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Rotational Excitation by Slow Electrons*
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University of Pittsburgh and Westinghouse Research Laboratories, Pittsburgh, Pennsylvania

(Received August 9, 1954)

Cross sections are calculated for rotational excitation of a homonuclear diatomic molecule by collisions
with very slow electrons. The mechanism is assumed to be the long-range quadrupole interaction. The
Born approximation is shown to be correct in the low-energy limit. The results are applied to calculation
of energy losses in N2, and comparison is made with values inferred from swarm and cross-modulation
experiments. At energies below 0.29 ev, the threshold for vibrational excitation, losses are ~ twice the
experimental values, but many times larger than the value (2m/M) for elastic losses only.

I. INTRODUCTION

A N electron making elastic collisions only as it
moves through a gas is expected to lose energy

at a rate (2rtt/3II)e, per collision, ' where sn is the
electron mass, 3E the molecular mass, and the electron
energy e is large compared to the mean thermal energy
of the molecules, Measurements by swarm experiments'
of the rate of energy loss in the noble gases He, Ne, A
agree with this theoretical expectation at average elec-
tron energies well below the first excitation potential.
In molecular gases, on the other hand, the reported
energy losses' ' per collision considerably exceed
(2rtt/M)e„at average electron energies far below the
electronic excitation threshold. In N2 in particular this
excessive energy loss is confirmed by recent experiments
in the laboratory' ' and in the ionosphere. "

These results obviously suggest that in molecular
gases electrons too slow to cause electronic jumps
mainly lose energy by rotational and vibrational exci-
tation. Massey6 has calculated the cross section for
rotational excitation in molecules such as HCl which
possess permanent electric dipole moments; he Qnds
the cross section is quite large. In homonuclear diatomic
molecules, however, which have no electric dipole
moments, Morse' estimated the energy loss by rota-
tional excitation to be of the order of the elastic loss.
If this estimate is correct, it is diKcult to account for
the reported losses at average electron energies much
less than the vibrational excitation threshold, under
which circumstance vibrational excitation is presumably
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negligible. In view of the experimental complications,
and the numerous uncertainties in the interpretation
of the swarm experiments, ' it cannot be inferred that
Morse's estimate of the rotational excitation loss is
incorrect. Nonetheless the situation is not satisfactory,
and it appears desirable to re-examine the theoretical
probability of rotational excitation in homonuclear
molecules.

The result that the cross section for rotational
excitation b'y slow electrons is small may be understood
as follows. To conserve total angular momentum when
the molecule makes a rotational transition, the electron
must have some orbital angular momentum either
before or after the collision, i.e., it cannot both go in
and come out as an s-electron. But at these large
wavelengths only s-electrons have an appreciable prob-
ability of being found in the vicinity of the molecule.
In other words, the electrons possessing the angular
momentum to cause rotational transitions are neces-
sarily far from the molecule, interact'only weakly with
it, and the cross section for rotational excitation is
small. This argument, though appealing, proves to be
specious' for molecules possessing a dipole moment
because the electron-dipole interaction potential, falling
oB as r-', is sufficiently strong at long range to permit
appreciable interaction with electrons of l&0.

Homonuclear diatomic molecules generally have elec-
tric quadrupole moments, so that their interaction with
electrons also has a long-range tail, in this case falling
oB as m'. In the following section we use a multipole
expansion of the molecular field to calculate the cross
sections for rotational excitation and de-excitation of
homonuclear diatomic molecules by slow electrons.
The cross sections, proportional to the square of the
quadrupole moment, are smaller than in polar mole-
cules. Nonetheless, in N2, at electron energies well
below the vibrational threshold, the predicted energy
loss by rotational excitation is much larger than the
elastic loss and in fact is of the order of magnitude of
the observed loss. '4

e Crompton, Huxley, and Sutton, Proc. Roy. Soc. (London)
A218, 50'I (1953); L. G. H. Huxley and A. A. Zaazou, Proc.
Roy. Soc. (London) A196, 402 (1949).

e W. P. Allis and H. W. Allen, Phys. Rev. 52, 703 (1937).
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In our calculation, as in previous calculations" ""
of rotational and vibrational excitation probabilities,
Born approximation has been employed despite the
fact that the electrons are very slow. Our use of this
approximation is defended in the final section of this
paper. We argue that the principal contribution to the
cross section comes from large distances of the incoming
electrons from the molecule, where the wave function
is only slightly distorted from its incident form. This
argument, which is related to one given by Massey, '
leads to the inference that at low energies, because the
effective region of interaction is increasingly distant
from the molecule, the Born approximation probably
improves with decreasing incident electron energy.

