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cm—', this being the value of kp corresponding to a
Fermi energy of 4 ev. Because the dependence of R
on g is given roughly by R ~ q 4, the uncertainty in the
choice of q does lead to considerable uncertainty in R.
Comparison of the theoretical and empirical values of

q for sodium enables one to say that, for sodium at
least, our estimate of R is not in error by more than a
factor of 5.

By an approximate integration of (1) it is easily

shown that the positron energy falls from 4 ev to 1 ev
in about 3)&10 " sec, from 1 ev to 0.1 ev in about
2X10 " sec and from 0.1 ev to 0.025 ev in about
3&( 1,0 "sec. Since positrons are observed' to annihilate
in metals with a lifetime of about 10 " sec, most of
them must be thermalized before annihilation.

The incompatibility of the fundamental assumptions
of the time-dependent perturbation method found in
reference 5 does not occur in this calculation.
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It was shown experimentally by Rado and Weertman that under suitable conditions there is an observable
effect of exchange interactions on the ferromagnetic resonance in metals. The present paper provides an
electromagnetic theory of this "spin wave resonance" experiment and satisfactorily explains the exchange
shift as well as the width and shape of the absorption line. A combined solution is obtained of Maxwell's
equations and the equation of motion of the magnetization vector M, the latter equation including the
exchange term due to the nonuniform orientation of M in the skin depth. It is shown that the triple refraction
caused by the exchange effect necessitates the introduction of new boundary conditions. The Anal result,
which is checked numerically and by an approximate calculation, is an expression for the measurable
surface impedance and the "equivalent isotropic permeability" derived therefrom. This result is discussed
and generalized, the properties of thermal spin waves in metals are brieQy considered, and previous theories
of exchange effects in ferromagnetic resonance are shown to be inadequate.

I. INTRODUCTION
"'T was recently shown by Rado and Weertman''

(to be referred to as RW) that under suitable
conditions the e6ects of exchange interactions on the
ferromagnetic resonance of metals can be observed
experimentally. Such eGects had not been observed
previously but their physical basis has long been
known. In the skin depth of a ferromagnetic metal the
orientation of the magnetization vector M is not
uniform so that the effective exchange 6eld is not
parallel to M. Thus there exists an exchange torque
which is, in principle, capable of modifying the motion
of M and the nature of the ferromagnetic resonance.
Following RW, we refer occasionally to such a modified

ferromagnetic resonance as "spin wave resonance. "
The available theories of exchange eGects in ferro-

magnetic resonance are inadequate in two respects.
First, they do not predict satisfactorily under what
conditions such eGects might actually be observable,
so that RW had to choose their experimental conditions

largely on the basis of physical considerations. Second,
these theories do not provide a reliable quantitative
description of the exchange eGects, so that their use

' G. T. Rado and J. R. Weertman, Phys. Rev. 94, 1386 (1954);
the symbol p,' appearing in the next to last paragraph of this
reference is a misprint and should read p2.

s G. T. Rado and J. R. Weertman (to be published).

o8ers at most a qualitative guidance in the interpre-
tation of the RW experiments.

The present work, which we reported brieQy at an
earlier date, ' is an attempt to eliminate the theoretical
inadequacies mentioned above by giving a consistent
description of spin wave resonance on the basis of
electromagnetic theory. Such a description should make
it possible to account for the position, width, and shape
of the resonance line, as well as to evaluate the im-
portant exchange factor A and the spectroscopic
splitting factor g from the experimental results.

Basically, the electromagnetic problem treated in the
present paper involves a combined solution of the
equation of motion of M (the so-called "spin wave
equation") and Maxwell's equations, the solution being
required to satisfy two sets of boundary conditions.
The first set represents the usual continuity conditions
on the tangential components of E and H, and the
second set represents some new conditions that are
imposed by the (semi-classically described) exchange
effect on certain derivatives of M. Specifically, we
consider a ferromagnetic metal, possessing a conduc-
tivity 0- and a saturation magnetization M„which is
exposed to a saturating static magnetic Geld of magni-
tude H, and to a microwave field of circular frequency
co. The measurable quantity we calculate is the surface

' W. S. Ament and G. T. Rado, Phys. Rev. 94, 1411 (1954).
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impedance Z, but we Gnd it convenient to introduce
another measurable quantity, called the "equivalent
isotropic permeability" p,,q, and to express Z in terms
of p,„.Our Gnal result, which can often be approxi-
mated by our Eq. (31), is a theoretical expression for
p,,q„ in terms of the known parameters co, 0-, M„and
B„and the unknown parameters A, g, and X. The
relaxation frequency 3, which is a measure of whatever
damping mechanism of unknown origin may exist, has
been included in our calculation in order to permit a
theoretical comparison of the effects of exchange and
relaxation on the observed resonance line. However,
in the experiments of RW the relaxation effects prove
to be negligibly small, so that in their case there are
only two unknown parameters, A and g.

