PHYSICAL REVIEW

VOLUME 97,

NUMBER 6 MARCH 15, 1955

Space-Charge-Limited Currents in Solids

A. Rose
RCA Laboratories, Princeton, New Jersey

(Received September 21, 1954)

Currents, far in excess of ohmic currents, can be drawn through thin, relatively perfect insulating crystals.
These currents are the direct analog of space-charge-limited currents in a vacuum diode. In actual crystals,
the space-charge-limited currents are less than their theoretical value for an ideal crystal by the ratio of free
to trapped carriers. Space-charge-limited currents become, therefore, a simple tool for measuring the im-
perfections in crystals even in the range of one part in 105,

The presence of traps not only reduces the magnitude of space-charge-limited currents, but also is likely
to distort the shape of the current-voltage curve from an ideal square law to a much higher power depend-
ence on voltage. The particular shape can be used to determine the energy distribution of traps.

The presence of traps tends to uniformize the charge distribution between electrodes, to introduce a tem-
perature dependence of the current, and to give rise to certain transient effects from which capture cross

sections of traps may be computed.

Space-charge-limited currents offer another mechanism for electrical breakdown in insulators.

I. INTRODUCTION

HE solid state analog of space-charge-limited
currents in a vacuum diode are the space-charge-
limited currents in an insulator. This was clearly pointed
out at least fifteen years ago as a simple consequence of
the band theory of solids.!

While there have been many references, as in the
work of Hilsch, Gudden, and Pohl,? to the transient
effects of space charge in solids, there have not been
until recently direct measurements of steady-state
space-charge-limited currents.~¢ The lack of such meas-
urements is remarkable since simple theory allows
amperes per square centimeter of space-charge-limited
current to be passed through thin sheets of insulators.
Two requirements, however, need to be fulfilled in
order to observe space-charge-limited currents of sig-
nificant magnitude: At least one of the two electrodes
must take ohmic contact®? to the insulator and the
insulator must be relatively free from trapping defects.
The concept of an ohmic contact to an insulator is
perhaps not a common one and needs to be defined.
An ohmic contact is used here to mean an electrode
that supplies an excess or a reservoir of carriers ready to
enter the insulator as needed. The virtual cathode
formed in front of a thermionic emitter in a vacuum
diode is a familiar example of an ohmic contact to the
insulating vacuum space between cathode and anode.®
The current through the vacuum diode or between

1N. F. Mott and R."W. Gurney, Elecironic Processes in Ionic
Crystals (Oxford University Press, New York, 1940), p. 172.
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Springer, Berlin, 1928).

3P K. Weimer and A. D. Cope, RCA Review 12, 314 (1951).

4 A. Rose, RCA Review 12, 362 (1951).

5 R. W. Smith and A. Rose, Phys. Rev. 92, 857 (1953); A. Rose
and R. W. Smith, Phys. Rev. 92, 857 (1953).

6 W. Shockley and R. C. Prim, Phys. Rev. 90, 753 (1953);
G. C. Dacey, Phys. Rev. 90, 759 (1953).

7R. W. Smith, this issue [Phys. Rev. 97, 1525 (1955)].

8. S. Nergaard [RCA Rev. 13, 464 (1952)] proposes a model
of an oxide cathode in which the flow of current within the cathode
coating itself, as well as in the vacuum just outside the cathode,
may be space-charge-limited.

electrodes in an insulating solid does not depend on
the amount of excess carriers as long as there is an
excess.

Figure 1 shows one example of an ohmic contact to
an insulator obtained by the use of a metal whose work
function is less than that of the insulator. The presence
of the virtual cathode is evident in Fig. 1(b).

The requirement of relative freedom from traps will
be made quantitative later. For the present, it is
sufficient to point out that traps lower the drift mobility
of carriers and thereby the magnitude of the space-
charge-limited currents.* Trap densities of 10'8/cm?
(not unreasonable for the usual polycrystalline insula-
tor) would be sufficient to reduce the space-charge-
limited currents to almost unmeasurable values.