We support and justify our argument by evaluating
the second Born approximation to the scattering ampli-
tude for a pure quadrupole interaction. We find that
the ratio of the second to first Born amplitudes ap-
proaches unity with decreasing incident electron energy.
Born approximation is much harder to justify when
the principal contributions to the cross section come
from small distances, as is the case when the quadrupole
field of the homonuclear molecule is neglected. The
oft-employed assumption that the charge distribution
of the molecule is the sum of two spherically symmetric
parts, each centered about a nucleus, neglects the
quadrupole field, since the potential of such a charge
distribution vanishes exponentially at infinity. These
remarks amount to a criticism of the use of Born
approximation in some previous work, and help account
for the fact that we predict a larger energy loss by
rotational excitation than does Morse. '

It is our conclusion that in N2 at least, at electron
energies below the vibrational threshold, losses signifi-

cantly exceeding the elastic value are consistent with
theory. Our predicted losses are in qualitative agree-
ment with the reported values; as explained in Secs.
III and IV, without additional experimental and theo-
retical work, a more detailed comparison of our pre-
dictions with the experiments would not be meaningful.
Evidently it would be desirable to have more direct
experimental evidence of rotational excitation. A pos-
sible means of accomplishing this is described in an
accompanying paper" on H2.

II. FORMULATION

We seek a solution 4 of the Schrodinger equation:

where

H=Hp —(its/2m)d„+ V, (2)
'P H. S. W. Massey, Trans. Faraday Soc. 31, 556 (1935)."T.Y. Wu, Phys. Rev. 71, 111 (1947).
n E. Gerjuoy and S. Stein (to be published). In Hs, the only

other gas on which there are recent data below the vibrational
threshold, the observed losses exceed the expected elastic loss by
a rather smaller factor than in N~. See Crompton and Sutton,
reference 3.

with
V= -P;Z;e'/) r-r;~.

In the above, r is the coordinate of the incident electron,
Hp is the Hamiltonian of the isolated molecule, and the
subscript j indexes the particles, electrons, and nuclei,
composing the molecule. The perturbing Coulomb
interaction V is summed over the coordinates r; of all
particles in the molecule. The charge Z; is —1 for
electrons and is Z=X/2 for either nucleus, with ptf the
total number of electrons in the molecule. The center
of mass of the entire system, molecule plus incident
electron, is the origin of coordinates. It may be assumed
to coincide with the center of mass of the isolated
molecule, since the incident electron mass ns is so small.
The scattering amplitude A,p(n, np) for the transition
from the initial molecular state y with electron incident
along np to the final molecular state qb with electron
outgoing along n is"

l

A,p(n, np) = —(m/2srks) drdr; expL —ikpn. r]

&& iop*(r,)V(r,r,)+.(r,r,). (4)

Here 4, is a solution of Eq. (1) which satisfies the
usual boundary conditions, i.e., outgoing at infinity
except for its incident part q (r;) expLik, np rg. The
integral (and implied spin sum) in Eq. (4) is over the
coordinates of the initial electron and of all particles j
in the molecule. Since V is independent of spin, the
nuclear, molecular electron, and incident electron spins
are individually consewed. The initial and final wave
numbers of the incident electron, k, and kb, respectively,
are related by

E= (trt'k.s/2m)+Z. = ()t'kps/2m)+Zp, (5)
with E and Eb the energies of the corresponding
molecular states y and crab. The diGerential cross section
for scattering the electron into the direction n, with
the molecule making the transition from state q to
Pb) 1S

a. ( p)n= (kp/k. ) )A.p~'. (6)
We confine our attention to molecular states which
can be classified as 'Z, in which event" the Born-
Oppenheimer approximation to q, or qb is

p(r;) =to(r„s)S(s)V(O,C'), (7)
where r, refer to the molecular electrons only, to(r„s)
are the molecular electronic wave functions for fixed

"N. F. Mott and H. S. W. Massey, Theory of Atontlc Colltssons
(Clarendon Press, Oxford, 1949), second edition, Chap. VIII.

i4 The ground states of homonuclear diatomic molecules gener-
ally have this classification. In particular, Hq and N2 have 'Z
ground states. For Os, with a 'Z ground state, Eq. (7) requires
some modification, but our evaluation of a(n) is not basically
invalidated, since the rotational wave functions are still spherical
harmonics. Our analysis is not applicable to non-Z states, the
wave functions for which cannot be factored into a product of
electronic and rotational wave functions, and for which the
rotational wave functions are Jacobi polynomials. R; de: I.
Kronig, Band SPectra and Molecular Structure (Cambridge
University Press, Cambridge, 1930), pp. 6 6.
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p(r, s) =X drp drN
~
tep(r rp '' r~', s) ~'. (8)

As usual, spin summation is implied in Eq. (8). It can
now be concluded from Eqs. (3), (7), and (8), that for
rotational excitation only, and in Born approximation,
the matrix element A p of Eq. (4) is

internuclear coordinate s, S(s) are vibrational wave
functions, and F(0,4) are spherical harmonics describ-
ing the rotational states of the molecule. The coordi-
nates (s, O,C) of s are referred to fixed axes in space,
and the nuclei are located at ~-,'s.

In the problem presently at hand, we seek the
transition probability for rotational excitation only,
with the molecule initially and finally in its ground
electronic and vibrational state. In other words, in
Eq. (7) we have te, =wp ——wp, S =Sp=Sp, where the
subscript 0 indicates the ground state. The electronic
density distribution in the ground state of the molecule,
for fixed s is

C„=(q(r) r"P„(r,s)). (16)

Of course the monopole moment and all odd electric
moments must vanish for neutral homonuclear mole-
cule s.