In Sec. II we formulate the problem and carry the
solution of the diBerential equations sufBciently far to
obtain a secular equation for the propagation constant
k in the metal. Since the existence of the exchange
torque causes this equation to be cubic rather than
linear in k', the calculation of the amplitudes of the
newly introduced waves, and hence of the value of Z,
requires the additional boundary conditions mentioned
above and formulated in Sec. III. Using both sets of
boundary conditions and an algebraic "bialternant
method" which circumvents the necessity of actually
solving the secular equation, we then proceed, in Sec,
IV, to calculate Z and to derive our explicit but approxi-
mate analytical formula for peq In Sec. V, we discuss
certain limiting cases of our final result, and brieRy
consider the method of curve matching used for ex-
tracting A and g from the experimental p,q, . We do
not compare our formula in detail with the measured
p„„since such a comparison is given by RW, but we
do compare our formula with the results of a rather
accurate numerical calculation which we performed on
a digital computer. Next, we brieRy discuss various
generalizations of the result of Sec. IV, including the
effect of a curved rather than plane ferromagnetic
sample, the case of oblique rather than normal incidence
of the microwaves on the sample, and the effect of
changing the type of damping term used in the equation
of motion. In Sec. VI, we give a critical discussion of
the theoretical work of other authors and show that it
resulted in some incorrect conclusions.

Since in Sec. IV we omitted the lengthy algebraic
details of our general solution, we give in Appendix A
an outline of a simple alternative solution of the
problem. This method is valid unless the value of H, is
in the immediate vicinity of a certain specified value.
The result of this alternative solution verifies our
approximate formula and provides additional physical
insight into the problem. Finally, in Appendix 8, we
derive the dispersion law for thermal spin waves from
our general secular equation, and show that the usual
dispersion law is not modi6ed in any essential way
even though Maxwell's equations and the metallic

conductivity have been taken into account. We then
suggest that in microwave resonance work at not too
high temperatures the concept of a magnetization
vector is indeed justified even if exchange effects are
important, as in the experiments of RW.

IL DIFFERENTIAL EQUATIONS

In the interior of a saturated ferromagnetic metal
the propagation ~of microwaves is determined by
Maxwell's equations and the equation of motion of M.
Putting B=H+4n.M, and using Gaussian units, we
write Maxwell's equations in the form

VX E= —(1/c) 8(H+4m M)/Bt,

VXH=(4 o/c)E,

(1a)

(1b)

because the high values of o. obtaining in metals permit
us to neglect the displacement current compared to the
conduction current at microwave frequencies. The
equation of motion of M, sometimes known as the spin
wave equation, can be written in the form

(1/y) BM/Bt =M X[8+(2A/M ') V'M
—(&/yM. ')M XHj, (2)

where y is given by ge/2mc, and the other quantities
have been introduced in Sec. I. The quantity of the
brackets of Eq. (2) is an effective magnetic field and
contains the following contributions. The first term,
H, is the actual magnetic field and includes all de-
magnetizing fields; this term, as well as the effect of
anisotropy, will be discussed later in this Section. The
second term, which is proportional to the exchange
factor (or "exchange stiffness constant") A, is the
effective exchange field due to the nonuniformity in
the orientation of M. The third term, which is propor-
tional to the relaxation frequency X, is an effective
field that represents phenomenologically the inRuence
of any unknown damping mechanism. It may be noted
that the H occurring in this particular term ought to be
replaced by LH+ (2A/M, ')V'Mj because the damping
describes the approach of M to the total Geld. However,
this correction is easily shown to be a second order
effect in most cases so that we shall use the simpler
expression given in Eq. (2).

Equation (2) was first obtained, in a slightly different
form, by Landau and Lifshitz4 and used for the study
of domain wall motion. Neither their paper nor the
more recent work explains the physical origin of the
X term, and it is not clear whether even the form of this
term correctly represents all the observed relaxation
phenomena. As mentioned in Sec. I, we include this
term primarily to permit comparisons with the exchange
term, and we postpone to Sec. V a discussion of the
effect of an alternative (Bloch type) damping term.
Concerning the nature of the exchange term, however,

L. Landau and Z. Lifshitz, Physik. Z. Sovrjetunion 8, 253
(1935).
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the situation is more satisfactory. Various authors'
derived this term from the atomic model of a ferro-
magnet, expressing A in terms of the Weiss molecular
Geld coefficient or the Bloch 1 -law coefficient, and
Herring' estimated A on the basis of the energy band
model of ferromagnetism. Since all the theoretical
treatments of the A-term involve several uncertainties,
it is well to realize that the form of this term follows
from symmetry considerations and that the magnitude
of A can be obtained from suitable experiments. It is
for this latter purpose, of course, that the spin wave
resonance experiment of R% and the present electro-
magnetic calculation were undertaken.

Returning to Eqs. (1) and (2), we now solve them
for the case of a ferromagnetic metal in the form of a
plane sample parallel to the xs plane, the air-metal
boundary being at y=0. The static magnetic field II,
is taken to be along the s axis, because for reasons
discussed by RK the case of a static field normal to the
plane of the sample is not well suited for detecting
exchange effects. The applied microwaves are assumed
to be plane waves normally incident upon the xg plane,
the tangential component of their magnetic vector
being along the x axis. Some generalizations of this
physical situation will be discussed in Sec. V.

