided in the present article. It is clear from this
paragraph that its use may be misleading.

Ir m —( 1)m
21+1 (j—anti)! &

(j+ ~~~)!

XP&~ ~(cos8)(2z.) &e'"o. (37)

When 8s„and ps, correspond to the angle between two
vectors k and r, the shorthand notations s"Pt =
Pi"(cos8s„)and Pi = (—1) L(l—tn)!/(j+nt)!jPt are
introduced. The orthogonality properties of these func-
tions are well known. "Frequent use will be made of
the addition theorem,

osPt —Q ( 1)m eePtm seP ~cine(oab —oba) (3g)

of its immediate consequence,

t' 4sr
'Pt "P dQb ——

~ ~

'Ppe™~ (39)
J & !2j+1)

where dQb is an element of solid angle of the vector
space b, and of the expansion formula for a plane wave
used in most scattering problems,

e'a'=
~

kr
~ P—(2 +11)i'J jt(kr) s"Pt. (40)

Ew ) t p

ss See, e.g. , F. Sauter, Djgerentjatglejchungen der Physih
(Sammlung Goschen, Berlin, 1942); P. M. Morse and H. Fesh-
bach, Methods of Theoretical Physics (McGraw-Hill Book Com-
pany, Inc. , New York, 1953), pp. 1274 6; L. Pauling and E. B.
Wilson, Introduction to Quantum Mechanics (McGraw-Hill Book
Company, Inc. , New York, 1935), Chap. 5.

VI. THEORY OF PSEUDO-DIPOLAR INTERACTION

It will be convenient to write the angular dependence
of all quantities in terms of spherical harmonics
Pt~ ~(c so)8, which are related to the normalized, gen-
eralized Laplace spherical functions by
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', (I+S,+—I-Q+) H "fp,'e 'eH ,'-(I S—,+—I,S )
X+7sjp 1g+ig~r I S H7sp 2g—2ipIIr

4 + +
HriP se sfieH„7—(41)

g=2.0023 is the electron spin gyromagnetic ratio. I,
and S, are the components of spin parallel to the mag-
netic 6eld H; S+, S, I+, I are the usual spin raising
and lowering operators.

Bardeen" and others" have shown that the periodic
function uk(r) in the Bloch wave function (26) can be
expanded in a fairly rapidly converging power series in
k, in the spherical approximation. This is automatically
an expansion in spherical harmonics:

uk(r) ='uk(r)+ikci 'uk(r) k'Pi
—k'cs 'u(r) k"Ps+ . (42)

The Bessel function of half-integral order J~+~ can be
expressed in the cosine and sine functions and odd
powers of (kr)-&.

Consider the tensor part of the Hamiltonian (27).
Since the nuclear spins are quantized with respect to
the external field H, the dipolar interaction between
nuclear spin I; and electron spin S can conveniently be
expanded" in harmonics containing the angle between
r;and H,

5('rensor =ggHPPHrr 'p( 2ID—z+ sI+ +sI—S+) "—"Ps

from valu~. s yi& y, is neglected. Furthermore exp
Pi(k —k') i'.;7 is replaced by unity inside the sphere.
Actually (lt —k') r, may not be a small quantity.
There is no selection rule on k in the transition as the
perturbatioix is localized. As far as nuclear spin orienta-
tion is concerned the lattice is not periodic. Exp
Li(k —k') r7 might be expanded with the aid of (40),
and the razI. ial and angular dependence on ri could
still be separ, ated; but in order to keep the integrations
relatively sin&pie the exponent is replaced by unity. "
Substitute for uk and uk the expansion (42). Introduce
the abbreviations

rs

=gpiv, ppH 'uk'*(r;) uk(r, )r; ' dr;, (44a)
0

p rs

=ggiv;PPH~' 'uk'*(r, ) 'uk (r;)r;-' dr;, (44b)
0

""'«;(kk') = »'«;*(k'k)

=ggiv;ppH~ 'uk*(r~) 'uk(r, )r; ' dr;. (44c)

Usually the radial functions in (42) are real. Hence-
forth the 6's will be written as real quantities, to
simplify notation, although the calculation could easily
be carried through for complex quantities. Use Eq.
(39) and the relation

The coefficients c~ and c2 are constant near the origin
k=0, the bottom of the band. Brooks" has shown how
they may be determined from the boundary conditions
of the lowest wave function on the Wigner-Seitz sphere.

