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A theory for the paramagnetic effect is developed under the assumption that the ratio of the effective
length to the effective diameter l/a of the superconducting particles in the transition region is constant.
While experiment shows that the relative apparent permeability Z is a function of y= pp(1 I,/I),—where
go=Hop/H p, Hop is the circular and H, p the longitudinal component of the Geld at the surface, Io is a
limiting current, and I the total current through the sample, this theory gives the permeability as a function
of q0 only. Good agreement with the experimental range of E, however, is obtained when the theoretical
value of qo is replaced by p. The experiments of the author et al. on solid and hollow mercury cylinders
and recent experiments of Thompson and Squire on a solid tin cylinder are discussed. A reason why the
theoretical value of qo has to be replaced by p cannot be given at this time, although it is indicated where
the present theory has to be amended.

I. INTRODUCTION

HEN a large direct current is passed longitudi-
nally through a long cylindrical superconductor

in the presence of a weak longitudinal magnetic Geld
while the temperature is lowered through the transition
region, Steiner' found that the longitudinal Qux inside
the cylinder may exceed that in the normal-conducting
state. This Qux increase occurs only if the current
exceeds a certain minimum value.

It was proven2 that this "paramagnetic eBect" is due
to a helical path of the current through the super-
conductor. Recently Teasdale and Rorschach' and
Thompson and Squire4 conGrmed the existence of the
paramagnetic eGect. The following points were con-
sidered in II to develop a working model of the super-
conductor in this particular state: The temperature
dependence of the resistance is in qualitative agreement
with the calculations of London' on the transition of a
cylindrical superconductor in which a current is Qowing

(compare Fig. 3 in II and Fig. 41 in reference 5). At
the point of maximum flux (and we are so far only
interested in this point of the flux ss temperature curve)
the total magnetic Geld at the surface of the super-
conductor is equal to the critical Geld B,. According
to London's theory the superconductor consists of
superconducting particles embedded in normal-con-
ducting material. If only the current is present, then
the magnetic Geld has only a circular component
II„=B, and the shape of the superconducting particles
could be the one suggested by Shoenberg (see reference

5, page 120, Fig. 40). If a longitudinal magnetic field

is now superimposed, B, inside the superconductor will

be larger than zero and the superconducting particles
will have the shape of "propellers" or of grains oriented
along a helix.

In both cases a helical path oGers less resistance to
the current than a straight one. The current will Qow

along a helix and will produce an additional longi-
tudinal Qux inside the superconductor.

Defining an apparent relative permeability (denoted
by tt in II):

R mIJ, OH, O

[A=radius of superconductor, B,(r) =s-component of
the macroscopic magnetic induction, H, o= external
magnetic field, tip

——permeability of vacuumj, it was
shown that the current necessary to reach X =1, i.e.,
the value of the normal conductor, is given by:

Ig„=1)=Io+y2rrEH. p,

where the observed values of I, and y are listed in
Table I.Solving Eq. (2) foryandnoting thatI=2srRH„p
(we use the rationalized mks-system), we find

Hop( I
H„« I) (2')

TABLE I. Observed values of the characteristics constants I, and
and y for various superconductors.

We consider y now as a variable, which has the values
listed in Table I at X = 1. In Fig. 1(a), measurements
of X for mercury are plotted as a function of j (com-
pare II Fig. 4, where X is plotted as a function of I).

* Supported by a grant of the National Science Foundation.
' K. Steiner and H. Schoeneck, Physik. Z. 38, 887 (1937). K.

Steiner, Z. Naturforsch. 4a, 271 (1949).
'Meissner, Schmeissner, and Meissner, Z. Physik 130, 521

(1951); 130, 529 (1951); 132, 529 (1952) referred to in the text
as I, II, and III; Phys. Rev. 90, 709 (1953).' T. S. Teasdale and H. E. Rorschach, Jr., Phys. Rev. 90, 709
(1953).

4 J. C. Thompson and C. F. Squire, Phys. Rev. 96, 28'7 (1954).
'F. London, Stsperftgpds (Wiley fk Sons, New York, 1950),
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3.4
3.6
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0.6
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0.6
1.7
0.6

& y is given for R in m, H&0 in amp/m.

Factor
v

0.67
0.67
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0.37
0.37
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In Fig. 1(b), measurements for tin are plotted in the
same fashion (compare Fig. 4 of reference 3, where
&—ppH. p is plotted as function of I). Higher values of

y correspond to higher currents. The plots show that
there is no obvious dependence of the curves either on
the diameter of the sample or on the external magnetic
Geld, although the curves for mercury scatter very
much. We conclude therefore that X depemEs only on y:

&-= &-(v) =&-E'p(& —I./I)), (3)

where yp EI„p/H, p. The experim——ental scattering range
of y apparently increases with X and is very small for
E =1.