The measurements of space-charge-limited currents
reported by Smith® are on relatively perfect insulating

R

(a)

Fi1c. 1. (a) Ohmic contacts to an insulator at zero applied
field. (b) Finite field applied to Fig. 1(a) showing virtual cathode
at 4.

9 R. W. Smith and A. Rose, preceding paper [Phys. Rev. 97
1531 (1955)]. ’ ’
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crystals of CdS having ohmic contacts. Even so, there
are a sufficient number of traps that the simple model
for space-charge-limited currents needs to be modified
as in the following analysis to take their effect into
account. The traps not only reduce the magnitude of
the space-charge-limited current, but also distort the
shape of the current-voltage curve and add certain
interesting and informative transient effects.

The analysis of space-charge-limited currents is
carried out in terms of the following approximate but
simple formalism. Let the space between two electrodes
have a capacitance C. This is an approximating con-
cept. In the case of plane parallel electrodes the ca-
pacitance is that between the two electrodes. The charge
that can be accommodated in the interior space is

Q=CV, : e

where V is the applied voltage.
The space-charge-limited current is immediately
given by

1=Q/T, 2

where T is the transit time of the charge Q between
electrodes.

The well-known expressions for space-charge-limited
currents in vacuum and in a trap-free insulator are
readily derivable from Eq. (2). They are given here to
clarify the formalism.

II. VACUUM DIODE

The space charge forced into the vacuum diode per
cm? of plate area and for a plate separation of d cm is

Q=CV=(V/4rd) X107 coulomb. 3)

The transit time of the charge Q between plates is
approximately

T=d/(6X10"X V}) sec. (4)

The space-charge-limited current is, from (2), (3),
and (4)

I=5X10-%(V%/d?) amperes/cm?. 5)
The accurate value of the coefficient is 2.3 1076,

III. TRAP-FREE INSULATOR

The space charge forced into an insulator per cm?
of plate area is, from Eq. (1)

Q= (Vk/4wd) X107 coulomb; 6)

k is the dielectric constant of the insulator and & the
electrode spacing. The transit time of the charge Q be-
tween electrodes is

T=d/Eu=d%/Vp. @)

E is the electric field in the insulator and p the drift
mobility. From Egs. (2), (6), and (7) the space-charge-
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Fic. 2. Insulator having shallow traps in thermal equilibrium
with electrons in the conduction band.

limited current is
I=10"3(V2uk/d?) amperes/cm?. (8)
The accurate value of the coefficient is also 10—,

IV. INSULATOR WITH SHALLOW TRAPS

Let the insulator have only shallow traps (Fig. 2),
that is, traps lying close enought to the conduction
band to be in thermal equilibrium with electrons in the
conduction band. The same expression for the space-
charge-limited current will be obtained as in the case
of the trap-free insulator. One need only insert for the
drift mobility the product of the drift mobility for free
carriers and the fraction of the total space-charge
that is free. While the same total charge is forced into
the insulator as in the case of the trap-free insulator,
only a fraction of this charge is free. The drift mobility
must be reduced by the same fraction. The value of
this fraction is determined by the number and depth
of traps and is not dependent on the applied voltagel®
Accordingly, the space-charge-limited current has the
same square-law dependence on voltage as in the
simple trap-free model of Eq. (8). '

Let the fraction of free charge be 6. The space-
charge-limited current is then given by

I=10"8[V?(uf)k/d*] amperes/cm?, 9)

where uo is the drift mobility of free carriers.

If there is a single level of shallow traps whose density
is V;/cm? and whose distance from the conduction band
is E volts, the fraction 6 is given at room temperature
by the approximate relation

0= (N,/Np)e BT, (10)

where N.=10Y at room temperature. For N,=10V7
and E=0.5 volt, #=10"7 and the space-charge-limited
currents are sharply reduced.