The leading term in Eq. (12), proportional to the
quadrupole moment, makes the principal contribution
to the energy loss. Retaining this term then, and
deferring until later the justification for neglecting the
higher moments, we find from Eqs. (6), (9), and (13)

Here P„(r,s) is the nth Legendre polynomial in the
angle between r and s, and e is the absolute value of
the electronic charge. B„(s) is zero for odd n, because
V"(r, s) = V"(—r, s). This symmetry follows from the
property p(r, s) =p( r—, s), valid for the gerade or
ungerade wp of homonuclear molecules. '4 Bp(s) vanishes
because, in Eq. (14), J'dr'p(r', s) =/it = 2Z. In fact Eq.
(15) makes C„ the Nth electric moment of the molecule
along the axis of symmetry s, consistent with the usual
definition for an axially symmetric charge distribution
q(r):

A,p(n, np) = —(m/2n. h') dre'"'
4

~dO~dC' sinO~Fp*F, V'(r, O',4), (9)

f
o,p(n) = (kp/k, ) (Qap/2pr)' drr 'e'"'

dO~dC' sinO'Fp*F, Pp(r, s), (17)

with k= k,np —kpn and

V'(r, 0. ,4) = dss'~ Sp(s) ~'V" (r,s),

V"(r,s) = —e'
Z Z

t
p(r', s)

+ — dr'
f—2S I gS

V"(r,s) = —(e'/r)P r "P„(r,s)B„(s),

V'(r, 0~,4)= —(e/r)P„r "P (r,s)C„,

where we find, for even n,

(12)

(13)

Evidently V' is the electrostatic interaction between
the incident electron and molecule, for fixed orientation
of the internuclear axis, averaged over the ground state
electronic and vibrational wave functions.

We now make a multipole expansion of V'. The use
of this expansion is justified in Sec. IV on the grounds
used to defend Born approximation, namely that the
principal contribution to the cross section comes from
large values of r. In Z states p(r', s), and, therefore,
V"(r,s), are axially symmetric" about s, so that the
expansion has the form at large r

where ap ——k'/me', and Q is the measured" quadrupole
moment of the molecule, in units of eapP. In Eq. (1/)
we may interchange the order of integration, whereupon
the integral over r proves to be trivial. Also we now
label the states u and b by the initial and final rotational
quantum numbers J, M and J&, M&, and perform the
sums over the azimuthal quantum numbers 3f and Mb,
thereby determining the effective cross section for a
transition from rotational level J, to J~. There results:

kp 4Q'&p'.,(n)= — P P "daF~.~.(s)
k. 9 2J.+1 pr. srp &

XFzp~'*(s)Pp(k, s) dQ'Fz, ~ *(s')

)& FJ p '(s')P&(k, s'), (18)

where s is specified by the angles 0~, 4 in dD and s' is
similarly specified by O', 4' in dQ'. The sums over M
and 3f& are immediately evaluated. The effective
differential cross section o,p(n) then is seen to be
spherically symmetric, so that the total cross section
for the transition from level a to level b becomes

B„(s)=2Z(-', s)"—~dr'p(r', s)r'"P (r',s),

C„=e dss'
~
Sp(s)

~
'B„(s).

"R. de L. Kronig, reference 14.

(14)

(15)

8prQ'ap' k p—(2Jp+1) ' dxPz. (x)Pz, (x)P,(x). (19)
45 k,

~6 Caution is demanded in using reported values of the quadru-
pole moment since several different definitions of this quantity
are current, diBering by numerical factors from the de6nition
Eq, (16) which we adopt.
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The integral in Eq. (19) is known. "It vanishes except
when J~=J ~2 or J~=J„ in agreement with the
usual selection rules for electric quadrupole transitions:

~
J,—Jp

~

&2 and no change in parity. We are interested
in the inelastic processes only, J~——J ~2. Our final
expressions are

StrQ'ap' kp (J+2)(J+1)
15 k, (2J+3)(2J+1)

0 J, J+2—

(20)
J(J—1)Sm.Q'ap' k p

15 k, (2J—1)(2J+1)

where o.J, J+2 refers to a transition from level J =J to
level Jp= J+2, in which the incident electron loses
energy to the molecule, and o-J, J 2 refers to a transition
from level J to J—2, in which the incident electron
gains energy. To very good approximation, the energy
levels EJ are

Eg=8J (J+1).

rule hJ even, which coincides with the selection rule
already derived.

III. NUMERICAL RESULTS

The rate at which an electron of energy e, loses
energy in rotational excitation of the homonuclear gas is

4 pZ +J[trJ, J+2(+1+2 +J)

~z. z s(Ez 8-z s) J—) (23)

where XJ is the number of molecules per cc in the Jth
rotational level, 0-J, J+2 and 0 J, J 2 are given by Eq.
(20), and s, is the electron velocity Exc.ept at the very
highest gas temperatures and lowest electron energies,
the velocities of the molecules may be and have been
neglected in Eq. (23) compared to t,. Particularly at
the higher electron energies, k&/k, may be replaced by
unity. This approximation yields the very simple result,
independent of the relative populations ÃJ,

Consequently, using Eq. (5), with e, the incident
electron energy, we have in Eq. (20) for dW./dt = (32trQ'aps/15)X8t~„, (24)

kg 8
og, z+s.'—= 1——(4J+6)

kg 8
o'g, g s.' —= 1+—(4J—2)

c,

(22)

where S is the total number of molecules per cc.
According to Eqs. (20) and (22), Eq. (24) always
overestimates the energy loss computed from Eq. (23).