Consider the second-order interaction between nu-
clear spins i and j, whereby an electron is excited from
the initial state with wave vector k and spin orientation
s to the intermediate state with k' and s' by the first
term in the tensor interaction (41) of nuclear spin i,
and back from the intermediate state to the ground
state by the scalar interaction of spin j:

Sn
krfP k t'fP HrjP dQ .— ( kkIP +3 HkP Hk'P )

to evaluate the integral over the solid angle d07;.
Carry out the summation over the two electron spin
orientations in the initial and intermediate states. The
second-order interaction (43) then takes the form

+;( 2I,,I;,+,'Ii,-Ii —+;I* Ii,)-fP-(k') —E-(k)7-'

16m
ggH;gH;p'PHs(s

~

2I',S,+,'I~~S +,'I;—S+
~

s')--
3

X(s'~I,S,+ ',I+S + ',I;S ls)(&-(k') &(-k)& '—
p 9's

Xgi&&—&') R' gi&j —&'& gigl, .*y. +"p2gqy &dy.dQ7.

&&e-'&"—"'&.Riuk *(R~)uk(R,). (43)

s and s' are the spin quantum numbers in the ground
state and the excited state. The integration over ri is
extended only over the Wigner-Seitz sphere with radius
r.= L(3/4ir)+a7& around the ith nucleus. The dipolar
interaction drops off as y; ' and the small contribution

~ M. H. Cohen, Phys. Rev. 95, 674 (1954).
~ J. Bardeen, J. Chem. Phys. 6, 367 (1937).
"W. Kohn, Phys. Rev. 87, 472 (1952);H. Brooks, Phys. Rev.

91, 1027 (1953).

4m
)&e'&k—"'& R i«(k', k) ——cs'k" 'e'«, (k k') H'Ps

4x Sm.——csk' "s«(k k') Hkps+ ci'cik'A ~&'«;(k,k—')
5 15

y(3 HkP Hk P kk P )) (45)

Two permutations of this interactioa must be made.
The tensor interaction (41) may act on the nuclear
spin j and the scalar interaction on i, and the inter-

For quantitative work this simpli6cation is not permissible.
The exponential factors will in many cases give the larger con-
tribution to the angular dependence.
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cfcf'kk'(5, »'6;+»'6 5;)f,2
15

X (kk'R, ;2) '* J;(kR;,) J, (k'R;;), (46)
32m'

-c2O2(hj ""6~+6;"'&;)f2

b1(k,k') =

b2(k, k') =

X (kk'R, j2)-» J;(kR;,) J;(O'R;;),,
32x4

b6(k, k') = c2'kf2(j». '-"'6+8, '"'6 )22
5

X (kk'R;j )-» J»(OR;j) J;(k'R;,)

mediate state may be excited by the interaction with
spin j, while the return to the ground state is made
through the interaction with spin i. The last permuta-
tion will result in the addition of the complex conjugate
expression. Finally one has to sum over all occupied
states k and all unoccupied states k'. This integration
over k and k'-space will be carried out by separating
again the angular and radial dependence.

Assume that the quantities 6, given by (29) and
(44), and $E(k') —E(k)] ' do not depend on the direc-
tion of k or k'. The changes which result wh. en this
restriction is not made, will be discussed later. The
angular integrations over dQI, and dQ~ can then be
completed, when exp[i(k —k') R;;) in (45) is expanded
according to (40). The interaction between the nuclear
spins becomes

(—2Ii,Ii,+2If+Ij +2If Ij+) 'jP2B;~,
with

a„=I "(b,+b,+b,)t-E(k)-E(k))-
"A4I, '

X (22r) 'k'k "dkdk'
128m.4

the expressions for bj, b2 and b3. These are analogous
to the quantity

~
6,, ~

A„2 introduced in (29a). They are
related to the atomic hyperfine structure in the corre-
sponding p-state by an expression similar to (35). The
p-type hyperfine interaction in the solid has the order

