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Quantum Theory of Many-Particle Systems. II. Study of the Ordinary
Hartree-Fock Approximation*
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A system of E antisymmetric particles, moving under the inhuence of a Axed potential and their mutual
many-particle interactions, is investigated in the ordinary Hartree-Fock scheme, having the total wave
function approximated by a single Slater determinant. It is shown that all the density matrices of various
orders, the wave function, and the entire physical situation depends only on a fundamental invariant
o(a&,x&), which is identical with the first-order density matrix. The Hartree-Fock equations are expressed
in terms of this quantity.

The Hartree-Fock equations are also solved by expanding the eigenfunctions in a given complete set,
and applications to the MO-LCAO theory of the electronic structure of molecules, and crystals are given.
It is shown that, in this scheme, the entire physical situation depends on a charge- and bond-order matrix
R(vy) with respect to the ordinary atomic spin-orbitals involved. The Hartree-Fock equations for this
matrix are investigated.

Finally, the ionized and excited states are investigated, and it is shown that the Hartree-Fock scheme
has a high degree of physical visuality also in case of many-particle interactions. The excitation energy of
the system is the difFerence (~ —~;) between two "spin-orbital energies, "being eigenvalues to the efFective
Hamiltonians associated with the two states under consideration.

' 'N a preceding paper, ' we have investigated the pos-
~ ~ sibilities for expressing the total wave function 0'
for a system of E antisymmetric particles by a series of
Slater determinants over all configurations of order E,
formed from a basic complete set fr, of one-particle
functions or spin-orbitals. This basic set may have been
arbitrarily chosen, and the convergence of the con-
figuration expansion is then correspondingly slow. How-
ever, if we introduce the rtatural spirt orbitals-
diagonalizing the first order density matrix p(x&'~x&),
we obtain the configuration expansion of most rapid
convergence, which is directly connected with the
convergency of the series

where the occupation numbers e~ fulfill the condition
0&m&&1. The E particles are therefore always dis-
tributed over more than E spin-orbitals, but, mathe-
matically, there is a limiting case when exactly E
natural spin-orbitals are fully occupied, and the con-
figuration expansion is then reduced to a silgle Slater
determinant:

+= (X!)-'*det{xt,xsi xtv).

this means that the limiting case cannot have a physical
reality and that the wave function cannot be exact.

The many-particle theory based on the approximate
wave function (2) is usually called the Hartree-Fock
scheme, ' and it represents the first important step
towards a more exact theory of antisymmetric par-
ticles. The scheme has been developed in great detail
for the electronic structure of the atoms by Hartree'
and his collaborators, and a large part of the periodic
system is now covered in their applications. It will cer-
tainly take a rather long time, before a theory of similar
accuracy has been developed for molecules and crystals,
but the basic principles are well known and have been
discussed by several authors; recent contributions to
this field have been given by Mulliken, 4 Roothaan, '
Slater, ' and others.

In the previous discussions of the Hartree-Pock
approximation, one has usually started from a basic
set of Ã individual Hartree-Fock functions or spin-
orbitals, but we will here emphasize another aspect of
the scheme, namely that the properties of the system
are dependent only on the first-order density matrix

y(x, '~ x,)

but independent on the individual spin-orbitals, which
are used in forming this matrix. All the higher-order
density matrices may be expressed in (3), and, in order

Physically, this wave function would have a particular
importance since it is the simplest wave function based
on the "independent-particle model" which has the
correct antisymmetry property. However, in con-
structing this wave function by antisymmetrizing a
simple product, the mmtlal interaction between the
particles is usually only partly taken into account, and

' D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89 (1928);
V. Fock, Z. Physik 61, 126 (1930);J. C. Slater, Phys. Rev. 35, 210
(1930).' For a survey, see D. R. Hartree, Repts. Progr. Phys. 11, 113
(1946).' R. S. Mulliken, J. chim. phys. 46, 497, 675 (1949).

*This work was supported in part by the Il. S. Office of Naval ' C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951).
Research under its contract with Massachusetts Institute of ' J. C. Slater, Phys. Rev. 81, 385 (1951); 82, 538 (1951); see
Technology. also his series of Technical Reports of the Solid-State and Molecu-

'P. O. Lowdin, preceding paper LPhys. Rev. 96, 1474 (1954)j, lar Theory Group at Massachusetts Institute of Technology
in the following referred to as Part I. 1951-1954 (unpublished).
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to describe the entire physical situation of the system
in the Hartree-Fock approximation, it is therefore suf-
Peienl to describe its 6rst-order density matrix (3); The
theory of electronic structure of molecules and crystals
may consequently be reduced to a comparatively simple
quantity.

Due to its connection with the "independent-particle
model, "the Hartree-Fock scheme has further a physical
simplicity and visuality which is of importance in dis-

cussing, e.g. , ionizations and excitations of the system.
We will here investigate these properties in greater
detail with the particular intention to 6nd out whether,
in some way, it would be possible to preserve this
visuality also in a more exact theory based on conhgura-
tional interaction. In this connection, we will consider
physical quantities which are represented by operators
of the form (I, 2), and we note that even many-particle
operators may occur. This is of importance not only in
the nuclear theory but also for the extension of the
ordinary Hartree-Pock scheme to include degenerate
systems and correlation eBects, which will be discussed
in a following paper.

(a) Density Matrix for a Single Slater Determinant

Let us start by considering a wave function of the
form

U(xix2'' xN)=(N!) &det{ui,u2, u&},

which is built up of a set of E spin-orbitals N~, u2, N~,
being'„ linearly independent but not necessarily orthog-
onal. The basic spin-orbitals may therefore have non-
orthogonality integrals

~~up (xi)u~(xr)dsr=d(kl), (5)

1. DENSITY AND TRANSITION MATRICES IN THE
HARTREE-FOCK SCHEME

In Part I, it was shown that all physical properties of
a system of E antisymmetric particles may be charac-
terized by means of a series of density matrices (I, 3) of
various orders, and that a transition between two states
of the system may be described by a similar series of
transition matrices (I, 17). We will now investigate the
special form of these fundamental quantities in the
Hartree-Fock approximation.

sider a transformation

'4=+ uaaaa
a=1

(7)

According to the well-known theorem for d.eterminant
multiplication, we then obtain

U= U det{a p},

d(kl) =P ag.td(rrP) ae(,
aP

D=det{a~ t} D det fas~}.

(8)

(9)

(10)

9'=9»(9)=N, (13)

and 9 is therefore a projection operator; see also (I, 85).
Since the general densities (3) of various orders are

all invariant with respect to the transformation (7), we
may expect that they must be functions of the funda-
mental invariant (12), and the explicit form for these
functions is easily found. Since D '=det{d '(lk)}, we
get for the density matrix of order Ã:

r&~i(x, 'x, ' x~'~x,x, x~)

Since DAO, the matrix d. of the elements (5) has an
inverse matrix d ' having the elements d '(lk)
=D(kl)/D. According to (9), the matrix d ' has the
transformation property

J—i —a—1$—1(at)—1

In investigating the transformations, we may con-
sider the basic set uI, (k= 1, 2, N) as the components
of a vector in a not necessarily orthogonal Hilbert
space and the relation (7) as a vector transformation.
The "length" of this vector, de6ned by the relation

p(xi, xg) =P uA, *(xi)ug(x2)d —'(lk), (12)
kl

is then the only fundamental invariant against (7), and,
by using (7) and (11), this invariance is easily checked.
A quantity of this type was first introduced by Fock'
and investigated in detail by Dirac~ for the orthogonal
case (di, q

——8~q), but, considering the applications to
molecules and crystals with atomic orbitals having
overlap integrals essentially diGerent from zero, we
have here carried out the generalization to the non-
orthogonal case. By using (5) and (12), we find that p
fulfills the two matrix relations

t U*U(dh) =D=det{d(kl)} (6)

which are diferent from zero, if kQl. According to
(I, 39), the normalization integral for U is then given by

= U*(x]'xe' xN') U(xixg. . X~)D '

=(N!) ' dte{~u*( x) d}et{u~(x;)}detfd '(lk)}

= (N!)-' det{p (x,xr) } (14)

The wave function (4) is characterized by the fact
that, except for an unessential factor which vanishes in
the normalization, it is ieeariae$ against linear trans-
formations of the spin-orbitals involved. We wi11 con-

where we have used (12) and the ordinary law of
- determinant multiplication. The higher densities may

now be derived successively according to (I, 5) and
r P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930};

27, 240 (1931}.
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p(X1 Xj) p(X1,X2) p(xi', x,)
= (pf)

—1 p(x2, xi)
~ ~ 0

p(x„',xi)

P(x2', x2)
~ ~ ~

p (X,',X2)

p(x2', x,) (15)
~ ~ ~

p(x„',x„)

(13). Let us assume that the density of order p has
the explicit form

F{»(xiX2 ' ' 'X& )Xix2 ' 'X&)

which apparently is true for p=X. By developing this
density after its last column, putting x„'=x~, and
integrating by using (13), we find that the density of
order (p —1) has exactly the same form, which proves
our theorem. However, by reversing the arguments
used in forming (14), we may now expand the density
of order p by using the law for the determinant of the
product of two rectangular matrices in the following
way.