In units of 2ttt/M, the mean fractional energy loss X'

of the electrons, per collision with the gas molecules,
is dered in terms of the total rate of energy loss
dW/dt by the relation

%'e conclude this section with the remark that the
cross sections, Eq. (20), are not altered by the nuclear
spin selection rule which results from the connection
between spin and statistics. When the nuclei are
identical and the molecule in a '2 state, rotational levels
with the same total nuclear spin must have the same
parity, (—)~. Since the nuclear spin cannot be changed
by the potential V of Eq. (3), this implies the selection

X'= (M/2rrt) (tVo.to,e,)
—'(dW/d ),1 (25)

where r~ is the total collision cross section, elastic plus
inelastic. X' equals unity when the elastic cross section
is spherically symmetric, the gas velocity negligible
compared to the electron velocity, and inelastic losses
are unimportant. If the inelastic losses are well approxi-
mated by Eq. (24), then

50—
32trQ'ap' 8 M

15 0)e, 2m
(26)

20-

0 I

Q .I

I I

.4 .5
(e v)

.6

Losses in Nitrogen

In nitrogen, ' " 8=0.249X10 ' ev, ~Q~=0.96. In
Fig. 1 are compared Y from Eq. (26) with Y computed
from Eqs. (22) and (23), for 0.025 —0.6 ev electrons
incident on N2 at 290'K, using' 0-&——4.8mg02 indepen-
dent of electron energy and employing a Boltzmann
distribution for the populations EJ. The utility of the
closed expression Eq. (26) for Y may be gauged from
this figure. In Fig. 2 the exact values of V, from Eqs.
(22) and (23), again for Ns at 290'K, are compared
with the values of V obtained by Crompton and Sutton'
(curve C) when they assumed their electrons had a

Fxo. 1. Comparison of fractional energy losses computed from
Eq. (26) or Eqs. (22) and (23).

~~K. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1951),p. 182.

'Q. Herzberg, Molecular Spectra arid Molecular Structure I
(D. Van Nostrand, New York, 1950), Table 39.

ts W. V. Smith. and R. Howard, Phys. Rev. 79, 132 (1950).~ Phelps, Fundingsland, and Brown, Phys. Rev. S4, 559 {1951).
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FIG. 2. Theoretical energy losses obtained by assuming
various elastic cross sections.

» C. Ramsauer and R. Kollath, Z. Physik 4, 91 (1930).
w J. Townsend and V. A. Bailey, Phil. Mag. 42, 8'73 (1921).~ It is not always clear whether the experiments measured 4r&,

the total cross section, or merely o., the elastic cross section.
The distinction is not important, however, since the inelastic
cross sections op, g+s and op, ~ s of Eq. (20) turn out to be much
smaller than the reported values of o g.~ J. B.Fisk, Phys. Rev. 49, 167 (1936).

Maxwellian distribution. Since the magnitude and
energy dependence of 0-& are uncertain, two "exact"
curves are drawn in Fig. 2, curve A using the afore-
mentioned constant value of 0~=4.duo', and curve 8
using an energy dependent o.

~ (8' of Fig. 3). The
various reported values''~" of the cross section" for
electrons in N2, in the energy range below 0.8 ev, are
summarized in Fig. 3. Curve A in Fig. 3 is the constant
value 0.

&

——4.8mao', which is seen to lie below the other
reported values, but which lies very close to the theo-
retical estimate by Fisk'4 of the elastic cross section.
Curve 8' is drawn through the experimental points of
Crompton and Sutton, a and extrapolated from their
observations. Comparison of curves A and 8 in Fig. 2
illustrates the inQuence on the theoretical estimate of
X' of diGering assumptions concerning the magnitude
and energy dependence of (T&. These curves also show
that the predicted fractional energy loss by rotational
excitation is an order of magnitude greater than the
value V= 1 expected for elastic losses only.

The analysis of the raw data of the swarm experi-
ments to get the fractional energy loss as a function of
mean energy is complicated and involves numerous
assumptions, e.g., the electrons have a specified distri-
bution (Maxwellian or Druyvesteyn) and a mean free
path independent of velocity. For this reason the
experimental curve C (Fig. 2) represents what might be
called an eGective energy loss vs mean energy in the
swarm, and is not simply related to the average of
curves A or 8 over the distribution function. None-

&2
D Ramsauer

8 Kollath
o Townsend

SQailey
8'

r~e Flsk
4'

0 I 1

0 j .2 .5 .4 .5 .6 .7 .8

FIG. 3. Elastic cross section data.