It will be shown in the following section that by
simple additions to the London theory of the current-
carrying superconductor we can obtain a paramagnetic
eRect. In this theory, however, X depends on q o only:

&-=&-(so) (4)

Furthermore it will be shown that, although Eq. (4)
differs from Eq. (3), we get the right scattering range
if we simply replace p by po.

II. THEORY OF THE PARAMAGNETIC EFFECT
IN SOLID CYLINDERS

(b)

Fzo. 1. (a) Relative permeability E ns ' for difFerent solid
mercury cylinders and different values of the external 6eld. Note
that some of the curves coincide, so that 6 of the 11 measured
curves are very close together. All curves are recalculated from
the original measurements. (b) Relative permeability E ss '
for a solid tin cylinder (from measurements of Thompson and
Squire).

superconducting grains (or the cross sections of the
superconducting "propellers") will give a pattern indi-
cated in Fig. 2. We choose the Z-axis parallel to the
original one and the F-axis parallel to the former
q direction. The spacing between the superconducting
particles will be rather uniform, so that the local value
of the magnetic Geld is always h=B,. The direction of
the particles is determined by the magnetic Geld since
the force of the electric Geld is too small to move the
boundaries appreciably.

We delne the macroscopic magnetic induction B in
the following way: We choose a plane whose normal
vector f is parallel to B, so that

PEr= erdf,

or, since e~ is fairly constant,

Et= buzzer. (6)

If we apply an electric Geld E„in the p direction, then

gE„= e„dg,

and, by the same reasoning as above,

E„=pre„, with Pz ——/d( +td), (7)

where t/d is the ratio of the length of the particles to
the spacing between particles.

B.f=pp) h df.

Since ~h~ =B„this gives approximately

B=ppgzzH, with Ezz=d/(a+d), (5)

where a/d is the ratio of the thickness of the particles
to the spacing between the particles. H has the magni-
tude B, and the direction of the mean value of the
local 6eld h. Since H has both components P, and H„,
the vector B will make an angle n with the y-axis.

We choose now a set of axes g, f such that g is
parallel to B and f is perpendicular to B.

If we apply an electric 6eld Er in the f direction,
calling e~ the local value of the electric Geld, we Gnd
for the mean value:

W ch~~~e a layer b twe'n r and r+dr in our Fzo 2. Layer of superconducting particles (shaded) oriented in
superconductor and stretch it out to a plane. The thedirectionof themagneticinduction B.
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For an electric field in any other direction, we suppose The Maxwell equation curlH= J then becomes
that we can use with fair accuracy the ordinary transfor-
mation scheme; this means that we suppose the super- 1 8(rH„)
position principle to hold for the macroscopic fields Bf'
E, and E~. We get then for instance:

(15)

E,=E„sinn+Et cosa. , E„=E„cosu Er si—nn.

The current density J is given by

Jg= 0 8y, J~= 0' 8~,

From Eqs. (14) and (15), we obtain

H,J„/H„+H /r= Jz ~

Using Eq. (12) and solving for 8, we find

8=p pH, a~,r/H„. (16)
where o-„ is the value of the conductivity for the
normal-conducting material.

Since E„=E„=Owe find then for the current density,
using Eq. (6) and (7):

At the surface of the superconductor, r=E, the induc-
tion 8 has the value 8=p,oH, and B„=H„o. Thus

R= H„p/a „E.

8=y pH, rH„p/RH„'.

(17)
andJo= (a'i —aii) Sinn CosKEz,

J,= (ai sin'o. +aii cos'n)E„
For H, p

——0 we have &„p=H, and the equations revert

(9) to London's corresponding equations.
The mean relative permeability X is now given by

where
I p

0 II &n II

are the principal values of the macroscopic anisotropic
conductivity. If the angle n is zero, the equations reduce
to London's equations (reference 5).