%e now decompose the fields into a static component
and a microwave component, so that

M= M, i,+m,
H=H, i,+h,
K=e,

(3a)

(3b)

(3c)

where i, is a unit vector along the s axis, and the
. microwave components m, h, and e are understood to
be proportional to exp(iaido —ky) in the metal. We
further assume that )m~/M, and ~h~/H, are small

compared to unity. As to demagnetizing effects, a static
demagnetizing correction due to the shape of the
sample is assumed to have been applied so that B, is
the static field inside the sample. Dynamic demagnet-
izing corrections, on the other hand, must not be
applied explicitly because they will emerge from the
solution given below. It should also be noted that in
certain simple cases the effect of anisotropy can easily
be taken into account, as is well known. ' For a single
crystal with a direction of easy magnetization along
the s axis, for example, one simply adds to H, the value
2)E ~/Mi„r4o(Ei j/3M„depending on whether the
first order anisotropy constant E~ is positive or nega-
tive. In the erst experiments of RW, of course, this
problem does not arise because in their case E~ is

approximately zero.

' For a recent treatment and references to earlier work see C.
Kittel, Revs. Modern Phys. 21, 541 (1949); C. Herring and C.
Kittel, Phys. Rev. 81, 869 (1951).

6 C. Herring, Phys. Rev. 85, 1003 (1952); 87, 60 (1952). See
also the comments by E.P. Wohlfarth, Proc. Phys. Soc. (London)
A65, 1053 (1952).

L1+ (i5'k'/2) $h,+4+m. = 0,

h„+4s.m„= 0,

L1+ (i5sk'/2)]h, y4~m, =0,

(5a)

(Sb)

(Sc)

where h, h~, h„and m, m,., m„are the scalar compo-
nents of h and m, respectively, i„ is a unit vector along
the y direction, and

8= (c'/2s. (0o) ' (6)

is the classical skin depth for permeability unity.
Equation (Sb) is seen to express the Kittel' demagnet-
izing effect without the explicit introduction of a
demagnetizing factor.

Next we combine Eqs. (2) and (3), obtaining with
the same assumptions

(ioi/y) m= i,X{Mah —LH,—(2A k'/M, )jm}
—P,/yM, ) (H,m, , „M,h, „), (—7)

where h, „and m, , „are the vector components of h
and I, respectively, in the x, y plane. In component
form, Eq. (7) becomes

(in'/7) m, = M ,h„+ LH, (2—A k''/M, )gm„—
—P./yM, ) (H,m.—M,h.), (8a)

(i'/y)m„=M, h. $H, (22k'/—M, )fm—~

—() /yM. ) (H.m„—M,h„), (Sb)

m. =0. (Sc)

It is seen that Eqs. (5) and (8) have a solution for
which h =jg„=m=0, and h, AO. This wave is not
excited by the assumed incident field, and we shall
henceforth be concerned only with those waves for
which h, =0. If h„ is eliminated by means of Eq. (Sb),
then Eqs. (8a), (Sb), and (Sa) constitute a system of
three linear homogeneous equations for the unknowns

m„, m„and h, . Introducing the dimensionless pa-
rameters,

rj=H./(4s M,),
0=oi/(4rM, y),

I.=)/(M. y),
e2 g/(2s-M 252)

E=kgb,

(9a)

(9b)

(9c)

(9d)

(9e)

into these three equations, we obtain

(E'—1—rl) m„+ (iQ+Lrl)m —(L/4rr) h =0, (10a)
—(io+Lrt+L)m„+ (Es rl)m, + (1/4rr—)h =0, (10b)

Saic'm, + (E'——2ie') h, =0. (10c)
7 C. Kittel, Phys. Rev. 71, 270 (1947).

Eliminating e from Eqs. (1) in the usual way by:
taking the curl of Eq. (1b), we obtain with the use of
Eqs. (3) and the above mentioned assumptions

'

(i8'k'/2) h„i„—[1+(i5sk'/2) 5h =4s m, (4)

or in component form
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In order that Eqs. (10) possess a nonvanishing
solution, the determinant of the coeKcients must vanish.
This requirement leads to the secular equation

K' c,K4—+c,K' cp —0, ——

the amplitude of the single wave existing in the metal
can be calculated, as is well known, by using the
boundary conditions satisfied by the tangential compo-
nents of e and h. For the present case these conditions
are

where t."&, c2, c3 are given by

ci= 1+2g+2ip', (12a)

h, continuous at y= 0,

e, continuous at y=0.
(18)

(19)

cn g
——0'+—iQL+qL(2iQ+ L)

+n'(1+L')+4i" (I+a), (12b)

cp ——2ip'{ (1+g)'—0'+L(i+g) [2iQ+L(1+g)7). (12c)

Since the secular equation is cubic in E', there are
three propagation constants ki, kp, kp (obtained from
Ei, K2, Ep) whose real part is positive; the correspond-
ing three waves, propagating along i„, represent energy
Row into the metal. (The other three waves, propa-
gating along —i„, are of no physical interest because
the metal sample is assumed to be very thick compared
to the penetration depth of the microwaves, so that
there are no reflected waves inside the metal. ) For each
of the three waves (Ei,E2,Ep) the field components
can be expressed in terms of h, provided Eq. (11) is
solved. The resulting relations can be written in com-
pact form by affixing the subscript e (m=1, 2, 3) to
specify which of the three E-values is referred to.
Using any two of the Eqs. (10) [although Eqs. (10a)
and (10b) prove to be the most convenient), we thus
obtain

(13)

(14)

where N„and v„, being abbreviations for certain known
functions of the coefficients of Eqs. (10), evidently
depend on E„'.Similarly, Eq. (1b) leads to

e„,= (cE„/4m a pb) h„„
and Eqs. (Sb) and (14) give

III. BOUNDARY CONDITIONS

The observable electromagnetic properties of a metal
are fully determined by specifying, in the case of linear
polarization, the ratio of the tangential components of
e and h at the air-metal boundary. We call this ratio
the "surface impedance" Z, so that for our field con-
figuration

Z= (e,/h*), =p (17)

The Z defined by Eq. (17) is dimensionless and would
have to be multiplied by a factor having the dimensions
of (velocity) ', such as (4'/c), in order to have the
dimensions of an impedance. However, the simple
definition of Z given by Eq. (17) is adequate when
used consistently.