"We remark that curves A or B are indistinguishable from
computed curves taking into account corrections to the rotational
spacing, i.e., using Eg=BJ(J+1)—DJ'(1+1)' with D=0.72
X j.0~ ev. See Hergberg, reference 18.

ss Gordy, Smith, and Trambarulo, Mk romare Spectroscopy
(John Wiley and Sons, Inc. , New York, 1933),p. 294.

theless we may conclude from curves A or 8 and C, as
they stand, that rotational excitation, occurring through
the coupling between the electron and the molecular
quadrupole 6eld, is of the right order of magnitude" to
account for the observed energy losses in N2, at energies
below the vibrational threshold (0.29 ev, indicated by
the arrow on the energy scale in Fig. 2). If vibrational
excitation is in fact negligible, the electron distribution
function can be computed by numerical integration of
the Boltzmann equation, using some assumed elastic
cross section and the theoretical inelastic cross sections
of Eq. (20). From the distribution function there can
be determined, again using Eq. (20), the expected drift
velocities and diffusion coeKcients which are the raw
data of the swarm experiments. Thus it is possible in
principle to make a detailed comparison of our theory
with the experimental results. In view of the previously
mentioned experimental and theoretical uncertainties
in the swarm experiments, and our present inaccurate
knowIedge of the elastic cross section 0& and quadrupole
moment" Q, such a comparison probably would be no
more than qualitatively significant. However, with
any reasonable assumptions concerning the errors in
the swarm experiments, and the values of o~ and Q,
it is unlikely that such a comparison would not bear
out an obvious inference from Fig. 2—namely that
rotational excitation becomes relatively unimportant
at energies above the vibrational threshold, and conse-
quently that vibrational excitation becomes important.
As explained in Sec. IV the approximations leading to
Eq. (20) are increasingly inaccurate in Ns as the inci-
dent energy increases above the vibrational threshold,
so that the foregoing inference may not stand up.
Nonetheless it appears worthwhile to re-examine the
theoretical predictions of only small energy loss by
vibrational excitation, ""particularly since the similar
theoretical estimates of the rotational loss appear to
have been too small.
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IV. VALIDITY OF APPROXIMATIONS

The following approximations employed in Sec. II
require discussion: (i) Born approximation; (ii) the
multipole expansion of V', Eq. (13); (iii) the neglect
of moments higher than quadrupole in obtaining Eq.
(20). Granting (i) and (ii), justi6cation of (iii) is not
difficult. Retaining the higher moments in Kq. (13)
we find, by the same procedure as was used to obtain
Eq. (19), that the difFerential cross section for transi-
tions from rotational level J, to Jq is

(ka )st& 4Q 2—
kg..a(np) =—(2ap') (2Js+1)Q
k [1 3. (2rt —1)72(2st+1)

X d~P~. (z)P»(.)P.(~),

where the sum is over even e only, of course, and we
have 'introduced

C„=Q„cap", (29)

i.e., Q„ is the rtth electric moment of the molecule, in
units of cap". In these units, for N2 or any likely homo-
nuclear diatomic molecule, Q„ is a number at most of
order unity, and probably decreases rapidly with
increasing N. The maximum magnitude of lt is k +kp,
attained when n is antiparallel to np. As ky is always
nearly equal to k„we estimate that for 0.6-ev electrons
incident, at which energy in N2 our computed rotational
losses become about equal to elastic (Fig. 2), the
maximum value of kap in Eq. (28) is 0.42. Since the
series in Eq. (28) is an expansion in powers of (kap),

22 A. M. Cravath, Phys. Rev. 36, 248 (1930).

Laboratory cross modulation experiments provide
further data. When the average electron energy e, is
very nearly equal to the mean kinetic energy ~p of the
molecules, the rate of loss of energy per electron usually
is taken to be

(dW/dt) =Gv(e ep—), (27)

where v is the collision frequency and G a numerical
factor. For a Maxwellian distribution of electrons,
making elastic collisions only, sr G=8stt/335. Goldsteins
finds Gv= 6.4X j.0' sec '. In the cross-modulation
experiment the electron distribution presumably is
Maxwellian, at a temperature nearly equal to the gas
temperature. Averaging Eq. (23) over a Maxwellian
distribution, and dividing by (e,—ep), we can compute
the theoretical value of Gv implied by our rotational
excitation cross sections. We find Go= I3&(10' sec ',
independent of at [which does not appear in Eq. (23)7,
for an electron temperature of 290'K, equal to the gas
temperature. Using o-~——4.8mup', Goldstein's value of
Gv corresponds to G=51(2sl/3II), and our value to
G= 100(2srt/3II). These results again demonstrate that
rotational excitation can account for observed losses
much larger than elastic.

it is apparent that at the low energies in which we are
interested, the moments higher than quadrupole will
make a small or negligible contribution to the cross
sections Eq. (20).

In order to examine the validity of (i) and (ii), we
write the matrix element, Zq. (4), as the sum of two
amplitudes:

A,P(n, no) =At+As,

where the "near-field" amplitude is

A~ ———(est/22rk') Jt dr dr; exp[ —ikon r7pp (r;)
r&rp

XV(r, r;)%.(r,r;), (31)

and the "far-field" amplitude is

As= —(rrt/22rks) dr dr; exp[ ikprt—r7pop*(r;)J„,„, ~

X V(r,r;)4 (r,r;). (32)

The distance rp is so chosen that only a negligible
fraction of the molecular charge distribution lies outside
rp. In other words, the integral in AJ extends over the
interior of the molecule, and that in A2 over the exterior
of the molecule. A2, but not A&, can be correctly
evaluated using the multipole expansion.