V. INSULATOR WITH TRAPS DISTRIBUTED
IN ENERGY

Consider, as shown in Fig. 3, an insulator in which
the traps are distributed uniformly in energy below the
conduction band. The prominent characteristics of
this model are a consequence of the distribution of

10 The electron temperature is assumed here to be the same as
the crystal temperature.
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Fic. 3. Insulator having a distribution of traps in energy
and showing the shift in Fermi level due to charge injected by
an applied field.

traps in energy and not of the strict uniformity of dis-
tribution. For a given applied voltage, the charge, Q,
forced into the insulator, is distributed in three major
parts: free charge in the conduction band, trapped
charge above the newly determined Fermi level, and
trapped charge condensed in the states between the
original Fermi level and the newly determined Fermi
level. Since the condensed charge is likely to be very
nearly the total charge, the new location of the Fermi
level is ‘given very closely by considering all of the
charge Q to be condensed. With this approximation,
the shift in Fermi level will be proportional to the
space charge Q which is, in turn, proportional to the
applied voltage V.
We can write for the free carrier density

fo=N e~ ErIKToAEIRT,

(11)

Here NV, is the number of states in the bottom %7 slice
of the conduction band, E; is the original distance of
the Fermi level from the conduction band and AE is
the shift in position of the Fermi level owing to the
condensed charge Q forced into the insulator by the
applied voltage V. Also, from previous remarks:

AE=Q/end=VC/end,

where #, is the number of traps per cm?® per unit range
in energy and e the electron charge. From Egs. (11)
and (12) the free carrier density is given by

(12)

Ne= Nce-E/IkTeVC/ntdekT

(13a)
(13b)

where 7. is the initial, thermal equilibrium concentra-
tion of free carriers and « is used for C/ndekT.

The density of trapped carriers is very nearly equal
to the total density of injected electrons, or

=n.0e*7,

density of trapped carriers=Q/de=VC/de. (14)

The fractional value of free charge is, from Eqs. (13)
and (14),

(19)

6 is no longer a constant as in the previous case of shal-
low traps, but depends exponentially on the applied
voltage. From Eqgs. (9) and (15) the space-charge-

0= (encod/VC)eV.
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limited current becomes:
I=10"8(Vuok/d?) (enne/C)e*". (16)

What is significant in Eq. (16) is that, owing to the
distribution of traps in energy, the space-charge-limited
current now increases exponentially with voltage com-
pared with the square law dependence on voltage ob-
tained in the trap-free and in the shallow-trap models.
The exponential dependence is a consequence of the
assumption of a umiform distribution of traps. If the
uniform distribution of traps is replaced by one that
decreases with distance from the conduction band, the
exponential is replaced by a high power function of the
voltage.

In particular, let the steepness of the trap distribu-
tion be approximated by a characteristic temperature
T. such that

a7

where E is measured from the bottom of the conduction
band. Small values of T'; lead to trap distributions vary-
ing rapidly with energy, while large values of T
approximate a slowly varying trap distribution. The
voltage dependence (see Appendix I) of space-charge-
limited current is (for 7',.>7T)

J o VTl

nyo g EIFTe

(18)

For T.<T, this reduces to the case of shallow traps
where the exponent of V is 2. '

VI. TRAP DISTRIBUTION FROM I VS V CURVE

One can expect to work backwards from an experi-
mentally determined current-voltage curve to obtain
the energy distribution of traps. Equation (18), for
example, gives the trap distribution for experimental
curves for which the current increases as a power of the
voltage. For a current-voltage curve of arbitrary form,
and for currents increasing faster than V2 the following
analysis may be made. From Eq. (9) one may write

I=constantVerE/kT, (19)

dI 1/ V d(AE)
—=—(1+—————).
av v

kT 4V
The solution of Eq. (20) for dAE/dV is
dAE V dI kT
v Gy

and
(20)

(21

Idv v

Since the charge condensed in traps is
Q=VC,
Eq. (21) may be rewritten as

dAE VdI kT
c—=(5=-1)~, 2)
d0 %
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or

dAE kT

dQ Cv, vl
el ( 23)
IdV

—1
1) .