In the absence of exchange eGects the value of Z and

MXH. dy=0,

where the upper limit of integration is taken as infinity
since the sample is assumed to be much thicker than
the skin depth. Integrating by parts, we thus obtain

(2A/M ') [MXBm/By7P =0,

which leads (with ~m~&&M, ) to

(2A/MP)M, i,X (Bm/By) „p 0, ——

because (Bm/By)„evidentl=y vanishes. Since A is not
zero, and m is always perpendicular to i„we obtain
the new boundary conditions

(Bm /By) =0 at y=O,

(Bm„/By) =0 at y=O,

(20)

(21)

which we shall use for calculating Z.
It should be noted that in the arguments leading up

to Eqs. (20) and (21), we have omitted any explicit
consideration of the exchange field, at the air-metal
boundary. But at this boundary the exchange field is
not equal to the H, used above because at y=0 the
—y direction is not equivalent to the +y direction.
In fact, we find by extending the usual derivation' of the
eGective exchange 6eld that at the boundary

ex @~0

= (2A/MP ) [(f/a)(8m/By)+(82m/By )7„p, (22a)

In the presence of exchange effects, however, two
additional waves exist in the metal (see Sec. II), so
that the calculation of Z and of the amplitudes of the
three waves requires two new boundary conditions.
These new conditions, formulated below, are evidently
a consequence of exchange effects.

As discussed in connection with Eq. (2), the effective
exchange Geld is

H,x = (2A/M82) V'M = (2A/M, ') 8'm/By'

an expression which is usually derived' from the Dirac
cosine coupling between neighboring spins. Since this
coupling implies that the torque exerted by the zth spin
on the jth spin is equal and opposite to the torque
exerted by the jth spin on the ith spin, it follows that
the total exchange torque inside the specimen vanishes.
Consequently, the total exchange torque per unit area
of air-metal boundary is given by
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where f is a numerical factor of order unity that
depends on the lattice type, and c is the lattice spacing.
Thus the total exchange torque per unit area of air-
metal boundary is given by

(2A/3II. ') MX (f/a) (u/f') (&m/&y) -o

+ MX(ctsm/cly2)dy =0, (22b)
Jo

where f' is a numerical factor of order unity which is
defined in such a way that (a/f') is half the separation
between neighboring spins along the y direction. (For
a b.c.c. lattice f= f'=4 )W.bile Eq. (22b) evidently
leads to the same boundary conditions, Eqs. (20) and
(21), which we derived above, it should be noted that
the erst term in the brackets involves the assumption
that the exchange torque in a slab of area unity and
thickness (a/f') may be expressed in terms of the mean
exchange torque density in the slab. This assumption
is admittedly questionable, but we believe it to be
equivalent to the usual "continuum hypothesis" which
is implied whenever H,„ is described by a differential
expression. This continuum hypothesis asserts that the
point lattice of electron spins envisaged in Heisenberg' s
model of ferromagnetism may legitimately be replaced
by a continuum for the purpose of calculating H,„.As
long as the eGective skin depth is large compared to
the lattice spacing a, the continuum hypothesis as well
as our boundary condition is probably a good approxi-
mation.

Using the values of the microwave components
given by Eqs. (13), (14), and (15), we can now write
down the boundary condition equations (denoted by
primes) which correspond to Eqs. (18), (19), (20), and
(21). Introducing the abbreviation

where P, Q, R denote the symmetric functions

P=KiE2+E2Ko+KsEi,

Q =Ki+K2+Es,
R= EgE2Eg,

and d is an abbreviation for the quantity

(26a)

(26b)

(26c)

IV. THE SURFACE IMPEDANCE AND THE
EQUIVALENT ISOTROPIC PERMEABILITY

Using Eq. (24), we could now express Z' in terms of
known quantities if the secular equation (11) had
actually been solved. While Eq. (11)could, in principle,
be solved in closed form, such a solution would be rather
cumbersome and not very useful. We shall circumvent
this difhculty by making use of the fact that Z' can be
represented in terms of certain symmetric functions of
the roots (Ei,E2,K2) of Eq. (11). To see this, notice
that the coefficients of the elements I, Z' of the 6rst
column of Eq. (24) are ttntisysnrttetric polynomial func-
tions of E~, E2, E3. All such functions have a common
antisymmetric factor, the remaining symmetric factors
being directly expressible, through the theory of bi-
alternants, in terms of certain symmetric functions
P, Q, R, which will be defined later. This fact so
simplifies the algebra that we shall use the term
"bialternant method" to denote the present procedure
of bypassing the explicit solution of the secular poly-
nomial.