We assume for the moment that A& is negligible in
Eq. (30), and that Born approximation is valid in
Zq. (32). We are thereby led to the cross section

kp j &(krp) '
a. p(n) =—(2ao')(2Js+1)g(kao)'" 'Q

(krp)" '

X dhPs. (x)Ps, (ec)P„(x). (33)
222+ 1

In deriving Eq. (28), (i) and (ii) were assumed valid
for all r, i.e., ro was assumed equal to zero in Eqs. (31)
and (32), which made At identically zero. Thus as rp

approaches zero in Eq. (33), that equation becomes
identical with Eq. (28). At p= 1 the functions j~&(p)/
p" ' appearing in Eq. (33) are only ten percent different
from their values' at p= 0. If krp does not exceed unity,
therefore, a &(n) of Eq. (33) will differ from , a(np) of
Eq. (28) by at most twenty percent. Also the quadru-
pole contribution in Kq. (33) will be as dominant as in
Eq. (28). We thereby have reduced the problem of
justifying Eq. (20) to demonstrating (a) krp(1; (b) (i)
is valid in Eq. (32); and (c) A ~ of Eq. (31) is negligible.

In N2, the internuclear distance in the ground vibra-
tional state" is 2.1ap. The atomic radius of nitrogen is"
close to 1.0up. Consequently, it is reasonable to assume
that in N2 the charge distribution is mainly conlned to

ss Tables of Spherical Bessel F2clctioms (Columbia University
Press, New York, 1947).

w D. R. Hartree and W. Hartree, Proc Roy. Soc. (L.ondon)
A193, 299 (1948).
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the interior of a sphere of radius r0=2.1ao, centered at
the origin midway between the two nuclei. Thus in N2,
for 0.6-ev electrons incident, the maximum value of kro
is 0.88. Moreover since k& is nearly equal to k„and the
differential cross sections leading to Eq. (20) are
spherically symmetric, a mean value of k=

~
k&n —k ns~

is 42k„which makes krs =0.62 in Ns, for 0.6-ev electrons
incident. We infer that in N2, for incident electron
energies (0.6 ev, condition (a), krs(1, is satisfied,
and in fact so well that the differences between cross
sections computed from Eqs. (20) and (33) are not
significant, especially at the lower incident electron
energies.

It is more difFicult to demonstrate condition (b). An
indication of the order of magnitude of the distance r~

beyond which the distortion of the incident wave
function is small is provided by the criterion:

Qe'ass/ris = k'k '/2m, (34)

which makes r~ the distance at which the incident
electron energy equals its interaction energy with the
molecule. This estimate of r~ is based on the conven-
tional view that Born approximation is valid when the
interaction energy is small compared to the kinetic
energy, as is the case at distances r) rt. From Eq. (34)
we obtain, with k=42k„

kri ——V2(2Qk. ap) 1. (35)

Equation (35) makes krt just about equal to unity for
0.6-ev electrons in N2. As the incident energy decreases,
kr~ approaches zero, though r& increases and becomes
infinite at zero incident energy. We have already seen,
from comparison of Eqs. (20), (28), and (33), that the
principal contribution to the scattering amplitude of
Eq. (9), or to As of Eq. (32), comes from distances r
such that kr) 1. Equation (35) suggests therefore that
for N2, with incident electron energies &0.6 ev, Born
approximation is valid, increasingly so as the incident
energy is decreased, since at these low energies the
principal contribution to Eq. (32) appears to arise from
distances r at which the wave function is only slightly
distorted from its incident form.

The criterion Eq. (34) is not theoretically sound
because at any distance r the distortion of the wave
function from its incident form depends not merely on
the value of the interaction at that r, but also on the
values of the interaction at all other distances, in
particular at smaller distances, where the interaction is
larger. Moreover the distortion of the wave function
at small distances may be so great as to result in an
appreciable contribution to the scattering amplitude
from distances kr &1, even though these distances are
not significant in first Born approximation. We have
further examined this question by evaluating the second
Born approximation to the scattering amplitude for a
pure quadrupole interaction, i.e., in Eq. (13) V'
= —eCsr &s(r,s) for all r. The difference between the

first and second Born approximations is a first estimate
of the error made in Eq. (4) by neglecting the distortion
from y, (x;) exp(ik, ns r) of O', . Details of the calcu-
lation (which involves some approximations) are given
elsewhere, "and it is found that

A, s&'& (1+0.15Qk,as) A,s&", (36)

where A t,
&" and A,&&" are respectively the first and

second Born approximations to A of Eq. (4), using a
pure quadrupole interaction. From Eq. (36), A, b& /
A,&&') approaches unity as k,—+0, and in N2, for 0.6-ev
electrons, equals 1.03. Thus we conclude that our
qualitative argument based on Eqs. (34) and (35) did
not lead us astray; that in computing the "far-field"
amplitude As of Eq. (32) (first) Born approximation is
increasingly valid as the incident energy decreases;
and that in N2, for incident electron energies &0.6 ev,
the error in first Born approximation to A2 probably is
not appreciable, although since the factor in Eq. (36)
is admittedly approximate, an error of 10 percent or
more in ~As~' cannot be ruled out at energies close to
0.6 ev.