F{»(xi'x2' .x„'
I xix2 x„)

I ki(xi )
=(p!) '

x«u&(" u„N*~ (x ~~
ll &la & ~ ~ lp

1x /

S k~(xi ) Nii(X1)

N*k„(X„') Nli(X„)

Ni~(xi) {){
—'(l,k,)

2ii„(x„) d '(l„ki)

d '(Eik,)

d '(lk)

= (P ) ' Z N*&l(Xl') 1*&2,(X),')Nli(xi) ~ Nly(Xy)
A'1k'' ' 'ky
lll2 ~ ~ /p

d '(ski) d—'(lik„)
(16)

d '(l„ki) d-'(l~k„)

According to (I, 47) and (I, 48), we hence obtain for
the density matrix of order p in the space defined by the
nonorthogonal basic set 2' (k= 1, 2, .cV):

F{»(f14 l„~kik2 . k~)

The charge- and bond-order matrix of order p is there-
fore entirely characterized by the components of the
matrix d ', and for p= 1, we obtain in particular

y(leak)

=d—'(lk). (18)

Let us now turn back to the x-space. According to
(15) for p=1 and p=2, we have particularly

y(xi'~ xi) =p(xi', xi),
(19)

P (xi &xi) P (xi,x2)
F (xi'x2'

~
xix2) = -',

P (x2',xi) P (x2',x2)

i.e., the erst-order density matrix is identical with the

fundamental invariant (12). This means that, if the
total wave function is approximated by a single Slater
determinant, the first-order density matrix determines
also all the higher-order density matrices by (15), the
normalized wave function by (14), and hence the entire
physical situation. We can now also make a proper inter-
pretation of the first relation y'=y in (13), which is
equivalent with the relation y'=y; it means that the
eigenvalues of the matrix y(l(k) or the occupation
numbers eI, must be either 0 or 1. This result is charac-
teristic for the Hartree-Fock approximation, and, in
connection with our results in part I (Sec. 4), we have
then shown that the relation y'= y is the necessary and
sufhcient condition for reducing the total wave function
0' to a single determinant.

In the Hartree-Pock approximation, it is hence not
necessary to specify either the total wave function
or the special set of spin-orbitals used in the calcula-
tions, since all information about the system in the
speci6c state under consideration is contained in the
fundamental invariant p(xi, x2) given by (12). By using

(15), the fundamental formula (I, 10) takes the form

p(1', 1) p(1',2)
(Qgp)Av= Q{0)+ i Qip(1 q1){fX1+(2.) Q12 {E$18Ã2

p(2', 1) p(2', 2)

p(1', 1) p(1',2) p(1',3)

+(3!) ' Q123 p(2'&1) p(2', 2) p(2', 3) chidx2ck2+ . (21)

p(3'») p(3', 2) p(3' 3)

The corresponding formula for the orthogonal case and two-particle operators was 6rst derived by Pock.' in his

pioneer work. The average value of the operator Q,i, may now also be expressed directly in terms of the basic set eq.

See part I, reference 7.
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Introducing the matrix notations

f
(kI Q, Il) = u~*(1)Q,u, (1)dx„

(kgk2i Q)2il)l2) = u) )*(1)uI2*(2)Qgmu()(1)ui2(2)dx)dxm, (22)

and. putting expansion (16) into (I, 10), we obtain

d '(lyke) d '(lgk2)
(Q.p)A) Q(0)+Q(k(Q&(l)d '(lk)+(2!)—'Q (k,k2~Q»(l&4)

kl k&k2 d '(lmk)) d '(lyke)
/It 2

d '(lyh) ~ d '(lyka)
+ (3!)-' Q (k&k,ka~ Q»8~ l&l, /3) . + . (23)

d '(laky) . d '(lak3)

This is the general formula for the average value of an
arbitrary physical quantity (I, 2), containing also
many-particle operators, for a nonorthogonal basic set
NI, . The nonorthogonality problem has been discussed
rather extensively in the literature we note that the
corresponding formula for two-particle operators, pre-
viously given by the author, "was derived in an entirely
different way.

d..(kl) = u),*(1)v)(1)dx„ (24)

we have in (I, 39) obtained

(b) Transition Matrices for Two Sister

Determinants

Let us now consider two Slater determinants U and
V, built up from two not necessarily orthogonal sets I&
(k=1, 2, X) and v) (/=1, 2, X) according to
(I, 36). If the mutual nonorthogonality integrals are
given by

and the matrices d„„and d„, ' have then in matrix form
the transformation properties

d .=«td .h, d„„—'=b 'd„„-'(at)—' (27)

Let us now consider I and e as vectors in two associated
nonorthogonal Hilbert spaces, and the transformations
(26) as vector transformation s. Then the "scalar
product" of these two vectors, dehned by

p„„(x),x2) =P u),*(x))v((x2) d-'(lk), (28)

must be the only fundamental invariaet against the
transformations (26), and, by using (26) and (27), this
invariance is easily checked. Using (24), we find that
the matrix y„„also fulfills the characteristic relations
(13) for a projection operator.

The transition matrices of various orders may now be
calculated in the same way as for I=e. Introducing the
normalization constant

U*V(dx) =Dvv =det{d„„(kl)}.
Kvv=Dvv(DvvDvv) ',

fi d fo p=S:
(29)

u)')=p)) uNG)))')) v(=pp vol P() (26)

' See Part I, reference 10.
' See part I, reference 11.

For the discussion in this paper, we will assume that
the basic determinant DU& is essentially di8erent from
zero: DvvNO. In this case, the matrix d„, of the ele-
ments (24) has an inverse matrix d„„'with the elements
d„„-'(lk)=Dvv (kl)/D.

Except for unessential factors, ' each determinant U
and V is invariant against linear transformations of the
type (7):

rvv'~'(xl'x2' .x)v
~
x)x2 x)v)

KvvU (x) x2 ' ' 'x)()')V(x&x2 x&) det{d„.—'(lk)}

=Kvv (X!)—' det{p„„(x,x;)}. (30)

The density matrices of lower orders may then be
found successively by using (I, 5) and (13), and the
form is the same as in (15), (16), and (17) with y and
d ' replaced by y„„and d„„',respectively, multiplied
by the normalization constant (29).

In analogy to (21) and (23), we get therefore for the
transition element of an operator Q,~ with respect to
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two Slater determinants U and V with D~yNO:

(&lQ„l &)= "&*Q.,V(d*)/(DUUDvv)'*

p-(I'») p-(1',2)
&Uv Q(0)+ Qlpme(1', 1)d2'1+ (2!) '

' Q12 dgldg2+ ~ ~ .
p „(2',1) p„„(2',2)

d„„'(llki) d„„'(lik2)
=~Uv Q(0)+gfklQill)d- '(lk)+(2) '2 fkikslQ»l1112) +, (31)

kl kik2 d„„'(l,kl) d „'(lsk2)
l ll2

where the matrix elements are now defined by (I, 50).
In the special case when DUv=0, the invariant (28)

no longer exists, and formula (31) looses its meaning.
The general method developed in Part I, Sec. 2 b,
covers also this case, but it remains to investigate
whether the various transition matrices may be reduced
to some simpler fundamental invariants also in this
case, We will here leave this problem open.

Q.,C =VP4, (32)

where Q,n given by (I, 2) may contain also many-par-
ticle terms. Up till now we have not imposed any par-
ticular condition on the set mi„but, by a suitable linear
transformation, this set may now be orthonormalized
without changing the character of the total wave func-
tion. For this purpose, we will use the formula":

I d '*(nk), (33)

and we note that the set fs (k=1, 2, E) has the
required orthonormality property:

Putting (33) into the fundamental invariant (12), we

obtain

P(»,») =2 !is*(xl)ll8(X2)
1

(35)

which is just the Fock-Dirac density matrix with the
spin functions explicitly included in accordance with
the recommendations by Slater. This is also the diag-
onalized form (I, 74) of the first-order density matrix

y (xi l x2), and, due to the degeneracy 881——882 = 88)v ——1,

"See part I, reference 11. The matrix d & may here be con-
structed by transforming the Hermitean matrix d to diagonal form
by a unitary transformation V, taking the inverse of the square
root ont of the diagonal e!ements (which are all positive), and
going back to the original representation by the unitary trans-
formation V.