In Eq. (23), dQ/edAE is the number of traps per unit
energy range in the volume of specimen under test.
A simple operational interpretation of Eq. (23) is the
following. If one increases the applied voltage by an
amount AV sufficient to double the current, the number
of electron charges forced into the insulator is AVC/e.

This number is also the number of traps in a range kT
near the Fermi level. :

VII. COMPARISON OF SPACE-CHARGE-LIMITED
CURRENT WITH PHOTOCONDUCTIVE
CURRENT

The last two sections have shown how the form and
magnitude of the trap distribution may be computed
from the space-charge-limited current-voltage curve.

TaBiE I. The energy distribution and density of traps derived
from data on photoconductivity and from data on space-charge-
limited currents.? ’ )

Space-charge-

limited currents  Photoconductivity

I < V(TetDIT

AQ/e

I « FTcl(T+TY)

(o/T)c

Form of current curve
Trap density in range of
kT near the Fermi level

a Notes: 7. defines the trap distribution by Eq. (17). F is the number of
optical excitations per second. AQ is the charge forced into the insulator
when the voltage is increased by an amount sufficient to double the current.
70 is the observed response time of the photoconductor to interrupted light.
7 is the lifetime of a free carrier in the conduction band. #. is the density
of free carriers at which 7o is measured. The Fermi level is defined by the
relation: ne =Nce EBs/kT =10We~Ef/kT,

In reference 4, it was argued that the same information
on trap distribution could be obtained from data on the
form of the photocurrent-light curve and from data on
the ratio of lifetime to observed time constant.

The results of the two analyses are summarized in
Table L.

The characteristic temperature, computed from the
space-charge-limited currents, should be more reliable
than the characteristic temperature computed from the
photoconductive currents. In the analysis of the latter

. an implicit assumption was made that all of the traps
had the same capture cross section for electrons. The
validity of this assumption is under study and must,
in any event, be tested for each new crystal. There are
some observations that require the presence of more
than one type of trap and such mixtures can alter the
form of the current-light curve. The form of the space-
charge-limited current-voltage curve on the other hand
should not be dependent on the capture cross section
of the traps. Reasonable agreement between the two
independent methods of measuring trap distributions is
reported by Smith and Rose® and by Bube.!!

1 R. H. Bube and S. M. Thomsen, J. Chem. Phys. 23, 15
(1955).
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VIII. FIELD AND CHARGE DISTRIBUTION
BETWEEN ELECTRODES

For the simple case of trap-free insulator and plane
parallel electrodes, the following relations for current,
field, and charge distribution are known:

T« V2 (24)
Eoxx? (25)
pcxt, (26)

where E is the electric field, x the distance from the
cathode (for electron injection), and p the space charge
density.

In Appendix II it is shown that, in general, when
traps are present and when

TVt p2>1, 27)

the field and charge distributions take on the forms
E e gl (nb)), (28)
poc g (D), (29)

For large values of », the space charge density ap-
proaches a uniform distribution over most of the dis-
tance between cathode and anode. The free charge
density, however, must always vary as the reciprocal
of the field in order to keep the divergence of the cur--
rent zero. Since the free charge is usually a negligible
part of the total charge, it may undergo large varia-
tions without having significant effect on the distribu-
tion of the total charge.

The relative uniformity of charge density between
cathode and anode leads one to expect only small or
negligible currents when these electrodes are shorted
together. The space charge flowing out of the insulator
tends to flow out equally at both ends. Smith® has ob-
served the short circuit current to be negligibly small.
This is to be contrasted with the relatively large short-
circuit reverse currents obtained from dielectric ab-
sorption effects as in some glasses.

IX. TRANSIENT EFFECTS

The following observation on space-charge-limited
currents in CdS crystals is reported by Smith?® A
sudden increase in voltage causes the current to transi-
ently increase to very high values. In a matter of
seconds or minutes the current subsides to a much
smaller stationary value. The interpretation is that the
sudden increase in voltage forced a corresponding in-
crease of charge in the conduction band. In the course
of seconds, most of this free charge settles into traps
and one observes the rapid decay of current. The time
required for the transient current to subside is a direct
measure of the capture cross section of traps for free
electrons.