To complete the justification of Eq. (20) we must
demonstrate (c) Ai of Eq. (31) is negligible. This we
do by evaluating A& in Born approximation, although
we recognize that in the region r&ro Born approxi-
mation is not valid. In default of a better way to
estimate A ~, however, we trust that Born approximation
does give a measure of the magnitude of A~. It turns
out, as we shall show, that in Born approximation, for
incident electron energies (0.6 ev in N2, A~ is small,
though perhaps not negligibly so at 0.6 ev. We con-
clude therefore, that our theoretical estimates of the
energy losses in N&, especially at energies below the
vibrational threshold, probably would not be signifi-
cantly altered by including in A,&(n,np) of Eq. (32),
along with A2, the correct "near-field" amplitude A~
somehow arduously computed from Eq. (31).

Our conclusion that A~ is small is supported and
made understandable by the argument of Sec. I, indi-
cating that for a short-range interaction, because the
electron cannot both go in and come out as an s-wave,
the cross section for rotational excitation by slow
electrons is small. To elaborate somewhat, at distances
r(ro the multipole expansion is not legitimate. How-
ever, the effective interaction always can be expanded
in spherical harmonics. In Born approximation, for all r,

V'(r, o,C) = —eQ„ f (r)P„(r,s), (37)

where V' is defined by Eqs. (10) and (11), the sum is
over even I only, and f„(r)=C„r " ' for large r As.
we have seen, at the low energies of interest, even
when the multipole expansion is assumed valid all the
way to r =0, which makes f„(r) highly divergent at the
origin, the contribution to the inelastic amplitude A,~

from distances r(ro is small. Thus we expect A~ to be

S. Stein, thesis, University of Pittsburgh, 1955 (unpublished).



with

10

= —(2m/k'))I' drrsj p(kr) U(r) (41)

In N~ at low energies, recalling that rp is the internuclear
distance in the ground vibrational state, the leading
term in Eq. (40) is, since Jb ——J +2,

10 15 20 25
r/a o

»G- 4. «tio of P2 terms used in computing the near-far-field
amplitudes. 7= efp/(Qappe'/r')

A t———10f,(8)jp(-,'krp)
~

dOYz, ~ (s)

X Yzp~pp(s)Pp(k, s). (42)

The inelastic amplitude A 2 for this transition, from
J, M, to Jp, Mb is, as can be verified from Eq. (18)

At= —(m/2prks) drdse'"'
I Sp(s) I

'

X Yz.~ (s) Yzp~'*(s) V"(r,s), (38)

where V" is identical with V" of Eq. (11) but is now

specifically assumed to have the form

V"(r,s) = U(lr ——:sI)+« lr+-:s I)

Then, following Morse,

(39)

At=2f. (0) "dslsp(s)IPY~ Pr'(s)

X YJp~'*(s) cos(s'k. s), (40)

small for small krp ' still A y may not be negligible as hap

nears unity if there is a region r &rp in which the terms

f (r) are appreciably larger than their corresponding
asymptotic forms C„r " '. Of course the contribution
to A & from the spherically symmetric term e=0 in
Eq. (37) has not been assessed by extending the
multipole expansion to r=0, since the molecule has no
monopole moment. But a spherically symmetric inter-
action cannot of itself cause a rotational transition.
Consequently the short-range term fp(r) has to cause
rotational transitions not only through incident and
outgoing waves which, with decreasing"incident energy,
have a vanishingly small probability of being found at
r &rp, but also only in higher approximation, through
waves which have already been scattered by the long-
range non-spherically symmetric part of the interaction.

An estimate of the magnitude of A ~ is obtained on
the assumption that the charge distribution is composed
of two spherically symmetric parts, each centered about
a nucleus. Such a charge distribution has vanishing
multipole moments of all orders, so that A 2 is zero in
Eq. (32), and A& becomes precisely the total inelastic
amplitude A & computed, in Born approximation, by
Morse. ' We have, extending now rp to pp in Eq. (31),

A, = —-'pQgp dM'.J. .(s) Yzp *(s)Pp(k,s). (43)

Thus, for small k,

A '/A p
=f (44)

with @=1.95. We find fo(8)=3 5ap, so th. at from Eq.
(44), with k=v2k. ,

A r ——8 (k,gp)'A p. (46)

At 0.6 ev, Eq. (46) yields A&/Ap ——0.35 which, though
small, is not negligible. Because it is proportional to
k,s, Ar/Ap does become negligible at lower energies,
below the vibrational threshold.

The approximations leading to Eq. (42) are such
that A & therein depends only on the coefficient of
Pp(r, s) in the expansion of V"(r,s), Eq. (39). The
coefficient efp(r) of Eq. (37) can be computed for the
potential U(r) resulting from the charge distribution of
Eq. (45), by fixing the nuclei at 'ps =&1.05ap, and
making use of the expansion" in Legendre polynomials
of exP( —2ylr —~ps I)/Ir —xps I. In Fig. @we Plot the ratio
p for

¹
of the thereby determined efp(r) to Qe'assr '

It is seen that efp(r) greatly exceeds the pure quadru-
pole interaction in an extended region about r= re/2.
This makes reasonable the fact that At/Ap turns out
to be non-negligible at energies near 0.6 ev, where
krp =0.62.