2. HARTREE-FOCK EQUATIONS IN TERMS OF
THE FUNDAMENTAL INVARIANT

(a) Variation of an Orthonormal Basic Set

I et us now determine the basic set N~, N~, . N~ in
such a way that the Slater determinant (4) form as
accurate an approximation as possible to a solution of
the eigenvalue problem:

the set f& xs is ——still undetermined on a unitary trans-
formation of spin-orbitals.

We will now determine the best choice of the set $8,
by applying the variation principle (I, 22). Using (21),
varying the set f&, and taking the orthornormality
condition (34) into account by introducing a Hermitean
matrix ) (Ilk) of Lagrangian multipliers, we obtain a
set of conditions which, according to (I, 92), may be
condensed in the form

p((1' Xi) p($1 X2)
Qlp($1 xi)+J Q12

P (xs,xi) P (xs,x2)

p((1 )Xl) p((1 )X2) p((1 qxs)

+(2.) Q128 p(X2 qxi) P(X2 qx2) P(X2 qxs) d082d+3

p(xs', xi) p(xs', x2) p(xs', xs)

+ =X(( 'l x,), (36)

where the operators 0 do not work on the primed
variables and, after the operations in the integrands
have been carried out, we have to put all x,'= x;. This
is the Hartree-Fock equation for the fundamental in-
variant p((1',xl). The function

1(('I )=RA*((')4 ( )1 (ilk), (37)
kl

in the right-hand member was here derived by using
the orthonormality condition (34) for the individual
spin-orbitals $8, but we will later see that we can for-
mulate this auxiliary condition also in terms of the
invariant g without reference to any orthonormality
property.

Since the density matrix (35) is already on diagonal
form, we may now use the remaining unitary trans-
formation of the set $8 for diagonalizing the matrix
X(ilk) in the function (37), and we will denote the
eigenvalues by olz. Applying (I, 96), we may now
rewrite (36) in the form

$8 (Xl) leak (X2)
Qlll'k(xi)+ I

Q12 ding
J p(x2', Xi) P (X2',X2)

A(») ll 8(x2) ll 8(xs)
I+ (2.) Q123 p(X2 )Xl) p(X2 )X2) p(X2 ix3) d2'2d$3

p (X3 )Xi) p (X3 px2) p (Xs',X2)

+ =o)48(xi), (38)
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which is just the set of ordinary Hartree-Pock. equations
for the individual functions 11k (k=1, 2, . Ã) gener-
alized to many-particle operators. Introducing the
operator I',; for permuting the variables x; and x;, we

may instead write (38) in the form of an eigenvalue

problem

Qeff(1)leak(xl) 10k' k(xl)& (39)

where the "effective" one-particle operator Q,ff cor-
responding to (I, 2) has the explicit form

1
Q.22(1) =Qi+ Q12 &2+ (2 ) Q123 p(xs', xi) p(xs', xs) p(X2', xs) d&sd&s+ ' ' '

p(X2', Xi) p(xs', X2)
P (xs,X1) P (Xs,xs) P (xs,xs)

(40)

where the permutation operators I'~, should work
directly on the wave function, i.e., should be written
to the right of the p-factors in expanding the deter-
minants. In this operator, the elements E~~ ——1 give

rise to ordinary potentials, whereas the elements I'».
for j /1 give rise to exchange potentials. Expanding the
determinants after their first rows, we can rewrite the
efFective 0-operator in the form

where
Q,21(1)=Qi+ Vop(1),

P(2', 2) P(2' 3)
V.p(1) = Q»(1 —&12)p(2')2)d22+(2!)

i

Q123(1—F12—Pis) dxsdxs+ . .
P (3',2) P (3 3)

(41)

(42)

As before we have here used the convention that, after
the operations have been carried out, we have to put
all x =x;. It is easily shown that 0,« is an Hermitean
operator, and this implies that the eigenfunctions fk
to (39) belonging to different eigenvalues ~k are auto-
matically orthogonal in consistency with the fact that
we have here transformed away all nondiagonal Lagran-
gian multipliers, which otherwise could be used for
preserving the orthogonality.

(b) Spin-Orbital Interaction

By means of the variation principle (I, 22) and the

simplifying assumption about the form (4) of the wave
function, the original eigenvalue problem (32) in con-
6guration space for the many-particle operator (I, 2)
has now been reduced to an eigenvalue problem for owe

particle in the ordinary x-space. The effective 0 operator
in (39) has the a,dvantage of a certain degree of physical
visuality: it consists of the one-particle term in the
original operator plus an "average potential" on the
particle, depending on its interaction with all the other
particles. This visuality may be emphasized by intro-
ducing the individual spin-orbitals fk or the density
matrices pk(xi, xs) =fk*(xi)itk(X2) associated with them.

Expanding the density matrix (35) in the form

P(x»xs) =P Pk(xi)xs)~

V (1)= V (1)= ~Q123(1—812—Eis)

pi(2', 2) pi(2', 3)
X dxsdhs, (45)

p-(3'») p-(3',3)

Here each term has a specific physical meaning: V'(1)
is the potential on particle 1 arising from another par-
ticle in spin-orbital l due to the two-particle interaction
operator Q12, V™(i)is the potential on particle 1
arising from a pair of particles in the spin-orbitals l
and m due to the three-particle interaction operator 0~~3,
etc. The efFect of these operators on an arbitrary func-
tion f(xi) is demonstrated by the formulas

f(1) f(2)
V'(1)f(x,)= Q»

pi(2', 1) pi(2', 2)

V'"'(1)f( )

f(1) f(2) f(3)

Q123 pl(2', 1) pi(2', 2) pi(2', 3) d2isd2is, (46)

p (3',1) p-(3', 2) p-(3' 3)

and substituting this expression into (42), we obtain

V"(1)=Z V'(1)+(2) '2 V'"(1)+ (44)

where

V'(1) = Q12(1—F12)pi(2', 2)dhs,

In discussing the physical interpretation of the poten-
tials (45), we note that the erst term in each of them
has an almost "classical" meaning, whereas the terms
containing the permutation operators I'~, depend on
the antisymmetry requirement (I, 1) and therefore cor-
respond to typical quantum-mechanical eGects. We
have seen that, in the x-space, the antisymmetry leads
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I'&»(ltls l„tktks k„), (48)

which are antisymmetric in each set of their indices, and
which therefore vanish identically if two indices in a
set happen to be the same. In the nonrelativistic
quantum theory of antisymmetric particles with static
interaction, there is consequently no self-energy prob-
lem, but, unfortunately, one has so far not been able
to generalize this result to relativistic theories and time-
dependent interactions.

In this connection, we will also introduce the total
quantities:

V'(1)A(x )=—0 V"(1)A(x )=—0, (47)

which means that the particle in spin-orbital k does not
interact with itself. This important result is not limited
to the ordinary Hartree-Pock approximation, for, in
considering the extended Hartree-Fock. equations (I,
89), (I, 90), (I, 92), and (I, 96) for limited con6gura-
tional interaction, we hand that the coefficients for the
interactions of various orders are given by the matrix

to the relation (I, 8) and the existence of the "Fermi elements
hole, " and we observe now another consequence,
namely:

p~(1', 1) ps(1', 2)
Vs'= ~V'(1)ps(1', 1)dxt= Qts dxtdxs,

p~(2' 1) p&(2 2)

pI, (1',1) ps (1',2) ps (1',3)

V ~~s=]~V'~(1)p (s1', 1)dx =t~Qtps p~(2', 1) p~(2', 2) p~(2', 3) dxtdxsdxs,

p (3 1) p (3 2) p (3 3)

(49)

where Vk'= V~k is the total potential between the spin-
orbitals k and l due to the two-particle interaction 0~2,
Vk' ——Ug k=U k' is the total potential between the
spin-orbitals k, I, and e due to the three-particle inter-
action Qtss, etc. Using (39), (44), and (49), we now
obtain for the "spin-orbital eigenva1ue" ~k ..

tps= ps*(1)Q.n(1)its(1)dxt

Qtps(1', 1)dxt+2 Vs'+(2!) 'Z Vs'"+. (50)
$m

giving a simple physical interpretation of this quantity.
We may also express (0,~)A„ in terms of the total spin-
orbital interaction potentials (49), and, according to
(21) and (43), we obtain

(0„)A„——0(p&+P ~I Qtpp(1', 1)dxt

+(2'!) 'P' Vs'+(3!) 'P' Vs™+,(51)
kltn

where, due to the factorial coeKcients, each interaction
term Vk', Vk', etc. will be counted only once. Compar-
ing (50) and (51), we get also

(0, )„„=0&,&+& ~ ——,'P' V '—&g' V ' — (52)
k~1 kl klm

showing that (0,~)A„ is different from the sum of the
eigenvalues, since the interaction potentials are counted
in diBerent ways in these two quantities.