.of magnitude of the atomic p-type hyperfine splitting
times the percentage of p-type character (or s—d
mixture) of the solid state wave function. Integrate k

from 0 to kf, the top of the valence band, given by (31)
and k' from 0 to infinity. The integral (46) appears to
diverge at the latter limit. The reason is that the co-
eKcients c in the expansion certainly cannot remain
constant to k —& ~. Physical reality requires a nor-
malization. Assume c1'——c1'(1+ffk") ' and c2' ——c1'
X(1+bkf4) ' as k' —+ ~, or some such relations, to
insure convergence. The integration over k' can be
carried through in the complex plane. In the result let
a —+0 and b~0. The parabolic law E=kk"/2222' is
assumed in the band region of interest. The integration
over k is elementary. '

inn' .—2r
—2Q—2m R, .—6 exp{ Q

—1(2fffE )2R. ,}

X —cfc1'(6' ""6,+& 'h, h, ),ff (1+@ '(2fffEft)»R;j)
1.5

P
&tR2'j 1

(sinx —x cosx)xdx+ c2(6; "—"f»j+""6;6j),ff
0 15

pkgRsj

{(3—x') sinx —3x cosx}xdx
4 p

Repeat the same calculation for the other terms of the
tensor interaction (41), using (39). As an imnrediate
consequence of group-theoretical arguments, the final
result for the pseudo-dipolar interaction is

~;,'fn= {I,"I,—3R,1-2(I; R;,) (I,"R 1)}&g. (4&)

As before the slight dependence of E(k) —E(k') on the
spin orientations has been neglected in this deri'. vation,
consistent with'the spherical approximation. Spin-spin
and spin-lattice relaxation processes can be defined for
the pseudo-dipolar interaction in exactly the. same
manner as for the classical dipolar interaction.

The constant 8;;, which was introduced earl:iver in a
phenomenological fashion, is now expressed qui. te gen-
erally by Eq. (46). The integration over the wave
numbers can be carried out with certain sim]:}lifying
assumptions, which may be adapted to the particular
type of solid under investigation. The same assuD&ptions
will be made as in the discussion of the ordinnry ex-
change interaction.

Assume that an insulator has a narrow valence band
and a relatively wide gap E,. Replace all highe:r bands
by one conduction band with one effective m.ass m'.
Then Eq. (30) may be used. Introduce suitable aver-
ages for the products of d's quantities, appeal, ring in

1
+ c2 (+, sd'g. +a 'g 161.) ff(3+3$—1(2212E )»Rg

15

+2A, 2222E,R,12) x sinxdx . (48)
4p

Comparison of this result with Eq. (32) shows that
the pseudo-dipolar interaction has a radial de-
pendence similar to that of the isotropic exchange,
since the integrals go as 8; for large E;;. At large
distances the exponential factor is however dominat-
ing. The ratio 8;;A;; ' has the order of magnitude of
the hyperfine splitting ratio in corresponding p- and
s-states times the relative amount of p- with respect
to s-character of the wave function. Rather large
variations around this order of magnitude can occur
because of the different trigonometric functions in
(32) and (48). Accidentally these could even make one
of the quantities A,; or 8;; zero, the other remaining
finite.

A similar state of affairs for the ratio 8;;/A;; occurs
in metals. In this case k in Eq. (46) must be integrated
from 0 to k, and k' from k to inanity over the conduc-
tion band. The integration of k' can formally be changed
from zero to inanity without changing the result. The
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"8 =m'A, "ns,.iiR —ci"ci'(Ag»'6, +»'A A.)F
15

f
kggRaj

XJ (sinx —x cosx) (cosx—x sinx)xdx

p &naBsg'

cosx
1

+ c2(+i +j+ ~i') permi
15 0

X{(—x'+3) sinx —3x cosx}xdx

+—c~'(6, '"'6+"'6 6 )i.
15

kgb, Bsg

sinx{ (—x'+3) cosx+3x sinx}xdx . (49)
Jo

The integrations over x=kR;; are elementary and can
be carried through by repeated partial integrations.
The integrals go as R;,' for large R;;. The pseudo-
dipolar interaction therefore has a R;, ' dependence in