~' W. E. Duncanson and C. A. Coulson, Proc. Roy. Soc. Edin-
burgh A62, 37 (1944).IG. ¹ Watson, Treatise on the Theory of Bessel Puncti ons
{Cambridge University Press, London, 1952), pp. 80 and 366.

In nitrogen, if we use the parameters of Duncanson
and Coulson, s' the effective charge density p(r) con-
tributing in the low-energy limit to f (8) of Eq. (41)
arises almost entirely from the 2s and 2p electrons, and
is very closely represented, in atomic units, by

5 p,
'

p (r) ape ppr—
3
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It also is possible to estimate A1 as does Morse' in a
semiempirical fashion from the known elastic scattering
cross section o.

&, noting that in the same approximation
as :'Eq. (40) the elastic scattering amplitude is
2fo(0)js(sero) With crt 4——Ss.ras' we obtain f,(0) =0.55tts,
which, substituted in Eq. (44), implies A&/As is about
0.05 at 0.6 ev in N2. Hence this method of estimating
A & indicates it is in fact negligibly small even at 0.6 ev;
in any event it supports the view that Eq. (46) is not
a gross underestimate of Ai/As.

Finally, we mention some other "near-field" eGects
which, like A1, depend on details of the short-range
interaction and are decreasingly important as. the
incident energy approaches zero. These sects include:
(1) distortion of the wave function by a very large
efs(r)Ps(r, s) interaction, such as was inferred (Fig. 4)
from the parameters of Duncanson and Coulson, "
thereby possibly modifying the estimate from Eq. (36)
of the ratio of the second to erst Born approxima-
tion; (2) the contribution, appearing in second Born

approximation, which the short-range spherically sym-
metric fs(r) term of Eq. (37) makes to the inelastic
amplitude A &', (3) electron exchange, which plays no
role in the "far field, " where the incident and atomic
electron wave functions do.not overlap. To sum it up,
our approximations are of such a character that for any
homonuclear gas, not merely N2, the cross sections of
Eq. (20) are increasingly reliable as the incident
electron energy decreases to zero, because with di-
minishing energy the long-range tail of the interaction
becomes increasingly important.
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The line width of the TP'3 and Tl~' nuclear magnetic resonance
in thallium and thallium oxide greatly exceeds the dipolar width,
and is a function of the abundance of the other isotope. The re-
sults can be interpreted in terms of an exchange interaction A II I~
between a pair of nuclear spins which exceeds th'e normal dipolar
interaction. The exchange between different isotopes leads to
broadening. Exchange between like nuclei should lead to narrow-
ing, but it was found that samples containing 98.7 percent Tl~'
still exhibit lines broader than the dipolar interaction. Two causes
are shown to exist: anisotropy of the chemical shift and pseudo-
dipolar exchange interaction. Analysis with the method of the
moments gives for the exchange interaction constant Ah '=17.5
kcjsec with a 30 percent anisotropic pseudo-dipolar character in
the hexagonal metal, and Ah '=12 kc/sec with less than 10

percent pseudo-dipolar character in thallic oxide. The oxide has
a chemical shift of +0.55 percent with an anisotropy of 34 percent
of this amount. The metal exhibits a shift of 1.56 percent with 16
percent anisotropy.

Ramsey's theory of the nuclear spin exchange via excited
electron states in molecules, is extended to solids. Most heavy
isotopes in metals and insulators should exhibit exchange effects.
From the anisotropy of the exchange, information about the
relative amount of p or d character of the electron wave function
in the solid can be obtained.

It is predicted that thallic oxide has a nuclear Curie point at
3.5X10 ' 'K. Whether it will become nuclear ferromagnetic or
antiferromagnetic depends on details of the electronic band
structure.

I. INTRODUCTION

"~N an earlier paper' an anomalous behavior of the
~ ~ TP" and Tl"' magnetic resonance lines in metallic
thallium had been noted, but no satisfactory explana-
tion was given at that time. It was found that the
width of the Tl"' resonance was about 10 times as
large as could be expected from 'the dipolar broadening,
but even more anomalous was the fact that the TP

~This research was supported by the Once of Naval Re-
search.

t Present address: Metals Research Laboratories, Electro-
Metallurgical Company, Box 580, Niagara Falls, New York.

~ N. Bloembergen and T.J. Rowland, Acta Metallurgica 1, 731
(1953)1

resonance was again much broader than the TP"
resonance. The two isotopes both have a spin I=-,', and
the magnetic moment of TP" is only one percent smaller
than that of TP'. Quadrupolar effects are thus excluded.
The only reason why the two isotopes could behave

differently seemed to be contained in the fact that they
occur in unequal abundance. Natural thallium contains
29.5 percent TP'3 and 70.5 percent Tl"'. Consequently
a TP" nucleus has fewer identical neighbors than a
TP" nucleus. The dipolar width of the Tl'" resonance
should therefore be smaller than that of TP". An
exchange interaction of the type Aisl& Is between the
n.iiqlear spins would act in the opposite direction.