If the space-charge-limited current has attained a
stationary value at a given voltage it is found® that
lowering the voltage from this value may cause the



1542

(b) - TRANSIENT

(c) — FINAL CONDITION

F1G. 4. Series of potential patterns showing the transient
effects when the applied voltage is reduced.

current to ‘“undershoot” its new stationary value. The
interpretation here is shown in Fig. 4. Figure 4(a)
shows the stationary potential distribution at an applied
voltage V;. When the voltage is lowered to 3V, it
requires some time for the trapped space charge forced
into the crystal at V; to be thermally released. Before
this trapped charge is thermally released, a space-
charge barrier is presented to the cathode, as shown in
Fig. 4(b). This is not a virtual cathode type of barrier.
It actually suppresses the entrance of electrons from
the cathode into the insulator. As time goes on, the
trapped charge is thermally released and the potential
distribution arrives at the new stationary value shown
in Fig. 4(c). If the thermal release of carriers is suffi-
ciently slow (traps of small capture cross section) the
current can ‘“‘undershoot” its final value. If the thermal
release is fast there will be no “undershoot” but actually
an “overshoot.”

X. TEMPERATURE DEPENDENCE

The injection of space charge into an insulator con-
verts it into a semiconductor of increasing conductivity
with increasing voltage. At any given voltage the cur-
rent should vary with temperature as would any semi-
conductor having the same conductivity. (This does
not mean that the temperature variation of conduc-
tivity is determined only by the conductivity. As in
any semiconductor the trap distribution governs the
temperature dependence.) An increase in temperature
does not alter the total amount of space charge, but
does increase the fraction of this space charge in the
conduction band.

A. ROSE

Equation (18) indicates that lowering the tempera-
ture should make the current-voltage curve steeper.
For very steep curves, the effect of lowering the tem-
perature should be one of shifting the current-voltage
curve along the voltage axis toward higher voltages.
To match the same current the Fermi level must be
closer to the conduction band at lower temperatures
and this requires higher voltages according to Eq. (12).

XI. TRANSITION FROM OHMIC TO
SPACE-CHARGE-LIMITED
CURRENTS

Space-charge-limited currents increase as the square
or as some higher power of the voltage. Ohmic currents
increase linearly with the voltage. One would expect,
therefore, that for any finite conductivity, there would
be a range of voltages near zero for which the ohmic
currents would predominate. For voltages higher
than some critical voltage, space-charge-limited cur-
rents would predominate. The critical voltage at which
this transition from ohmic to space-charge-limited be-
havior takes place should increase as the normal
volume-generated conductivity increases. Results of this
character are clearly reported in reference 9 where the
critical voltage is varied by shining light on a CdS
crystal.

What has just been described should certainly take
place if the ohmic and space-charge-limited currents
were in parallel, physically separate paths. When the
two types of current occupy the same physical volume,
the transition from one current to the other is likely
to be somewhat more involved because the potential
distributions are different for the two types of current.
There will then be a competition between the two
processes to establish their appropriate potential dis-
tribution. It would appear, however, from qualitative
arguments that the mechanism that introduced the
larger density of free carriers would control the po-
tential distribution. Accordingly, higher volume gen-
erated carrier densities mean that a higher voltage is
required before the injected space-charge-carrier densi-
ties predominate and determine the character of the
current-voltage curve.

It is interesting that even in the range of voltage
where the ohmic currents predominate in the steady
state, the space-charge-limited currents may determine
the transient behavior. This follows from the fact that
when the voltage is increased there is a transient high
density of space-charge-carriers in the conduction band
—a density that may exceed that of the volume gen-
erated carriers. As these space-charge-carriers become
trapped, their density falls below that of the volume-
generated carriers and the latter lead to steady-state
ohmic currents.