Solving Eq. (24) for Z' and inserting the explicit
expressions (which we have not written down) for the
N„and v„ in terms of the E„',we obtain after a lengthy
calculation

R(QP—R)

RP+R(1+2rt)+Qd

Z'= (4 ~eS/c)Z, (23)
d = rt 0'+iQL+rt(rt—+2iQL+L2+Lsrt). (27)

hi*+h2*+hs*= ho*,

Elhle+K2h2e+Kshs~= Z hoe& (19)'

NiKihi*+N2E2hss+NsKshs, 0,

vlKlhle+v2K2h2z+vsKshse= 0

(2o)'

(21)'

where ho denotes the value of h in air. This system
of four linear homogeneous equations possesses a non-
vanishing solution provided the condition

I
Z'Z, E, E,

N3E3
0 vying v2K2 v3K3

(24)

is satisfied. Equation (24) will be used in the following
section to calculate Z' and hence Z.

and taking into account all three waves in the metal,
we thus obtain

(18)'

Next we make use of the well-known fact that the
roots of the cubic equation (11) are related to its
codFicients by the equations

Ki'+K2'+Ks'= ci,

Ki K2'+K2'Ks'+ Ks'Ki' =c,,

E 'E 'E '= cs.

From Eqs. (26) and (28), we now obtain

Q'= ci+2P,
P'= cs+2cs&Q,

R= c3&,

(28a)

(28b)

(28c)

(29a)

(29b)

(29c)

where the sign of c3& must be taken as positive because
we are only interested in waves whose propagation
constant has a positive real part. Finally, we could (in

2 A. C. Aitken, Deterrairtartts arid Matrices (Oliver and Boyd,
Edinburgh and London, 1951);see especially p. 117.
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0'+iQL+—2e(1+i)

Lg
—Qe+iQL+ e (1+i)]'

(31)

where p, 0, L, and e are defined by Eqs. (9a) through
(9d).

V. DISCUSSION AND GENERALIZATION
OF THE RESULT

If we disregard the exchange effect, so that A and e

vanish, then Eq. (31) gives

p.q„=1/(g —0'+iQL), (31a)

a special result that can be derived without using the
methods of the present paper. To do this, one simply
ignores Maxwell's equations Lexcept for the demagnet-
izing condition (5b)], solves the equation of motion
LEq. (2)] subject to the approximations noted in the

principle) solve the simultaneous quadratic equations
(29a) and (29b) for P and Q, substitute the resulting
values /together with the R from Eq. (29c)7 into Eq.
(25), and thus calculate Z' or Z. However, we shall
not carry out these steps in full generality because it is
more convenient to use the analytic approximation
discussed below.

Once Z is calculated, the comparison with experi-
mental results is most easily carried out by introducing
the concept of "equivalent isotropic permeability, "
denoted by p,~ . Following RK, we define p,,q„ to be
that isotropic complex permeability (pequ pi——i'—2)
which gives rise to the same surface impedance as the
actual relation obtaining between the vectors b and h.
Since it is easily shown that in an isotropic situation,
characterized by b=@,q„h, Maxwell's equations for a
metal lead to Z= (p,q„/e, fi)&, where »,H= —4sia/q& is
the effective dielectric constant, it follows that

l ...= —»(«/ &)'= —(i/2) (Z'/ )'

where the quantity e, defined by Eq. (9d), should not
be confused with e,ff. The p q calculated from Eq.
(30), which we may call (p,q„)„i„can be compared
with the results of resonance experiments by deducing
from the latter a value for (p.q„),„p., To do this, one

simply interprets the measured quality factor and
resonance frequency of a cavity (or attenuation factor
and phase velocity of a transmission line) on the basis
of Maxwell's equations by proceeding as if b and h
were related by b=(p„), „,h, and then compares
(Pequ)exper Wltli (gequ) cele

Returning to the problem of actually calculating Z',
and hence p,~„, by the method outlined above, we now
restrict ourselves to the case where each of the quantities

q, O', L', QL, and e is negligible compared to unity.
Kith these approximations, which are valid in the RK
experiments, the "coupling constant" ce& of Eqs. (29a)
and (29b) is quite small and permits an approximate
solution of these simultaneous equations. Equations
(29), (25), and (30) then lead to our final result:

N= (e+g—0')/»,

we write Eq. (31b) in the form

ep.„=(N+1+2i)/(N+i)',

(32)

so that if we regard the real number X as a parameter,
we can construct a universal curve by plotting the
imaginary part of the right-hand side of Eq. (33) as a
function of the real part. The resulting curve is "egg-
shaped" and contains points corresponding to all
possible values of N. Next we multiply all the experi-
mental p,~„by a scale factor, to be identified with e,
which is chosen in such a way that the product
e(p„„), p„, when plotted with its imaginary part as a
function of its real part, matches the theoretical egg-
shaped curve described above. This value of e deter-
mines A (see Eq. (9d)] because M, is known and 8 can
be calculated from co and 0. Finally, we obtain g from
any convenient point on the egg-shaped curve. To do
this, we simply choose some value of H„compute the
corresponding e(p,„„),„„,from the e determined above
and the experimental data, and then ascertain froro.

the egg-shaped curve the value of X corresponding to
this particular e(p,q„), p„. Knowing N and H„we
then compute 0 from Eq. (32), and y (and hence g)
from Eq. (9b).

last paragraph, calculates the quantity p, =b /h„and
identi6es p with p,~„.The result thus obtained, which
is identical with Eq. (31a), shows that in this special
case the line width and shape are essentially determined
by ), and that the resonance condition is p=Q'. Since
in our work q=B,/(4n. M,) is neglected compared to
unity, the condition q=Q' is evidently equivalent to
Kittel's formula, ' co=y(B,H, )&, for the resonance con-
dition in the absence of exchange.