It follows from Eq. (5) that )ii=8/ppH =d/(e+d),
which,

P "H. B~p r
X =,~

= —2mrdr.
~&'~o &.o &, ~

(19)

dH„(H, H, py t H, '~

dr Er R) E H,'i
(20)

where C=l/a —1 may be still a function of the radius.
Noting that

where C=E/a —1 may be a function of r. Similarly,
(11) we obtainsine= H, /H„cosn= H„/H„

together with Eq. (7) and (9), gives In order to obtain the dependence of H on r, we
have to solve Eq. (15) with the aid of Eqs. (12), (14),

t'& ) f 8 ) f 8 ) (17), and (18). We obtain
(10)

4g ) ( tioH. ~ & tjoH. ~

we lnd, using Eq. (10), that

tspHz ( 8 ) HoHz
J„= i1—

i
aE„

8 ( tioH. ~ H.'

ppH, ( 8 )HP
C~1—

8 ~ ppH) H,'

t (H~—H')» H„oq H. (Ho Ho)»—
H:

(21)

Since the superconducting particles have always the
(12) same field H, around them, we will vow assume that C

is corostartt, indeperodeut of r.
Then as r—+0 Eq. (20) becomes:

For H, =O these equations reduce again to the appro-
priate equations given by London.

We now return to cylindrical coordinates:

1 8(rH, )
curl, H =—,curl, H =0, curl„H =—

r Br

BB,
(13)

We note that H is not a function of s and that H„=O.
The expression for curlH then reduces to

t dH„) t H„(0)q
hm] ~

"
)=CH„(0)~ 1— "

-oE dr) ( H,o )
It can be shown that this equation has only the follow-
ing, physically signi6cant, solutions: Either H„(0)=0
or H„(0)=Hz.z We know from the calculations of F.
London that the latter solution holds for the case
H p =0. One concludes that even a small Geld H, p

changes the pattern of the superconducting particles
entirely, so that now H„(0)=0 and H, (0)=H z.z

For numerical calculations we put Eqs. (20) and
(21) in a dimensionless form. With

We have further

Ho+Ho —Ho (14)

v = H~/H. o; x=H./H. o, p=r/R;
H./H. o= (1+o o')',

(22)
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Equations (20') and (21') cannot be solved in
analytical form. VVe have solved one of them by
numerical methods for C=10. The result is plotted in
Flg. 3.

It can be shown that

o =LC/(C —1)lo o (23)

is a good approximation for q. The approximation
improves as C increases, or more specifically, if

(1+0'o')/ po'»C'/(C —1)'

I-O
'

.8
0

24

2.2

s ~ l o s s S

.I .2 P .4 .5 .6 .7 4 .9 IA)

We will use Eq. (23) for the limiting case C= ~,
which will not diGer very much from the case C= 100.
From the curves in Fig. 3 we can now calculate the
local value of E

&m=pX~po/o.

The result is plotted in Fig. 4(a). It can be seen that
most of the Aux increase occurs near the center of the
sample. Integrating over r according to Eq. (19') gives

l.8

lo6

1.0

.6

C= IO

2.4

22
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1 8 s

16
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(a)

pro. 3. Circular (upper ligure) and longitudinal (lower 6gure)
component of the magnetic Geld vs radius for different values of
pp. Qp is the circular component of the Geld at the surface of the
sample. It is proportional to the total current. All curves for
C=10. Thin lines: y= yopC/(C —1).

we obtain:

Km
2.4

2.2 '

2.0 '

1.8 ~

16 '
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Sn

6.5
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Ep

go

(1+o o')'

(20')
l.4 '

12
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s ro

IO

1 ~—p+2~pdp.
m"o

XxL1—
y,'/(1+ o o') )1 (21')

(19')

E is a function of po only. This is exactly what we
have stated in Eq. (4).

Fro. 4. (a) Local values of the relative permeability It vs

radius for dilferent values of so. All curves for C=10. (b) Mean
values of the relative permeability E' . Broken curves: theoretical
values of E as function of qp for C=10 and C= ~. Solid line:
experimental values of E' as function of y for tin (from measure-
ments of Thompson and Squire). Horizontal lines: experimental
scattering range of E as function of p for mercury.
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the mean value of X . This is plotted as function of
yp in Fig. 4(b). (Broken curve C= 10.)

With Eq. (23) we can immediately derive an ana-
lytical expression for X (pp):

2 ( 1$P (1+pp ) t
&-=-papt 1—

I

3 ( C ] & happ'

1+yP ( 1

q (P &1—1/cJ

2.0

Q

E
Cx

FIG. 5. Cross section through
a hollow cylinder in which a
current Rows in the interme-
diate state. Superconducting
areas shaded.
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We used Eq. (24) in order to calculate the curve for
C= ~ and .the part below go=0.8 of the curve for
C= 10, where Eq. (23) is a good approximation.