XII. TOOL FOR MEASURING CRYSTAL DEFECTS

As already outlined in an earlier section, the number
and energy distribution of traps can be deduced from
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the current-voltage curve for space-charge-limited cur-
rents. What needs to be emphasized here is that these
currents constitute an unusual tool for measuring
defect structure—a tool that becomes particularly
effective in the range of low concentration of defects.

The effect of traps is generally to reduce the ob-
served space-charge-limited currents below their theo-
retical value for a trap-free crystal. The measure of this
reduction is the ratio of free to trapped carriers. Thus,
the observed currents should approach those for a
perfect crystal when the number of free carriers matches
or exceeds the number of traps. The more perfect the
crystal, the lower the field at which this occurs.

The density of electron charges forced into a crystal
d centimeters thick, having plane parallel electrodes,
may be written approximately as 107(V/d?) electron
charges/cm® for an assumed dielectric constant of 10.
This means that for a millimeter thick crystal having
10 traps/cm?, the space-charge-limited currents should
approach their theoretical values at ten volts. At this
voltage the current will be about 10 microamperes/cm?
for a mobility of 100 cm2/volt-sec. The measurement of
trap densities of only one part in 10'® becomes then a
simple current-voltage measurement at low voltages
and easily measurable currents.

XIII. CONCERNING BREAKDOWN IN INSULATORS

When the voltage across an insulator is increased
steadily the power dissipation in the insulator is finally
increased to the point where the insulator “burns out”
or is said to “break down.” If enough carriers are nor-
mally present in the insulator, the breakdown is a rela-
tively slow and gradual process in which the increased
voltage at first leads to an increased temperature. More
carriers are generated at the higher temperature and the
approach to breakdown becomes more rapid. This
process is known as “thermal breakdown” and may be
followed reversibly to values close to actual breakdown.
A second process!? that has received the major share of
theoretical attention is a fast, electronic process known
as “intrinsic breakdown.” Here a critical electric field
may be observed at which the carrier density is pre-
cipitously increased by a collision ionization and re-
sulting avalanching process or by field emission from
the filled band. Even though the actual breakdown
field has a sharply defined value, there is reason to
expect in this model also that the prebreakdown cur-
rents will increase faster than linearly with voltage.

The present discussion adds a third mechanism for
increasing the carrier density in insulators and must be
considered in analyzing breakdown data. This mecha-
nism of space-charge-limited currents becomes more
significant as the crystallinity of the insulator improves.
It may be distinguished from intrinsic breakdown by
the fact that the breakdown field should increase ap-
proximately linearly with electrode spacing.

12, Frohlich and J. H. Simpson, Advances in Electronics
(Academic Press, New York, 1950), Vol. 2, p. 185.

1543

A rough estimate of the contribution of space-charge-
limited currents may be made as follows. Let the in-
trinsic breakdown field strength be known. From this
value of field and the known geometry of the specimen
a value for the space-charge density in the insulator
may be computed. This value of space charge density,
converted to carrier density, must be comparable with
the trap density in order that space-charge-limited
currents be significant. For example, at a field of 10°
volts/cm in an insulator 10~3 cm thick, the number of
electron charges per cm? forced into the insulator would
be 10%6. Trap densities less than this value would allow
space-charge-limited currents to be significant; trap
densities greater than this value would tend to suppress
the space-charge-limited currents.

APPENDIX

I. CURRENT-VOLTAGE CURVE FOR EXPONENTIAL
TRAP DISTRIBUTIONS

The trap density per unit energy range is defined by
(30)

ni=Ae El*Te

where E is the energy measured from the bottom of the
conduction band and 7. is a characteristic temperature
greater than the temperature at which the currents
are measured. The condensed charge forced into the

insulator is
Q=VC. 31)

This condensed charge raises the Fermi level by an
amount AE defined by the relation

Er Q ve
f mdE=—=—, (32)
Ef—AE € e
or
Br Ve
f AgEFTedF=—, (33)
Ef—AE e

The solution of Eq. (33), neglecting the upper limit
of integration, is of the form
AE=FkTo(K+1nV), (34)

where K contains the temperature but not the voltage.
The ratio of free to trapped charge is [see Eq. (11)]