(c) Average Exchange Potentials

The exchange potentials in (42) are of a rather com-
plicated character, and Slater" has therefore proposed
that they should be approximately replaced by "average
exchange potentials" being ordinary functions of x~. In
Part I, we have shown that this can be strictly done by
minimizing the weighted "error sum" (I, 100), and,
according to the general formula (I, 103), we then
obtain in the Hartree-I'oct. approximation:

p (1',1) p (1',2) p (1',3)
p(1', 1) p(1',2)

V(xt) = Qts dxs/p(1, 1)+(2!)
~

Qtss p(2', 1) p(2', 2) p(2', 3) dxsdxs/p(1, 1)+ ~ ~ ~ . (53)
p(2', 1) p(2', 2)

p(3' 1) p(3' 2) p(3' 3)

For 0;;=e /r;;, 0;;s=0, this is just the potential intro-
duced and investigated in detail by Slater."However,
an essential difference between (42) and (53) will later
be pointed out in connection with the treatment of the
"virtual" solutions to the eigenvalue problem (39).

~ J. C. Sister, Phys. Rev. 81, 385 (1951).
'P See aIso J. C. Slater, Phys. Rev. 82, 538 (1951);G. W. Pratt,

Jr. , Phys. Rev. 88, 1217 (1952).

(d) &ariation of the Fundamental Invariant

In considering the problem how to determine the
Slater determinant (4) in order to get as accurate
approximation as possible to an eigenfunction of the
operator Q,~, we have in the previous section applied the
variation principle by varying the basic orthonormal
set 1t&. In connection with the orthonormality condition
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3y=yhy+3y y' Tr(3y) =0. (54)

Varying expression (21), and using (40) and the first
relation (54), we then obtain

b(Q.,)A,
—— Qgff(1)3p(1', 1)dxr= 5p(1,2)Qeff(1)

(34), we have then introduced a matrix X(l~k) of
Lagrangian multipliers having the eigenvalues cd,.
However, according to (14), the total wave function

(4) is dependent only on the fundamental invariant y
defined by (12), and we will now instead treat the same
problem by varying this quantity as a whole. Since y
fulfills the relations (13), we get for its variation
3y =3p(xr, xs):

y'= y, Tr(y) =&. (61)

From the practical point view, we do not know any
convenient direct numerical method for solving equa-
tions like (60) and (61), but, with the development of
the modern electronic computers, the situation may be
changed. For the moment, Eq. (60) has mainly principal
interest, and it may serve as starting point for theories
based on approximate forms of the matrix p(xr, xs), as
the statistical approximation.

Instead of solving a set of S Hartree-Fock equations
for functions Ps(x&) (k=1, 2, E) of a single variable,
we can therefore principally treat the same problem by
solving a single equation (60) for a function p(xr, xs)
of two variables, fulfilling the auxiliary conditions

)&p (2,1)Cx&dxs+ complex conj. (55)

The auxiliary conditions for the variation of y are
contained in (54), and the problem is now to express
them in convenient form. "Combining the first relation

(13) with the first relation (54), we get

y 8y. p —0 (56)

I bp(1, 2)X(2,1)dx&Cxs+complex conj. =0. (59)

Combining (55) and (59), we obtain

Q ff(1)p (xs,xr) =X (xs,xr), (60)

which is the Hartree-Fock equation for the funda-
mental invariant y. This equation is, of course, identical
with (36), but we note that the function X(xs,xr) in
the right-hand member is here expressed directly in
terms of y according to (57). If the basic set is chosen
orthonormal, X(xs,x&) may then be expanded in the
form (37), see (I, 82) and (I, 86), and we obtain the
connection with the previous theory.

'4 See also J. Frenkel, Wave Mechanics, Advanced Gener g/ Theory
(Clsrendon Press, Oxford, 1934), p. 435,

In the terminology of Part I, Sec. 5, this means that bp

is without orthogonal projection within the subspace
of the Hilbert space defined by the matrix y. If
A.=A(xs,xr) is an arbitrary function and X=X(xs,xr) its
orthogonal projection within the same subspace, defined

by the matrix relation
X= yA. p) (57)

then the "scalar product" of 8y and X, must be zero,
and the djrect proof is simple:

Tr(by. k) =Tr(by yAy) =Tr(ybyy A) =0. (58)

This is the auxiliary condition desired, and it can be
expressed in the same form as (55), if we assume that
X is an Hermitean matrix and we further add the com-

plex conjugate to (58):

Qgrf(1) py(xl) rokl//k(X1)) (62)

for the basic spin-orbitals &ps (k=1, 2, .E), where
Q ff(1) is given by (40). The Hartree-Fock equations (62)
form together a system of coupled nonlinear integrp-dif-
ferential equations connected with aD eigenvalue
problem, and, since they therefore have a rather com-
plicated character, we will discuss the methods for
solving them in greater detail.

Hartree" has shown that, for a single atom or ion,
Eq. (62) is separable in polar coordinates, and that,
after elimination of the angular part, it remains to
solve a system of nonlinear radial integro-diGerential
equations. Hartree and his collaborators have solved
this system numerically by a method of successive
approximation: one starts from trial values of the spin-
orbitals, calculates p and the corresponding potentials
(45), and introduces them in the eRective Q operator.
For this fixed operator, one then determines the first g
eigenvalues and eigenfunctions by numerical integra-
tion, which then may be used for a new evaluation of y
and the potentials, etc. The process is carried on until
it becomes self-consistent, i.e., until two successive
approximations agree within the accuracy desired, and
the procedure is therefore called the "self-consistent-
field" method.

In molecular and crystals problems, it is usually not
possible to separate Eq. (62) by using any particular
form of coordinates. " In such cases, one may try
another approach, namely to expand the eigenfunctions

'~The only exceptions would be systems of extremely high
symmetry; compare the. "cellular" method for crystals @nQ its
modi6cations.

3. SOLUTION OF THE HARTREE-POCK EQUATIONS
BY EXPANDING THE EIGENFUNCTIONS IN A

FIXED COMPLETE SET

(a) General Theory

The essential problem in the Hartree-Fock method,
where the total wave function is approximated by a
single Slater determinant, is the solution of the one-
particle equation
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cc =I without completing the matrix to square form
by investigating the character of the virtual orbitals.
The properties of c are indicated in Fig. 1.

In Sec. 1 we have shown that, in the Hartree-Fock
approximation, the entire physical situation of the
many-particle system may be described by the funda-
mental invariant y defined by (12) or (35). Putting
(64) into (35), we obtain

Ordinary
part

Virtual
part

(66)
FIG. 1. The form of the rectangular matrix c, which has unitary where we have introduced the symbolproperties at least in the vertical direction.

to (62) in terms of a fixed complete orthonormal set g„
(p=i 2 ~ ):

N

Q(~u) =Z ~,&~a,'. (67)

A(x)=Z p (x)~
go=i

(63)

For the following general discussion, it is not necessary
to specify the detailed character of our many-particle
system, which may be an atom, ' molecule, crystal, or
atomic nucleus. For the sake of simplicity, we may
formally assume that the set has only finite order M,
and afterwards we will then let M—+~.

Since the operator Q,g~ is Hermitean, its eigenfunc-
tions $1, (k=1, 2, 1V) are automatically orthogonal,
and we will further assume that they are normalized to
fulfill (34). We note that, in addition to the X eigen-
functions which are used in constructing the density
matrix y, there may be also higher solutions for
k=iV+1, 1V+2, , but, for the moment, we are not
interested in these "virtual spin-orbitals. " The main
problem is now to determine the coeKcients c„~ in (63),
which form a rectaegllur matrix of order M)&X with
M') lV. It is here understood that (63) is momentarily
replaced by the approximate expansion

The entire physical situation is now instead determined
by the quadratic matrix Q of order M&(M.

Relation (66) gives also the first-order density
matrix y of the system. In Part I, the matrix of the
coeKcients p(v~p) in the expansion of this density
matrix with respect to a particular basic set q„has
generally been called the charge- amd bord-order matrix
with respect to this set, We will here use the special
notation

~(~l~) —=Q(~u), (68)

in order to indicate that we are considering the Hartree-
Fock approximation. The physical interpretation of the
elements is given in Part I, Sec. 2. We note also that,
in forming (66), we are carrying out the reverse to the
procedure used in forming (I, 74), since w'e are here
going from natural spin-orbitals to an arbitrarily chosen
basic set q„.