metals. The ratio 8;,/A;; in the metal has again the
order of magnitude of the ratio of the hyperfine splitting
is pure p- and s-states multiplied by the relative amount
of p- and s-character, respectively. The effective average
of the products of the quantities 6 is now approxi-
mately equal to the value of this product on the Fermi
surface, since electron scattering processes between
k-states close to this surface contribute most to the
integrals. At the Fermi surface the relative amount of
p-character of the wave function may frequently exceed

the amount of s-character. Taking the hyper6ne split-

ting in a pure p-state to be about 10 percent of that in

an s-state, 8;;/A;; can still easily assume a value of,

say, 30 percent. This is particularly true if the varia-
tions in the numerical values of the trigonometric ex-

pressions involved in A;, and 8;, are taken into account.
The observed ratio Bg/A;; =0.3 for nearest neighbors
in thallium is thus entirely reasonable. It indicates that
the amount p-character probably exceeds the amount

of s-character of the electron wave functions at the
Fermi-surface in this metal. Quantitative conclusions

are difficult to make, as Eqs. (34) and (49) are rather
crude approximations for this case. The complicated
band structure would certainly make a numerical
evaluation of integrals (46) necessary.

Resonance lines in pure isotopes will in general not
have widths narrower than the classical dipolar inter-

integrand is antisymmetric in k and k' and consequently

p
kn pjcm

J, J, (»+t +& )LE(k') —E(k)] '

X (2~) 'k'k"dkdk'=0.
I

If one takes E(k') —E(k) = (2m) 'k'(k" —k') the
principal value of the integral over k' can be evaluated
in the complex plane.

action dut: to exchange narrowing. Usually the pseudo-
dipolar interaction will be a sizeable fraction of the
exchange: interaction, and the lines will be rather
broader t'han Van Vleck's formula for classical dipolar
interaction would predict.

The fact that the Pb"' resonance in natural lead is
rather broad, while Pb"' with 22.6 percent abundance is
the only stable lead isotope with nonzero spin, indi-
cates pseudo-dipolar interaction in metallic lead. To
estimat(. ' the magnitude of both the exchange and
pseudo-d. ipolar interaction in this case, measurements
on the 3.'b"' in the presence of another isotope with
nonzero spin should be made. The rapid increase in
line width on alloying observed' in some cases may be
due in pnrt to exchange broadening.
&,

" The pseudo-dipolar interaction has the same order of
magnitude in cubic crystals as in noncubic crystals.
One could formally add to the expansion (42) terms
dependi1~g on the angle between r and the crystallo-
graphic axes. For an axially symmetric crystal the
leading term in the expansion for the wave function
would be iko-I "'Pj and in the energy "'P2, where c is
the unit vector in the direction of the axis of symmetry.
In angu. lar integration small terms are added to the
result. One effect is that the constant 8;; may depend
on the a,ngle between R;; and c. The changes are not
observ ~hie in the experiments described in this paper.

Final. ly the second-order perturbation with the tensor
interacti. on (42) on both nuclei i and j must be
considered. Two integrals over r; and r;, containing

"'P2 and "&P2 will now occur, instead of the single
one over r; in Eq. (43). The interaction is still linear in
the nuc;lear spins i and j.From group-theoretical argu-
ments it is clear therefore, that the Qnal dependence
on 8 &:ontains no spherical harmonics of order higher
than the second. Detailed calculations, carrying out the
proper summations over the electron spin orientations
and going through similar steps which led to Eq. (46)
for the t.ensor-scalar interaction, con6rm this. A typical
term of the tensor-tensor interaction has the form:

(4irq '
—I,"I; ~~ (4&)2~ —
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2 (kk'R, ') ALE (k') —E(k)]
The double tensor-interaction contributes both to the
isotrop:ic exchange and the pseudo-dipolar interaction.
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There are five additional terms containing diferent
product combinations of ""6, '"'6, and»'d. These
contributions should be added algebraically to the
expressions for A;; and 8,, derived previously. The
additions have the magnitude of 8;, A;; '. The relative
correction for A;; in the case of thallium is only 10
percent. Rather wide variations in the actual values of
the corrections are possible due to the trigonometric
functions. For nearest neighbors the magnitude of the
tensor-tensor interaction is the square of hyperfine
splitting in the p-state times the square of the frac-
tional amount of p-character, divided by the Fermi
energy.