We now replace ppp by p= pp(1 I,/I) a—nd indicate
according to Fig. 1(a) the scattering range of the
measurements on mercury by horizontal lines at X = 1,
X =1.5, and X =2. We see that this range lies
approximately between the curve for C=10 and the
curve for C= ~ although we would expect a much
larger scattering range for X = 1.. The scattering arises
apparently from a variation in C at diferent runs. The
solid curve represents the measurements of Thompson
and Squire on tin according to Fig. 1(b). Since they
had only one sample of very high purity, which did not
melt between di6erent runs as the mercury did, they
observed no scattering.

Summarizing the results on solid cylinders, we can
say that although we are unable to show that X
depends on p rather than only on po, the numerical
values of X which we expect for a certain current I
are rather good.

III. THEORY OF THE PARAMAGNETIC EFFECT
IN HOLLOW CYLINDERS

In III, measurements on hollow, current-carrying
cylinders in external fields were reported. However,
before we discuss the case of current and external 6eld,
let us 6rst see what we would expect if only the current
I, Qows through the sample.

As in London's theory for the solid cylinder, II„=Q, .
The question now arises as to how the field can be

l.O .2 .4 .6 .8
5

I.O

FIG. 6. Increase of the maximum circular Aux in the inter-
mediate state relative to the Rux in the normal-conducting state
ask unction of p, =R;/R, (theoretical).

equal to B, near the inner surface r=R;. Apparently,
the conical superconducting rings now spread out to a
thin layer as indicated in Fig. 5. The limiting current
which can pass through a thin layer is smaller than
that, which would be calculated from the value of II,
for the bulk material. In other words: For a thin,
current-carrying superconducting layer, II, is smaller
than for the bulk material. The thickness of this layer
will be of the order of 10 ' cm.

For the bulk of the material, 8=8„has the same
value as for the solid cylinder:

8„=p pII,r/R. (25)

Since we can neglect the thin layer, the maximum
circular flux per unit length is given by

4Z;
B„dr=p pII, (Rpe RP)/2Rp. (26)—

The 6eld distribution in the normal-conducting state is
given by

Rp ( RP~
II,„=II„p

t
r— '

t,
Rpe —RP& r ) (27)

and the Aux per unit length by

harp max

4y~

t(R P RP)P

Rp'L-', (Rp' —R') —R'ln (Rp/R;) J

Ep
Q„n=IJpIIr p p (Rp' —RP) —RP ln —. (28)

(Rp' —R') R;

Since the total current in the normal-conducting and in
the intermediate state is the same, it follows that
&,o=II'

We define now
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6.
x ++P"'

C=

r

We now And that the curves of the measurements
in the hole come very close together if we plot x(p, , ppp)

= H, (p;, ppp)/H, p as a function of ps= H„p/H p. This is
done in Fig. 7 (solid curves). There is a slight change
of the curves with H, p, indicating that the layer still
contributes somewhat to the field H, . From Eq. (14)
it follows that

X x (p '
ppp) ~ (1+ppp )* (3o)

0

P

which is generally observed by the measurements. One
case, where x is slightly above the curve x= (1+9p')1
(the dot-dashed curve) is probably due to a slightly
wrong scaling factor in the measurements of x. If
x= (1+ipps) 1, then the layer current is zero.

We can now obtain x(p, , ppp) for C=10 from our
curves in Fig. 3 (dots). If we assume Eq. (23) to hold
and choose C= po, then x(p;, ppp) is given by

FIG. 7. Field in the hole of hollow cylinders as function of the
circular field at the surface of the cylinder for p;=R;/R, =0.60,
Solid lines: experimental curves for mercury samples V and VI.
Dots: theoretical values for C=10. Dashed curve: theoretical
values for C= e&. Dot dashed curve: y = (1+pt)& that corresponds
to H. (p;, v p)=P..

or in dimensionless form with p, =R;/Rp..

(1—p,')'
K „=

(1—p')+p'» p'
(29)

It follows from Eq. (29) that the Qux in the intermediate
state is always greater than in the normal state:
2&~X „~&1.X „depends only on the ratio of the inner
to the outer diameter and is independent of the current.
In Fig. 6, we have plotted% „vs p;.

This eGect has been reported in the literature'
although the authors finally doubted its existence
(1939).

Superimposing an additional field II„further increases
the Qux, which Steiner' called the transverse para-
magnetic effect.