Since y fulfills the relations (13), the same must be
true also for the matrix Q:

Q'= Q, Tr(Q) =N, (69)

6(»)=Z ~.(»)~"
p=l

(64)

Substituting (64) into the orthonormality condition

(34), we obtain

ckp, col ~klan

p,~l
(65)

which may be condensed in matrix form to etc= I, if
we strictly observe that the symbols c and c~ indicate
rectangular matrices. We note that the matrix c has
urinary properties at least in the vertical direction, but
that we cannot prove the complementary relation

'6We note that, for atoms, the method may be used alter-
natively with Hartree's conventional treatment applying nu-
merical integration.

Qc= c, ctQc= I, (70)

where the unit matrix of the last relation is a square
matrix of order E.These relations are easily checked by
using (65) and (67).

Let us now consider the density matrices in the
p space. Putting (66) into (15) and using the law for
form~kg the determinant of a product of matrices, we

and we can easily check these relations by using (67).
The Hermitean matrix Q is therefore a "projection
operator" in the sense of Part I, Sec. 5. It has X eigen-
values equal to 1 and (M—1V) eigenvalues equal to
zero, and the eigenvectors associated with the eigen-
value 1 form together the rectangular matrix c. Hence
we have
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obtain

I' &» (xl'x2' x„ I xlx2 x„)

v(»'I xb =2 q.*(»')q.(»)Q(v~),

'Pvl (Xl )
=(p~) '

Ill(/II(' ' 'la vpv13(x )VI CV2+ ' Vy

fpVV (Xl } Ipvl (Xl)
~ ~

*(x ') q (x )

fp v(») Q(vu1) ." Q(vl v)
~ ~'.(.) Q(:) Q(:.)

which gives

Q(v») " Q(vl .)
=(p) ' 2 q *( ') q"'(.')q ( ) .

q "(.) .
PI@2' 'IJV Q(V.pl) " Q(Vvpv)

Q(Vi@1) Q(Vlfl2) ' ' ' Q(V11Av)

I"'(»v2 .vvl~»2" f )=(p) '
Q(v.pl) Q(v.p2) Q(v.p.)

(71)

(72)

All charge- and bond-order matrices of higher orders may therefore be expressed in the fundamental matrix Q,
and this is true also for p=X, i.e., for the wave function itself. Introducing the matrix elements with respect to
the set q„.'

Ly, IQ I ]=)"q„*(1)Q 22.(1)dx,

(73)

LPlp21Q121vlv2]= J
q'vl (1)g&v2 (2)Q12qlvl(I) qlv2(2)d2:ld&2&

and applying (I, 10), we get the fundamental formula

Q( ") Q( ")
'(Qov)Av Q(0)+pE I

Ql I v]Q(vp)+ (2!)-'2 5 lp21Q121 vlv2]
PV IJf III 2 Q(»») Q(v2»)

Q(vl 1)
+(3!) ' 2 Lp+2ltl31Q1231vlv2v3]

WP ~P3 Q(v3»)
VIV2Va

Q(vl 3)

+ . . (74)
Q(v3f 3)

showing that the average value of a physical quantity Q,v may be expressed in terms of the matrix elements (73)
and the charge- and bond-order matrix Q.

The essential problem is now to solve the Hartree-Fock equation (62) and determine the matrix Q. Since (62)
for a fixed Q,«operator represents a linear eigenvalue problem in the ordinary x-space, we may again apply the
variation principle (I, 22). Forming the average value of Q,ff by using expansion (64) and omitting the index k,
we obtain

where

(o= P*(1)Q,ff(1)f(1)dxl p*(1g (1)dxl ——Q c„*[pI Qef f I v]c„/p c„*b„„c„,
PV P, V

(75)

I

Lfl I
Q,ff I v] — q „*(1)Q,ff (1)q2„(1)dh,

q. (1) q (2)
I pI Q11v]+ "q,*(1)Q12

p(2', 1} p(2', 2)

q .(I) q.(2) q (3)

+ (2!) ') q„*(1)Q123p(2', 1) p(2', 2) p(2', 3}dxldh2dh3+ ~ ~ ~

p(3', 1) p(3', 2) p(3', 3)

LANAI

Q11v]+2 Q(v2fA2)(1 Pvv2)I flfA21Q121vv2]
g 2v2

Q(v2p2) Q(vs 3)
+(2!) 'Z (1 I vv2 Evv3)Lpff2f331Q1231 vv2v3]+ ' ' '. (76)

&vV' Q(V3f32) Q(V3P3)
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&0=0&0+~0 Q, »(~0)=0, (8o)

As in (44)-(52), the operator Q,ff may here be expanded
in terms of potentials from the densities p„*q,Q(fp),
and the matrix elements (76) may then be interpreted
analogously.

Keeping Q,ff fixed, varying the coefficients c in (75),
and putting So=0, we obtain a system of linear equa-
tions

(77)

which is soluble only if

det(plQ, fflf 1—cob„,) 0. P8)

This secular equation is an algebraic equation in co of
the order M, and it has therefore-M eigenvalues coI,

(k= 1, 2, N) which are all real. After the eigenvalues
have been determined, we may solve the 3f systems
(77) giving a quadratic matrix c„q of order 3E In ad.di-
tion to the X ordinary solutions, in which we were
originally interested, we have therefore also obtained
(M—Ã) "virtual" solutions, which will be discussed
later.

The whole nonlinea, r problem may now be solved by
a process of successive approximations which is anal-
ogous to Hartree's "self-consistent-field" method for
atoms. One starts from trial values Q"' of the funda-
mental charge- and bond-order matrix, evaluates the
matrix elements P6), solves the secular equation (78),
and thereafter the linear system (77). From the rec-
tangular matrix c„~ corresponding to the N ordinary
solutions of P8), one may then form a new approxima-
tion of the matrix Q by using the definition (67), and
the procedure is then repeated until it becomes "self-
consistent, "

i..e., until two successive approximations
agree within the accuracy desired.

The method of expanding the Hartree-Fock functions
in terms of a fixed given set was first used in the
molecular orbital theory in investigating the electronic
structure of molecules and crystals. However, a first
systematic treatment of the variation problem, em-
phasizing its nonlinear character, was first given by
Roothaan, ' who varied the coe%cients c„~ directly in
the total quantity (Q„~)A„. The derivation given here
follows more Hartree's conventional scheme and, in
addition, we have pointed out the essential simpli-
fications of the calculations which may be obtained by
introducing the charge- and bond-order matrix Q.

(b) Direct Variation of the Matrix Q
One could also consider the matrix Q as the funda-

mental variable in the problem and vary this quantity
as a whole instead of the coefficients c„I,. By varying
expression (74) and using P6), we obtain

&(~")"=Z"Lf I ~.«l ~j~Q( ~) =»(&. &0) (79)

The auxiliary conditions may be treated a,nalogously to
Sec. 2 (d). Since Q fulfills the relations (69), we get for
its variation:

and further
0&Q 0=o, (81)

N M

Xyy Q f Pjghf'jcjP f Xij Q c)gP APPcgjr)
k, l~l p, v=1

then the "scalar product" of ffQ and 2 is vanishing;

Tr(ffQ X) =0.

This relation presents the auxiliary conditions in a
convenient form, and, by combining (79) and (83), we
obtain

L& I ~~«l "1=4' (84)

This is the Hartree-Fock condition for the charge- and
bond-order matrix Q, and it says simply that the matrix

Lpl 0 ff l
i j should belong to the subspace defined by 0.

Togther with (69), this condition is sufficient for deter-
mining Q. It may also be expressed in the form

jeff —0+effQq

where Q,ff as in (79) is the matrix formed by the ele-
ments Lwlfl «lf'j

(c) Applications to the MO-LCAO-Method in the
Theory of the Electronic Structure of

Molecules and Crystals

In the molecular-orbital theory of molecules and
crystals introduced by Lennard-Jones, Hund, Mulliken,
Bloch, and others, the molecular orbitals for the elec-
trons were assumed to be solutions to a one-particle
Schrodinger equation, where the "effective" Hamil-
tonian consisted of the kinetic energy of the electron,
its potential energy in the nuclear framework, and its
potential energy in the field of all the other electrons.
As in the original Hartree scheme, the exclusion of the
interaction between a particle and itself caused mathe-
matical as well as physical diKculties, until this problem
was successfully solved by the introduction of the
antisymmetry requirement in the Hartree-Fock scheme,
which automatically eliminated the self-interaction;
see (47). The effective Hamiltonian of a molecule or a
crystal may therefore now be properly represented by
the one-particle operator (40) corresponding to a total
Hamiltonian of the form (I, 11):

Pl ~a
X.ff(1)= —e' Q—

25$ g &].g

& P (x2,X2)—P (xmpxf)Eim
f,' fgx2, (86)

showing that 80 is without orthogonal projection within
the subspace of the general Hilbert space defined by the
projection operator Q. If A. is an arbitrary matrix of
order 3f and X its orthogonal projection within this
subspace defined by

Z=QAQ,
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but we note that we here have neglected relativistic
effects (including all spin couplings) as well as the zero-
point vibrations of the nuclei g, having the atomic
numbers Z, .

y„*(1)y„(1)dx, =a„„=5„„+S„„, (87)

which may be essentially diGerent from zero. However,
by a suitable linear transformations as (33):

9.=Z-4-(A ')-,=Z.4.L(I+S) '3-„(88)
the basic set may be orthonormalized, J'p„*p,dr=8„„
and the general theory developed in (a) may then be
directly applied to the set p„of orthonormalized atomic
spin-orbitals (ON-ASO).