0=eneAE*T/VC. (35)

If Eq. (34) is used for AE,
6= constant exp[ (T's/T) InV]/V (36)
= constantV (Te/T)-1, 37

This value for 6 is now inserted in Eq. (9) to give

T« VTelTrH, (38)



1544
II. FIELD AND CHARGE DISTRIBUTION
BETWEEN ,CATHODE AND ANODE

A solution is sought for the usual pair of equations
for one-dimensional space-charge-limited flow:

dE 4mp 4w

_='_‘=_(P+P)a
dx k kO

I=pqu,

(39)

(40)

subject to the boundary condition E=0 at x=0. p is
the space charge density and is composed of a part, py,
in the conduction band and a part, p, in traps. Let
07<p; so that it may be neglected in Eq. (39). Also,
from Eq. (37) let

Py =A4p & (41)
where

n=TgT. (42)

Equation (39) may be rewritten, using Egs. (40)
and (41), in the form

dE Amfp\YV™ 4wy I \U»
() e
dx k\A4 k \pEA

where B= (4w/k)(I/ud)!".

A. ROSE

The solution of Eq. (43) satisfying the boundary
condition is

E=[(n+1)/n]Bxr/ (=D, (44)
As n—w, E— Bx. If n=1, the usual form for a trap-
free (as well as a shallow trap) model is obtained,
namely E« x.

The distribution of trapped space charge using Eq.
(39) is

k dE

pe=—""T""

4 dx
kB n+1

dr n

By~ 0Hn)

(45)

- Again this reduces to the familiar x~* form when #n=1,

but approaches a constant for large n.

The uniform distribution of space charge, at large #,
means that when the electrodes are shorted only a
vanishingly small net current will flow as the space
charge leaves the insulator. The space charge will flow
out almost symmetrically at both ends of the insulator.
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Equation of State of Metals from Shock Wave Measurements*

Joun M. WarsH AND RusserL H. CHrisTiant
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

(Received October 21, 1954)

Shock wave pressure magnitudes from about 150 to 500 kilobars have been attained for metals by using
high explosives. A photographic technique for the nearly simultaneous determination of shock and free
surface velocities is presented, and measurements for aluminum, copper, and zinc are given.

Expressions are derived which permit the calculation of pressure-compression points from measured
velocity pairs. Consequent Hugoniot curves are presented, probable errors for which are 1 to 2 percent in
compression for a given pressure. Finally, the known Hugoniot curves are employed in a calculation which

determines temperatures and isotherms.

1. INTRODUCTION

HEN a detonation wave interacts with an
explosive-metal interface, a compression wave
is transmitted into the metal. In the ordinary case this

disturbance is a shock wave separating a compressed

state from the undisturbed metal. The pressures at-
tained behind such shock waves are typically in the
range 150 to 500 kilobars (1 kilobar=10° dynes/cm?
=986.9 atmospheres). The associated problem of deter-
mining pressure-compression data from shock wave

* Work done under the auspices of the U. S. Atomic Energy
Commission. Papers on this subject were presented by the authors
at the July, 1953 meeting of the Fluid Dynamics Section of the
American Physical Society at State College, Pennsylvania and
at the 1954 annual meeting of the American Physical Society.

t Now at the University of California Radiation Laboratory,
Livermore, California.

measurements is the subject of the present investi-
gation. Such data serve to supplement and extend the
wealth of static pressure-compression data which exist
for pressures up to 100 kilobars.!

Two basic assumptions are employed throughout the
present considerations. First, since shock pressures are
several hundred times yield points of the materials
involved, an ordinary “fluid” type equation of state is
assumed, i.e., a functional relationship (unspecified)
between P, V, and T is assumed to be an adequate
representation of the metal. This assumption precludes
the explicit treatment of effects arising from the
material rigidity which, however, are felt to play a

1See P. W. Bridgman, Revs. Modern Phys. 18, 1-93 (1946)
for a general review.