If we superimpose now an external 6eld H, p, we

again get the splitting up of the conical rings. Measure-
ments of the increase of the longitudinal Aux in the
hole and over the whole cross section have been re-
ported (III, Fig. 6). The two mercury samples had the
outer radii: sample V: E.=0.4375 cm, sample VI:
R,=0.810 cm. The ratio of the inner to the outer
radius was the same in both cases: p;=E,/E, =0.60.

We assume, now, that we have in the bulk material
the same distribution of current and 6eld as in a solid

cylinder and that we have a thin current layer at the
inner surface which brings the field B„up to the
necessary value.

The 6eld P, on both sides of this layer will be about
the same; i.e., it will have approximately the value
which it has at p= p; in a solid cylinder.

' K. Steiner, Physik. Z. 38, 880 (1937); Stark, Steiner, and
Schoeneck„Physik. Z. 38, 887 (1937);K. Steiner and H. Schoeneck,
Physik. Z. 40, 43 (1939).

x(p;, p o) =L1+p o'(1 —p') j'. (31)

This curve is also plotted in Fig. 7 (broken curve). We
see that the scattering which we expect on account of
a change in C is relatively small. The fact that the

. curves for higher II,p values are above the C= ~ curve
is, as already mentioned, probably due to a contribution
of the layer current to H, .

The asymptote of x(p;, ppp) in Eq. (31) is given by

xasympt= pp(1 pP)

which intersects the pp-axis at pp ——0. The asymptotes
of the measured curves seem to intersect the yp-axis at
qp ——0.2S. However, the measurements are not carried
far enough to tell whether this difference is real.

These measurements give one very significant indi-
cation: x is apparently u function of ppp rather thun of p.
This means our differential equations Eqs. (20) and
(21) are probably right and the change from Eq. (4)
to Eq. (3) arises out of a change in the expression for 8
Eq. (18).

The measurements of the Aux through the whole
cross section of hollow cylinders as functions of the
total current have little meaning. The more important
quantity is the Aux through the ring section. Further-
more we want to plot the Aux, or E, versus y rather
than versls I.

The first conversion is easy to make. We have:

Ep'X (whole sample) —E,sx (hole)
+m r1ng= (32)

Rp' —R

According to Eq. (2'), p is given by

v= p p(1 —I./I);
this means by

y= ppp (correction factor).

We easily 6nd pp from the known values of H„p and
H p. However, there is some ambiguity as to what
value we have to use for this correction factor. Without
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special reasoning we will use the following: I,=1.7
amp as for solid mercury cylinders; I=Ib &z, the bulk
current, that is the total current minus the layer
current. The layer current is given by

2~R——,H„(p;, q o),

where H„(p,, yo) is the value just inside the current
layer and may be calculated from

2.5

cD

L5

——-Theory C co

H~ .40Amp/cm i
/e~ ~ ~cap g) 6 N

'Mo '

V

—V

H„(p,, po) =H,o[1+yo' —g'(hole) j'*.

p is now entirely given by known parameters of the
measurements. In Fig. 8, the relative permeability for
the ring section is plotted vs y for the two mercury
samples V and VI and external Geld values of H,0=0.4
amp/cm and H, o 1.6 amp/——cm. As for the measure-
ments in the hole of the cylinder, there seems to be a
slight dependence on H, o, which may be attributed to
the layer current.

In the same way as we did for the solid cylinder, we
now identify our theoretical value po with p.

Integrating in Fig. 4(a) the local E (p) between
p=p, and p=1, we get X „„g(p;,qo) for C=10 (lower
broken curve in Fig. 8). For the limiting case C= ~,
we use Eq. (23) and find, in the same fashion as for the
solid cylinder, by integrating, this time from p=p, to
p= 1)

This curve also is plotted in Fig. 8 (upper broken
curve).

%e see that the curves for C=10 and C= ~ give
about the right scattering range for the measured
curves.

FIG. 8. Increase of the longitudinal flux in the ring section of
hollow cylinders. Theoretical curves as function of y0. Experi-
mental curves as function of y.

VI. CONCLUSIONS

Although we did not end up exactly with the experi-'
mental result, it seemed worth while to demonstrate
what an extension of the ordinary theory of the current-
carrying superconductor would give for the "para-
magnetic e8ect." In this extension essentially only one
new assumption was made: It was assumed that the
shape of the superconducting particles is independent
of the radius. This was made plausible by pointing out
that the local Geld around the particles is always the
critical' Geld.

It seems that essentially new concepts are necessary
in order to bring the theory into exact agreement with
the experiment. Only these new concepts will bring the
explanation of the "magic constants" I,.

The author wishes to thank the National, Science
Foundation for supporting this work by a grant.