Let us consider a molecule or crystal in the Hartree-
Fock. approximation having a total wave function ap-
proximated by a single Slater determinant, built up
from X molecular spin-orbitals f&, $2 ' ' 'fiv &xpanding
Ps in the form (64) and using (88), we now obtain for
the fundamental invariant 9 defined by (35):

p(xi, xs) =g ps*(xi)14(xs)

where

=Z" 9.*(»)9.(»)Q(~i )
=g.p 4.*(xi)4p(xs)R(Pn),

R= a—tQA —&= (I+S)—&Q(1+S)—&.

(89)

(90)

We note that the matrix R may also be introduced
directly without the help of the ON-ASO, if we instead
start from the expansion

(d) Fundamental Charge and Bond Order Matrix R
with Respect to the Ordinary Atomic Orbitals

In the MSO-LCASO method of treating the electronic
structure of molecules and crystals, the molecular spin-
orbitals (MSO) are assumed to be formed by linear
combinations of atomic spin-orbitals (ASO) g„, which
may be the ordinary or hybridized 1s, 2s, 2p, 3s,
spin-orbitals associated with the atomic constituents of
the system. In comparison to (a), this assumption leads
to a complication, since atomic spin-orbitals g„and g„
belonging to neighboring atoms are usually overlapping,
and they have therefore nonorthogonality or overlap

integruls

for the rectangular matrix r I, of order M&(X. By using
(92) and (93), it is easily shown that, instead of (69),
the matrix R fulfills the relations

RcLR=R, Tr(4 R)=X, (94)

corresponding to (13).We note that the "overlapping"
matrix 4 occurs in (93) and (94), since it describes the
"geometry" of the nonorthogonal space, delned by
the basic set @„, and R may then be interpreted as a
"projection operator" in this space.

In a previous paper, "we have called the Q the charge-
and bond-order matrix of the system and R the "bond-
ing-overlapping" matrix, but, according to the general
terminology introduced in Part I, Sec. 2, we are now
going to change our nomenclature and call Q and R
the charge- and bond-order matrices with respect to the
orthonormalized and ordinary atomic spin-orbitals,
respectively. Let us now discuss the relation between
Q and R in greater detail, particularly from the chemical
point of view.

As an example, we will consider the interaction
between "closed-shell" ions. This case is nondegenerate,
and, if we choose M=X, it follows from the comple-
mentary relation to (65) that

Q(~u) =~". (95)

Since the bond orders vanish for p~ v, this relation cor-
responds to the nonexistence of valence bonds between
closed-shell systems. However, if the ions are put
together in, e.g., ue ionic crystal, the circumstances will
be changed. In previous papers, "we have shown that
the existence of such a crystal depends on the equi-
librium between the electrostatic attraction between
the ions and the repu1si, on due to the overlapping
between the ions at closer distances. It should be pos-
sible to express these repulsive properties also in the
valency language, and we note that, in this special case,
the matrix R is delned by

R= ~-'= (1+S)-',

giving charge and bond orders essentially depending on
the overlapping between the ions. Numerical applica-
tions may be found in reference 11 of Part I, and we
will here only illustrate the result by some recent data
on LiH by Lundqvist, "who has found the erst elements
of the charge- and bond-order matrix associated with the
1s-orbitals of Li+ and H to be:

4g, ——P y.r s

and introduce E. by the de6nition

R(Prr) =P re,rg,.t,

(91)

(92)

R»——1.419 for H, E„„=1.021 for Li+,
R„„=—0.052 for Li+H—(nearest neighbors),
R„„=—0.165 for H H—(next nearest neighbors).

%e note the negative signs and repulsive character of
the bond orders for nearest and next nearest neighbors.

rtwr=1,

Since the set fs is orthonormalized according to (34),
we get further

(93)

'r P. O. Lowdin, J. Chem. Phys. 19, 1570 (1951).
'8 See Part I, reference 11.
's S. O. Lundqvist, Arkiv Fysik 8, 177 (1954). Compare also

L Wailer and S. O. Lundqvist, Arkiv Fysik 7, 121 (1953), where,
as Lundqvist has kindly pointed out to me, there are some mis-
prints in the signs of the bond orders.
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Lundqvist has used these and higher elements for
investigating the diagonal element p(x, x) of the density
matrix, and, in this connection, he has been able to
draw interesting conclusions concerning the amount of
"covalent" character of LiH. It should here further be
remarked that, in investigating the properties of ionic
crystals, the complete density-matrix formalism has
previously been used also by Froman" and by Montet,
Keller, and Mayer"

Another example may be found in a paper by Sponer"
and the author, where the matrices Q and R for the
mw bond in ethylene have been compared.

Our comparison between Q and R shows that, from
the chemical point of view, Q is the charge- and bond-
order matrix for separated atoms with nondiagonal
elements representing the formal valency of the atoms,
whereas R is the charge- and bond-order matrix asso-
ciated with the atoms in the molecule or crystal under
consideration with nondiagonal elements representing
the acflal bond strengths. This result seems to be in
agreement with the new definition of "relative bond
strengths" introduced by Mulliken. "

In discussing molecules and crystals, we have pre-
viously'~ also introduced so-called "combined atomic
spin-orbitals" by the relation

&.'=Z- 4-R(~~) (96)

Using the fact that R is a "projection operator" ful-
filling (94), we now obtain for the fundamental in-
variant

p(. ,")=Z-s ~-*( )~~(")R(~-)
=p„„y„*(xi)y„(x2)A„„.

Since this quantity depends only on the set P„o and the

overlapping matrix 6, all our previous asymmetric
formulas in reference 15 are now easily symmetrized.
Using (94), we obtain further

4.'*(1)4.'(1)d»=R(~v) (98)

This is therefore a case where the overlap integral
between two one-particle functions really measures the
charge and bond orders of the system.

From the fundamental theorem derived in Sec. 1, it
is clear that if, in any way, we could determine or
measure the first-order density matrix p(xi'l xi) or the
charge- and bond-order matrix R, then we would have
all information needed for describing the properties of
the system with an accuracy corresponding at least to
the Hartree-Fock approximation. It is possible, e.g. , by
diGraction experiments to determine the average par-
ticle distribution in the ordinary x-space, corresponding
to the diagonal element, y(xi l x,), but, so far, none has
been able to devise any experiments for measuring the
entire matrix y(xi lxi). This quantity offers, in fact, a
rather intricate problem, since it gives the description
of the same physical situation in two complementary
spaces, and, like the complex wave function, " it has
therefore only a symbolic character and can never be
measured directly. How p(xi'lxi) may be determined
from two diagonal distributions y (x

l
x) and y (k l k) in

complementary spaces is a particular problem. '4

We will 6nally give the expression of the average
value of a physical quantity Q,P defined by (I, 2) in
terms of the fundamental matrix R. The charge- and
bond-order matrices of higher orders are expressed by
formula (72) with 0 replaced by R, and, according to

(I, 10), we then obtain

R(vilii) R(vil12)
(Q.,)A QiD)+p(p l Qil v)R(vl )+(2!) ' Q (pl@2 [Q12l P1V2)

pv P &@2 R(P2121) R(P2122)

R(vilir) ~ ~ R(P1122)

+(3!) ' p (pip2pslQ122l vivsvs) . +, (99)
R(vslii) . . . R(vs@2)

where the matrix elements are given by (73) with the
functions p„replaced by the functions P„. A special
case of this formula was previously derived by the
author" in another way.

expansion (91). They are solutions to the eigenvalue

problem (62), and, for a fixed operator Q,«, they may
therefore be found from the variation principle. Using

(91), we obtain

(e) Hartree-Foclr Equations in the
MO-LCAO-Theory

DD= ' f*(1)Q,tt(1)f(1)d» P(1)4 (1)d»
Let us turn now to the question of determining the

molecular spin-orbitals lt2, i.e., the coefficients r A in

22 P. 0. Froman, Arkiv Fysik 5, 135 (1952); 9, 93 (1954).
» Montet, Keller, and Mayer, J. Chem. Phys. 20, 1057 (1952).
~H. Sponer and P. O. Lowdin, J. phys. radium 15, 607

(i954)."R.S. Mulliken (private communication).