If, on the other hand, we disregard the phenomeno-
logical damping eGect, so that X and L vanish, then
Eq. (31) gives

il—0'+ 2e(1+i)
Pequ=

P&
—Qe+»(1+i)]2

Equation (31b) shows that the line width and shape
are essentially determined by o and A, i.e., by the
combined eGect of eddy current dissipation and ex-
change. The resonance 6eld, defined as the B, corre-
sponding to p& ——0, is now given by g=02—(0.%44)e,
thus being shifted to a value smaller than that predicted
by Eq. (31a). We note that Eq. (31b) proves to be a
fairly good representation of the experimental results
of RW, who observed a fractional exchange shift of the
resonance field amounting to 20 or 30 percent, and we
refer to their papers for numerical evaluations of Eq.
(31b) and for a detailed comparison between theory
and experiment.

Next we oq, tline the method of curve matching used
to extract A and g from the experimental p,«. Intro-
ducing the quantity
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It is worth noting in this connection that if exchange
effects are absent, then Eq. (31a) shows that a plot of
the imaginary part of p,~„as a function of its real part
should be a circle tangent to the real axis at the origin.
Thus the appearance of an egg-shaped curve in the
complex-plane representation of (p,„„),n„ immediately
suggests that the "zero-exchange" formula (31a) is in-
adequate, so that Eqs. (31b) or (31) must be considered
in interpreting the experiments.

To assess the error caused by the analytical approxi-
mation involved in our final result, Eq. (31),we checked
this equation by two methods. In the 6rst method, we
used a digital computer, the NAREC electronic com-
puter at the Naval Research Laboratory, to solve
Eqs. (29a) and (29b) numerically by a cyclic procedure
of successive approximations. The numerical values of
0, L, and ~ chosen for this purpose were typical of those
encountered in the RW experiments, and H, was
regarded as a parameter. The values of I' and Q thus
obtained, together with the 8 from Eq. (29c), were
then substituted into Eqs. (25) and (30) to yield
computed values of p,,q„as a function of H, . When
plotted in the complex plane representation described
above, these computed values of p,,~„ led to an egg-
shaped curve whose ordinates and abscissas agreed to
better than five percent with the prediction of Eq. (31).
In the second method, presented in Appendix A, we
used a power series expansion which contains more
stringent approximations than those involved in the
derivation of Eq. (31). However, this method permits
an analytic solution of the secular equation (11) and
leads to a 6nal result which is invalid for a narrow
range of II, values but agrees otherwise with Eq. (31).

Since our final result, Eq. (31), was derived for the
somewhat specialized physical conditions assumed in
Sec. II, we shall now discuss three ways of generalizing
these conditions (to apply to the experimental situation
of RW) without altering the validity of Eq. (31).

(1) Equation (31) presumes a plane sample. How-
ever, it is easily shown that this equation is equally
valid for a curved sample provided ~1/k t

is negligible
compared to the radius of curvature r. This condition
means roughly that the effective" skin depth is small
compared to r so that the space dependence of the
waves in the metal is exponential. Thus Eq. (31) is
valid, for example, in the case of the cylindrical geom-
etry used in the experiments of RW. In that case the
proof involves the replacement of the Bessel functions
appearing in the problem by their asymptotic values,
as in the isotropic' situation.

(2) Equation (31) presumes normal incidence of the
microwaves upon the sample. However, in the RW
experiments (and in most ferromagnetic resonance
experiments) the propagation vector possesses a compo-
nent parallel to the surface of the sample, and it is in
fact from measured eQ'ects resulting from this parallel

' M. H. Johnson and G. T. Rado, Phys Rev. 75, 841 .(1949).

component, such as the change due to B,of the quality
factor and resonance frequency of a cavity resonator,
that the surface impedance and hence p„„ is deter-
mined experimentally. We must therefore investigate
whether the oblique incidence of the microwaves upon
the sample modi6es Eq. (31). To do this, we assume
that the microwave components m, h, and e are pro-
portional to exp(in' —ky —ps), thus adding a s-depend-
ence, and repeat the calculation leading to Eqs. (5)
and (8). We 6nd that if we make the approximation
(generally valid at microwave frequencies) that

~
p'~

is negligible compared to (
k' (, and Ii5sp'/2 ( is negligible

compared to unity, then Eqs. (5a), (Sb), and (8)
remain unchanged. Equation (Sc), however, no longer
predicts h, =0, but leads instead to the relation

(Q'k'/2) p
h, = —h„.

1+(i5'k'/2) k
(34)

Since the absolute magnitude of the first factor on the
right-hand side of Eq. (34) is at most of order unity,
we obtain

( h,
~ & ( h„p/k(, showing that h, is negligibly

small compared to h„. But since h„ is of the same order
as the other "old" field components, we have electively
h, =0. This result is a consequence of the fact that the
wavelength in the metal, which is of the order of the
"effective" skin depth

~ 1/k~, is negligibly small com-
pared to the wavelength in the airspace bounded by
the metal, which is of the order of ~1/p~ or 2s.c/o~.
Thus we see that in the approximation considered here,
all of the Eqs. (5) and (8) are unchanged, and conse-
quently the remaining theory and the 6nal result in the
case of oblique incidence is the same as in the case of
normal incidence.