VII. CONCLUDING REMARKS

For a heavy metal with a simple band structure it
might be possible to give a quantitative interpretation
of observed exchange interactions. The theory is not

sufficiently refined to predict the numerical values found
for thallium and thallium oxide, although it certainly
gives the right order of magnitude. This is already a
great deal better than can be achieved for electron spin
exchange. Whereas a quantitative atomic theory of
ferromagnetic properties is still lacking, nuclear ferro-
magnetic characteristics may be derived from first
principles. This is at least true for insulators, where the
exchange interaction is confined to near neighbors and
complications with conduction electron spins are
avoided. The Curie or Neel temperature is determined

by the value A;;, Eqs. (32) and (36).
The dipolar terms wi11 give rise to magnetic anisot-

ropy below the Curie point. Van Vleck's theory for
ferromagnetic anisotropy" applies equally well to the
nuclear case. '4 For cubic spin systems it is necessary to
go to higher-order terms in the expansion of the free

energy of the nuclear spin system to obtain anisotropy
from the dipolar interaction. In such cubic crystals the
magnetic anisotropy would then be inversely propor-
tional to the external Geld H. In ordinary electron ferro-
magnetism the anisotropy is not field dependent, be-
cause the internal Weiss Geld is always large compared
to H. A first-order field-independent anisotropy of
nuclear magnetism in cubic crystals may arise from
quadrupole-quadrupole coupling, if the nuclear spins
have I& 2.

In our opinion, however, the main interest of nuclear

spin exchange does not lie in the field of extremely low

temperatures and nuclear ferromagnetism. It seems
more important that the exchange and pseudo-dipolar
interaction give information about the electron wave
functions in the lattice and, in particular, about their
nonspherical character.

The interaction (27) does not represent the complete

sr j.H. Van Vleck, Phys. Rev. 52, 1178 (1937).
~It applies, strictly speaking, only to the nuclear case. The

Heitler-London perturbation procedure does not converge for the
case of electrons.

Hamiltonian" for the nuclear spin I. If the nucleus has
a quadrupole moment it will interact, ''with a noncubic
charge distribution of the electron which will have
matrix elements connecting the ground state k with
the intermediate excited state k'. In second-order per-
turbation dipole-quadrupole and quadrupole-quadru-
pole interactions will result. The latter is quadratic in
the nuclear spins I; and I, and has the order of magni-
tude of the square of the quadrupole hyperfine splitting
over the Fermi energy. Since the quadrupole interaction
usually produces relatively small deviations from the
interval rule, and can only operate on the "non s"
character of the wave functions its order of magnitude
will in general be even smaller than the tensor-tensor
interaction discussed in the preceding section. Since the
thallium isotopes have I=-„the interaction is absent
in our experiments and will not be discussed further.

Another term which has not been considered is the
nuclear spin-electron orbit interaction 2g~P~Pr; 'I; i.
It can be safely assumed that the second-order. coupling
between nuclear spins in solids due to this. term is
orders of magnitude smaller than the interac'tion via
electron spins, as has been shown to be the case for
molecules. ' ' One can also introduce the electron spin-
orbit coupling and consider the interplay of spin and
orbital eGects. To obtain a nonvanishing result for the
nuclear spin interaction, the operators I, and S should
in general each occur in even powers in the Hamil-
tonian. The orbital sects will not be discussed in this
paper. Although they make only a minor contribution
to the nuclear spin-spin coupling, they are of great
importance for the chemical shifts in solid . The large
value of this shift in thallium oxide points to a small

energy gap between bands, as did the large value of the
exchange constant. It follows from Ramsey's theory'6
that the relative anisotropy of the chemical shift
should have the same order of magnitude as the anisot-
ropy in the diamagnetic susceptibility, although they
need not have the same value. A relative anisotropy in
the chemical shift of 34 percent is thus entirely reason-
able. It would be desirable to develop a quantitative
theory of the orbital eGects in solids on nuclear spins.