=P r„*(p
I
Q ill p)p.lZ v.'A"v. , (1oo)

~See, for instance, W. Pauli, H'uedbuch der Physik (Julius
Springer, Berlin, 1933), Vol. 24, No. 1, particularly p. 98.
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where

(~ I
II.«I ~)

—(y~ Ilq~ v)+P R(v2p2) (1—P»2)(A+2~ II)2~ pp2)
p'2+2

R(v2p2) E.(vgpa)
+(2i) '2

I"'I" R(vap2) R(v8p3)

X(1—P-2—P-3)(pp2p~~II~2~~ ppga)+ (101)

The MO-LCAO method in its "self-consistent
field" form was first discussed in detail by Roothaan, '
but we note the essential simplification of the pro-
cedure here obtained by introducing the charge- and
bond-order matrix R. The first numerical application
of Roothaan's scheme was carried out by Parr and
Mulliken "

In analogy to (79)—(85), we may also derive the
Hartree-Pock equations by varying the matrix R as
a whole. According to (94), we obtain

All matrix elements are here to be tak.en with respect
to the functions @„.Keeping II,« fix, varying the coef-
ficients r„ in (100), and putting R&=0, we obtain a
system of linear equations

Z.{(~ I
II.«l ~) —~A")& =o

which is soluble only if

det{(p, ~II,«~ v) —~A„„)=0.

(102)

(103)

These relations are identical with (77) and (78), if the
Kronecker symbol 5„„in them is replaced by the over-

lapping matrix 6„„.The nonlinear problem of finding
the coefficients r„may therefore again be solved by a
method of "self-consistent fields, " starting from trial
values R&'& of the matrix R, solving the secular equation
(103), evaluating the coefficients r„~ from (102), and
recomputing a new approximation of R according to
(92), etc.

If the numerical program for solving the secular
equation (78) may be adapted to the case D„„WO for

pA v, the occurrence of the overlapping matrix does not
cause any particular difhculties. The rectangular matrix

r„~ has to fulfill the relation (93), but we note that, for

@WAN,

the relation (rtckr)„„=0 is automatically fulfilled

and that the solutions to (102) only have to be properly
"normalized" by a constant coefficient to satisfy
(rtXr) „„=1.

Ra. bR aR=O, (104)

which leads to the following auxiliary condition:

Tr(&R aRA.R&) =0, (105)

where A. is an arbitrary matrix of the order 31. The
Hartree-Foe%. equations may then be condensed in a
single relation

where
(I (II.«)v)=X„„,

X= ~RARa.

(106)

(107)

(f) The Coulomb and Exchange Integrals in the
MO-LCAO Theory of Conjugated Systems

In the theory of conjugated organic compounds,
there are particularly two types of quantities which
are considered to be of importance, namely the
"Coulomb integrals" o.„and the "exchange integrals"
P„„(pWp) defined as the matrix elements of the effect-
tive Hamiltonian4 but usually determined by fitting
some theoretical quantities containing them to experi-
mental data. In the Hartree-Fock scheme, the effective
Hamiltonian is now given by the simple expression
(86), and its matrix elements may then be determined
on a purely theoretical basis. For the elements of 3C,~f

with respect to the ordinary atomic spin-orbitals g„,
we obtain

Zg—e' P —@,(1)dxg

t. $„*(1)p„*(2)g„(1)Pg (2)—@„*(1)P„*(2)Pg (1)g„(2)
+e' p R(X~)

~
— dx~dh2, (108)

as a special case of (101).According to (76), the cor-
responding elements [p~K, ~g~ v] with respect to the
orthonormalized set p„may be obtained by replacing
p„and R in (108) by y„and Q, respectively. We note
that the change of basic set is easily carried out by
means of the formulas

A further discussion of these quantities for the aromatic
compounds will be given in a following paper.

4. ORDINARY AND VIRTUAL HARTREE-FOCK
FUNCTIONS

In treating the basic eigenvalue problem (39):

II.«(I)A(1) =~4~(1) (110)

by, e.g. , the method of expanding the eigenfunctions
in a fixed set q„of order 3f, we have found that, in
addition to the X ordinary solutions used in forming
the density matrix (66), there are (M—Ã) solutions
to (77) and (78) which are also eigenfunctions to II,«

» R. G. Parr and R. S. Mulliken, J. Chem. Phys. 18, 1338
(1950).
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considered as a Axed operator. Hall and I,ennard-
Jones" have called these extra solutions virtual
Hartree-Fock functions, and they have pointed out
that they correspond to the existence of spin-orbitals
containing "virtual" particles moving under the inQu-

ence of the real particles of the system without in-
Quencing their motion in return; the "virtual" particles
should therefore in some way behave like classical
"test charges. "

If M—+~ and the basic set p„becomes complete,
the number of virtual solutions becomes also in6nite,
but, without a detailed investigation, it is impossible
to predict the character of the eigenvalue spectrum
for co~, how large part of it will be discrete and how
large part will be continuous, etc. It could happen
that the ordinary and virtual solutions to (110)
together would form a comPlefe orthonormal set, and,
in such cases, this set is of particular importance for
discussing the properties of the system.

If the N ordinary solutions to (110) are used for
describing the properties of the system in the Hartree-
Fock scheme, the virtual spin-orbitals could be used
for improving this approximation by, e.g. , the method
of configurational interaction based on (I, 70) and
(I, 71). It is evident that, if the basic set satisfies
(110), considerable simplifications can be carried out
in the fundamental matrix elements (I, 68). Increasing
the number of virtual spin-orbitals taken into account,
one can in this way obtain a series of approximations,
where the Hartree-Fock scheme represents the first
step, as described by Mlsller and Plesset. sr

The more or less complete set of ordinary and virtual
solutions to (110) may be used also in the one-particle
space for solving eigenvalue problems of the same type
as (110) but for other effective operators. One can
then apply the standard scheme developed in Sec.
3 (a), and the method is, of course, particularly con-
venient if the operator under consideration is only
slightly diGerent from the basic operator 0,«, in
which case the procedure will be related to the "per-
turbation method" developed by Peng. "

In treating the virtual solutions to (110),one should
observe the difference between the exact potential (42)
containing also exchange operators and Slater's""
average potential (53). In deriving (53), we have
minimized the weighted "error sum" (I, 100) con-
taining only the ordinary solutions, and this means
that there might be considerable differences between
(42) and its approximate form (53) when applied to
the virtual spin-orbitals. For the sake of simplicity,
let us consider the Coulomb potential, in which case

's G. G. Hall and J. Lennard-Jones, Proc. Roy. Soc. (London)
A202, 155 (1950)."C. Mglller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

's H. W. Peng, Proc Roy. Soc. (Lo.ndon) A178, 499 (1941).

where the density matrix y has the character of a pro-
jection operator fulfilling (13). We have further

f fs(1), k= 1, 2, N;
p(2, 1)gl, (2)dxs ——

0, k=N+1, N+2,
(113)

giving a characteristic difference between the ordinary
spin-orbitals (k=1, 2, . N) and the virtual spin-
orbitals (k=N+1, N+2, ). The potentials (111)
and (112) are different particularly with respect to
their asymptotic behavior when applied to virtual
spin-orbitals, and, if x& is a point having a very large
distance E& from the average position of the ordinary
particles in the system, then we obtain

E—1, 0=1, 2, - E.
(114)

k=N+1, N+2,

g2

V..(1)its(1)-—A(1)X
Ry

and
8

V „(1)P (1) ~ (1)X (N —1),
E

for all k. (115)

This result implies that the virtual spin-orbitals will
be essentially diGerent for the two potentials under
consideration. We observe that the approximate form
(112) corresponds to a screening of the nuclear frame-
work which is one particle less than the screening cor-
responding to (111),and one can therefore expect that
the virtual solutions associated with (112) would be
more stable and have a more extended discrete eigen-
value spectrum than the virtual spin-orbitals be-
longing to the exact eigenvalue problem (110). From
this point of view, the Slater potential would therefore
be more convenient in constructing a complete set."

In the MO-LCAO theory of molecules and crystals,
sets of approximate virtual spin-orbitals have been
evaluated in a few cases and used in configurational
interaction, but, otherwise, the theory of the virtual
Hartree-Fock solutions to (110) seems to be a field
waiting for a closer investigation.