(3) Equation (31) presumes that the unknown damp-
ing mechanism is described by the phenomenological
Landau-Lifshitz damping term. As mentioned in Sec.
II, however, the validity of this term is by no means
assured by existing experimental results, and some
ferromagnetic resonance experiments' indicate, in fact,
that the Bloch-type phenomenological damping term
is sometimes preferable. To investigate the eGect of
Bloch-type damping on our result, we simply replace
the last term in Eq. (7) (which is proportional to X) by
the simpler term —m, „/(yTs), where the quantity T2,
known as the transverse relaxation time, is (like X) a
phenomenological constant. Thus we omit throughout
our calculation all terms arising from the term )%,h, „/y
of Eq. (7), and replace X by 3E,/(II, Ts) in the remaining
terms. The final result obtained in this way turns out
to be identical with Eq. (31b), so that the replacement
of the Landau-Lifshitz damping by the Bloch damping
leads to a replacement of Eq. (31) by Eq. (31b). This
means that in our approximation the Bloch damping
can be described by putting X=O in Eq. (31).Since the

I J. A. Young, Jr., and E. A. Uehling, Phys. Rev. 90, 990
(1955); 94, 544 (1954).
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experiments of RYV can be interpreted on the basis of
X=O, i.e., on the basis of Eq. (31b), the question of
Landau-Lifshitz damping versus Bloch damping does
not arise in their case.

VI. DISCUSSION OF PREVIOUS THEORIES

Kittel and Herring" were the first to calculate an
explicit magnitude for the exchange shift of the reso-
nance. However, they used a perturbation method
and did not take Maxwell's equations properly
into account. As discussed by RW, the formula of
Kittel and Herring can be used for rough qualitative
purposes but not for a quantitative prediction of the
exchange shift. This is due to the fact that the Kittel-
Herring formula contains the unknown factor (his)„„~,
the imaginary part of the "unperturbed" permeability.
It is clearly a task of the theory to predict (p&)„»from
the fundamental constants of the material, and in the
absence of such a prediction (lis)„„v is not known
a priori unless it is taken from experimental results.
But since the exchange effect cannot be "switched o6,"
the experimental p& automatically includes the exchange
e6ect, and is therefore a "perturbed" p2, so that the
Kittel-Herring perturbation treatment is not strictly
valid unless the exchange effect is so small that it is
experimentally uninteresting. We derived the Kittel-
Herring result from our final equation (31) by a power
series expansion, and investigated under what condition
this derivation is valid. We found that to obtain their
formula we had to assume that the quantity

~
e/(ri —Q'

+iQL)
~

is small compared to unity (which is generally
not a permissible assumption), and that we had to
carry the expansion to the second approximation in
this quantity. Furthermore, we had to assume that X.is
not zero, an assumption which is particularly serious
because the exchange eBect must evidently be calculable
for )t=O, as shown by our Eq. (31b). It should also be
noted that Kittel and Herring have not calculated the
width and shape of the resonance line, so that their
theory cannot be used to decide whether the width of
an observed resonance line is due to eddy current losses
(caused by the exchange effect) or relaxation phe-
nomena. Finally, Kittel and Herring concluded that at
microwave frequencies the exchange effects in ferro-
magnetic resonance are not likely to be of importance
in pure metals at room temperature, or in alloys at
any temperature.

In connection with a general discussion of internal
fields in ferromagnetics, Macdonald" briefly refers to
his unpublished calculations on exchange eGects in
ferromagnetic resonance and states that he agrees with
the conclusion of Kittel and Herring mentioned above.
Since this conclusion was contradicted by the RW
experiments, we undertook the calculations of the

"C.Kittel and C. Herring, Phys. Rev. 77, 725 (1950)."J.R. Macdonald, Proc. Phys. Soc. (London) A64, 968 (1951).

present paper and found that the conclusion of Kittel
and Herring, and of Macdonald, is not justified. After
the oral presentation' of our work, Dr. Macdonald
kindly lent us his thesis" which contains his calculations,
and pointed out that he had independently arrived at
similar methods and the same new boundary conditions
Lour Eqs. (20) and (21)7 as we did. We therefore
believe that Macdonald's conclusion concerning the
inappreciable magnitude of the exchange eGect at room
temperature is probably due to the complicated nature
of his implicit final formulas, and to the fact that his
numerical computations were limited to those condi-
tions, such as the resonance in nickel at 30000
Mc/sec, where the exchange effect is indeed very small.
Our final result LEq. (31)j, on the other hand, ad-
mittedly lacks generality, but it is an explicit and useful
formula that permits simple predictions within its
range of applicability. Furthermore, the applicability
of our Eq. (31) extends to just those situations in which
physical considerations, discussed by RW, lead one to
expect that the exchange effect is actually appreciable.

K' K4+ (ri Q'+—iQL)—K' 2ie'= 0, — (A1)

and yields the approximate roots

Ki, sr=-', ((ri—Q'+iQL)&[(ri —Q'+iQL)' —Sie'$'*), (A2a)

E3'=1.