A few words must be said about the effect of nuclear
motion on the exchange interaction. The inhuence of
diGusion or other types of motion in the nonrigid
lattice and in liquids on the pseudo-dipolar interaction
is exactly the same as on the classical dipolar inter-
action, which has been treated in great detail. "

The exchange broadening between unlike spins can
undergo a motional narrowing too. A pure rotation,
leaving the internuclear distance between the two
nuclei unchanged, has however no e6ect in this case.

sn A. Abragarn and M. H. L. Pryce, Proc. Roy. Soc. (London)
A205, 135 (1951).

3' N. F. Ramsey, Phys. Rev. 86, 243 (1952).
3~ Bloembergen, Purcell, and Pound, Phys. Rev. 73, 678 |,'1948);

R. Kubo and K. Tomita, J. Phys. Soc. Japan 94, 888 (1954).
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The exchange interaction has no angular dependence.
Unlike the'dipolar interaction, it does not average out
on rotation and this is the reason that exchange be-
tween unlike neighbors in molecules is observable in
liquid and gaseous samples. If the nuclei with their
spins dif'fuse rapidly with respect to each other, the
exchange interaction A;, $Eqs. (32) and (34)) has to
be averaged over all R;, and then summed over all j.
Another way of describing this same phenomenon is to
say that a neighboring position of nucleus i is at one
time occupied by a nuclear spin j pointing up and some
time later by another spin k pointing down. A complete
analysis of this motional narrowing of exchange broaden-
ing is beyond the scope of this paper. It is somewhat
unexpected that the resonance in liquid metallic thal-
lium could not be observed and the Hg'" resonance
in liquid mercury is very broad. The thallium resonance
in liquid thallium-mercury alloys is also extremely
broad. These facts seem to indicate molecular associa-
tion in the liquid metals. In the rapidly rotating and
diffusing molecules the exchange interaction is not
averaged, and the interchange of nuclei between mo-
lecular assemblies which would lead to narrowing is too
slow. A more careful investigation must be made
before de6nite conclusions can be drawn.

Finally the universal character of the exchange
coupling between nuclear spins is stressed. It should
be considered whenever heavy atoms are involved, not
only in metals, but also in valence and ionic crystals as
well as in liquids and molecules. In particular, it will
make a contribution to splittings observed in molecular
spectra with the molecular beam method. A large spin-
rotation interaction has been found' in the TlCl
molecule. It follows from a theoretical analysis of the

"Carlson, Lee, and Fabricand, Phys. Rev. 85, 784 (1952).

TlCl molecule in the "very weak 6eld" case' that an
interaction of the type AIc& IT&, which was not con-
sidered, will give rise to a similar splitting of the energy
levels, for which I'r=Ici+&, I, Ici and IT~ are good
quantum numbers, as the considered interaction
CsIT~. J. In principle both interactions contribute to
the observed 6ne structure of the F=Fr+IT~ levels,
and the observed quantity of 73 kc/sec corresponds to
C2—3, and not to C2 alone. It can be shown, however,
that the contribution from A must be small in this
case. A distinction between the two types of interaction
can be made by changing the isotopic species, since 2
is proportional to the gyromagnetic ratio of the chlorine
isotopes, whereas C2 is not. The g~-factors of the
chlorine isotopes have the ratio 0.8324, whereas the
observed splittings for the TlCP' and TlCP' molecules
were the same within a 3 percent accuracy. Similarly
the pairs Rb"F and Rb"F have roughly the same
splitting, " although the g-factors for the Rb isotopes
differ by more than a factor three. Only when two
heavy isotopic species are present in the diatomic
molecule a contribution of A of 10 kc/sec or more can
be expected and the nuclear spin exchange might be-
come observable in molecular beam experiments.
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