From Eq. (10c), we now obtain (with n= 1, 2, 3)

m„,= (K„'/Sxie') h„„

and from Eqs. (10b) and (A3)

(K '—ri)K '+2ie'
h„,.

Sx.ie'(iQ+L)
(A4)

If Eqs. (A3) and (A4), which correspond to Eqs. (13)
and (14), are substituted into Eq. (10a), the latter
yields Eq. (A1) and is therefore identically satisfied.
In a similar way, we obtain an approximate expression
for e„,. Next we write down the boundary condition
determinant (24), substitute for the N„and v„ from
Eqs. (A3) and (A4), add a certain multiple of the
fourth row to a certain multiple of the third row, and

» J. R. Macdonald, Ph.D. Thesis, Oxford, 1950 (unpublished).

APPENDIX A. AN APPROXIMATE METHOD
OF SOLUTION

As in Sec. IV, in the paragraph preceding Eq. (31),
we again assume that each of the quantities q, O', I.',
and QI. is negligible compared to unity. However,
instead of assuming that e is negligible compared to
unity, we now make the more stringent assumption
that e'/~ri —Q'+iQL~ is negligible compared to unity.
With these approximations, the secular equation (11)
becomes
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obtain high to satisfy the relation

pp~ksT/5, (81)
Z' E~ E2 E~
0 (Ei'+2ip')Ei (Ep4+2ie')Ep (Ep4+2ze')Ep

K2' E3'

Since in our approximation we can write

Ei'+2ip'+1= 1)

E p+2i p+1=1
Ep4+2ip'+1=2,

Eq. (A5) becomes

K' K—4 Q—'K'+2ie'Q'= 0 (82)

for any typical ferromagnetic metal at all but extremely
low temperatures. The approximate solutions of Eq,
(82) are

where k~, T, and 5 denote Soltzmann's constant, the
absolute temperature, and (Planck's constant/2~),
respectively. YVe consider, moreover, only the type of
linear polarization assumed in Sec. II. Equation (81)
shows that 0 is now very large and thus permits us to
write the secular equation (11) in the simplified form

1 1
Z' X& E& ——O.

0 Eg' E2'
(A6)

2 2z62

E2, 3 =~0.
(83)

(84)

If we now disregard the case E~=E2, which will be
discussed later, Eq. (A6) yields

EiK'2(Ei+E2)
g/

Ei2+EiE2+E22
(A7)

g —Q'+iQL+2 p(1+i)
Lq

—Q'+iQL+ p(1+i)$'
(A8)

in agreement with Kq. (31).
To analyze the limitations of this simple derivation

we now distinguish two cases. (1) If X=O, then EiAE2,
but the quantity c'/~ it —Q'+iQI.

~
becomes very large

if H, is such that g satisfies q=Q', so that Eq. (A8) is
not valid in the immediate vicinity of this H, . (2) If
X&0, with X being very small, then the same limitation
exists as in case (1).But if XQO, with X being arbitrary,
then we have the additional limitation that Kq. (A8)
is invalid if E~=E2. The latter situation arises if co is
such that 0 satisfies simultaneously the conditions
it—Q'= 2e and LQ= 2p obtained from Eq. (A2a).

The method given in this Appendix is useful because
it leads to explicit expressions for the three propagation
constants and because it permits a simple derivation
of our final result for p,~„.All the limitations described
in the previous paragraph apply, of course, to the
method used to derive Eq. (A8) and not to this equation
itself, since the same result, Eq. (31), was derived
without these limitations by using the bialternant
method of Sec. IU.

APPENDIX B. THE DISPERSION LAW FOR
THERMAL SPIN WAVES

In considering thermally excited spin waves we can
restrict ourselves to frequencies which are suKciently

which can be combined with Eqs. (30) and (A2a) to
give the final result:

From the definition of E, Eq. (9e), it is seen that
Eq. (83) gives

k'= 2i/P

which is precisely what one obtains from Maxwell's
equations for permeability unity. Consequently the
spin wave corresponding to this k is nonmagnetic, "
being characterized by m =ms~=0, so that it cannot
give rise to a deviation of 3f, from ufo, the value of
3f, at T=O.

Equation (84), on the other hand, shows that the
wave corresponding to the plus sign is attenuated while
that corresponding to the minus sign is not, and that k
for the latter wave is given by

pp= —(2Ay/M )k' (86)
which agrees with the usual dispersion law" for thermal
spin waves and thus leads to the Bloch TLlaw for
(Mp —3E )/3f p. It is rather satisfying that Eq. (86)
agrees with the result of the standard treatments
because the latter ignore the conductivity of the metal,
and either neglect the magnetic interactions between
the spins or treat them by magnetostatics rather than
by Maxwell's equations. %'e further note that the
thermal spin waves, which give rise to the diGerence
between ufo and 3f„are on the whole much shorter
than the microwaves employed in resonance experi-
ments. The wavelengths of the latter may be estimated
froni Eq. (A2a), which shows that in most situations,
including the RW spin wave resonance experiments, the
wavelengths of the microwaves in the metal will not be
much smaller than 10 ' cm. Thus we suggest that at
temperatures sufFiciently far below the Curie point,
where the spin wave picture is at least approximately
valid, the concept of a saturation magnetization vector
may legitimately be used not only in ferromagnetic
resonance but even in spin wave resonance.

'4 See Herring and Kittel, reference S.