5. TREATMENT OF IONIZED AND EXCITED STATES

In considering the eigenvalue problem (32), we have
applied the variation principle (I, 22) without any
further restraining condition, and this means that we
are actually investigating the state corresponding to
the lowest eigenvalue of 0,~, i.e., the ground state of
this operator. In this section, we will now show how the

~ See also Part I, reference 17.

(42) and (53) take the forms

t. p(2, 2)—p(2, 1)&is
Vo, (1)=es ~ dxs, (111)

~12

t. p(2, 2) —(p(2, 1)p(1,2) j/p(1, 1)
dxs, (112)
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method may be extended to include also the treatment
of ionized and excited states.

In Sec. 1, we have shown that, in the Hartree-Pock
approximation, the entire physical situation of the
system is determined by the erst-order density matrix
y(xi'~ xi) =p(xi', xi), and we have not been able to give
a particular physical importance to anyone of the basic
sets of individual spin-orbitals fs (h= 1, 2, g) being
connected with each other by unitary transformations.
However, in considering also the ionized states, Koop-
mans" has shown that a special physical meaning could
be attached to the set representing the eigenfurrctions
to the effective operator (40), i.e., to the set for which
the matrix X(l~h) of the Lagrangian multipliers is
diagonalized, and, in this connection, he gave also a
specific interpretation of the corresponding eigenvalues.

In considering also other properties of the system, it
could happen that another set of spin-orbitals will get a
particular importance, and, as an example, we will
mention the "equivalent" orbitals introduced by
Lennard-Jones" in treating the problem of chemical
valency.

Here we will show that it is possible to extend Koop-
man's theorem for ionized states to be valid even for
many-particle operators Q„of the form (I, 2). However,
the main purpose of the investigation is to try to give
a thorough treatment also of the problem of the excited
states.

Let us consider two different states of the same
system having a axed outer framework" and repre-
senting different eigenstates of the same operator (I, 2).
In the Hartree-Pock approximation, these states may
be described by two single-determinant wave functions
4' and 4, characterized by the invariants y' and y,
respectively, where

0'= 0+F0.

In order to determine the differences

(116)

~(Q.,)=(Q.,')„—(Q.„)„, AQ.„=Q.„'—Q.„,

we will put (116) into (21) and (40)-(42), and carry
out the subtractions. We obtain the two basic formulas

Ap(1', 1) Ap(1', 2)
A(Q(&p)= Qerf(1)kp(1, 1)dxl+(2I) ' Qis dxidxs

hp(2', 1) Ap(2', 2)

hp(1', 1) Ap(1', 2) p(1',3) Ap(1', 1) hp(i', 2) hp(1', 3) '

+ (3l) ' Qrss& 3 Ap(2', I) r)p(2', 2) p(2')3) + Ap(2', I) Ap(2', 2) Ap(2', 3) ~dxidxsdxs+ ~, (118)

~P(3 $1) leap(312) P(3 t3) AP(3 lI) Ap(3 t2) Ap(3 3) .

AQef f Qis (I Pie) hp (2',2)dx2

r Ap(2', 2) p(2', 3) d,p(2', 2) hp(2', 3)
+(2!) ' Qirs(1 Pls Pls) ' 2 + dxsdx3+ . (119)

Ap(3', 2) p(3',3) Ap(3', 2) hp(3', 3)

(a) Ionized States

Let us Grst consider the singly ionized states, where
the system has the operator (I, 2) but contains only
(cV—1) particles. This means that one particle has been
removed to infinity from the original system, and it
seems therefore natural to assume that, at least in a
first approximation, nothing new has been added to the
system and that, in the terminology of Part I, Sec. 5,
the matrix 0' for the iorrised state belongs entirely to the

subspace drfiried by the matrix 0 for the origilal state, or
yy'y= y'. The matrices y and y' are both "projection
operators" fulfilling the relations ps= 0, Tr(0) =X,
(0')'= 0', Tr(0') =X—1, and for their difference

80 T. Koopnians, Physica I, 104 (1933)."J. Lennard-Jones, Proc. Roy. Soc. (London) A198, 1, 14
(1949);G. G. Hall and J.Lennard-Jones, Proc. Roy. Soc. (London)
202, 155 (1950); J. Lennard-Jones and J. A. Pople, Proc. Roy.
Soc. (London) 202, 166 (1950); J. A. Pople, Proc. Roy. Soc.
(London) 202, 323 (1950); G. G. Hall, Proc. Roy. Soc. (London)
202, 336 (1950);G. G. Hall and J.Lennard-Jones, Proc. Roy. Soc.
(London) 205, 357 (1951);G. G. Hall, Proc. Roy. Soc. (London)
205, 541 (1951);213, 113 (1952).

Ay= y' —y, we then obtain

In expanding d 0 in a fixed basic set according to (I, 34),
this implies that the matrix of the coefhcients has a
single eigenvalue equal to —1 and all the others 0. By
transforming this expansion to "natural spin-orbitals"
analogous to (I, 74), we then obtain

hp {xi,xs) = —
lbe (xi)ll (xs), (121)

where P(x) is an undetermined spin-orbital. Our basic
assumption leads therefore automatically to a fac-
torization of the di6erence dy, which will essentially
simplify the discussion, since all determinants in (118)
which are of at least the second degree in Ay will now
vanish identically.

3'In considering molecules and crystals, this means that we
treat only "vertical" transitions with the nuclei Axed in the same
positions in both states. If the nuclei are in equilibrium in one
state, they are therefore usually outside their equilibrium positions
in the other states; compare the Franck-Condon principle.
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Combining (118) and (121), we obtain

Z(Q.,)=—tye(1}Q.„(1)y(1)d~„ (122)

(Q.n')s„——(Q.n)A,
— f*(1)Qe ff(1)P(1)dx&. (123)

J 0 ~0iy 0~ P+i10j& (127)

where the quantity +60; indicates that something
essentially new has been added in the excited state,
whereas the quantity —Dy; means that something
previously existing in the original state has been taken
away. In a first approximation, we will assume that the
three matrices

According to the variation principle (I, 22), the eigen-
states of the ionized system are associated with the
extreme values of (Q,n')A„, and, since (Q,o)A„ is a con-
stant, these occur simultaneously with the extreme
values of the last term in the right-hand member of
(123), i.e., for spin-orbitals satisfying the relation

Q,rt(1) lt (x,) = to|i (xr), (124)

where the variation principle is applied a second time to
the one-particle space. The eigenfunctions fs to Q,rr are
therefore of particular importance in constructing the
ionized states, and, if the wave function for the original
state is a determinant built up from the functions g t,

. f~, then the wave function for the ionized state
(k) may be obtained by striking away the column
containing the spin-orbital fs together with an arbitrary
particle row. Combination of (123) and (124) gives
further

are all idempotent (ys=y, etc.), and that the 6rst
belongs to the subspace defined by the second, and the
second to the subspace defined by the third; see (I, 88).
It is then easily shown that the matrices Ag, and 5y;
are also idempotent with 0 and 1 as their only eigen-
values, and their traces are then also integers. For a
single excitation, their traces are 1, and the coefFicient
matrices in their expansions (I, 34) have therefore a
single eigenvalue equal to 1 and the others equal to
zero. By transforming dy; and Dy; to diagonal form
according to (I, 74), we then obtain

Ap, (1,2) =tP;*(1)tP;(2), Ap (1,2) =P *(1)P (2), (128)

where lt; and f; are natural spin-orbitals to be deter-
mined. Under these simplifying assumptions, Ap may
therefore be written in the form

(Q.,')A„——(Q.,)A„—ros. (125) hp (1,2) = fit (1)f;(2)—p;*(1)f;(2) (129)

This is a generalization of Koopmans' theorem" to
include also many-particle operators, " and it gives a
rather visual interpretation of the eigenfunctions fI,
(k=1, 2, X) and the corresponding eigenvalues ~ds.

YVe note that the result is not exact even within the
Hartree-Fock approximation, since it is based on a sim-

plifying assumption leading to (121). A proper treat-
ment could be carried out by solving the Hartree-Pock
equations for the system of (lV—1) particles by apply-
ing the methods in (3a) to, e.g. , the basic set formed by
the ordinary and virtual eigenfunctions of its for the
system of N particles. '4 However, as Mullikan4 has
pointed out, due to cancellation of errors, it seems
likely that the values of A(Q) given in (125) will show
better agreement with experimental data than the
refined quantities.

(b) Excited States

I.et us now turn to the problem of the excited states
which, according to our opinion, has not been too
satisfactorily treated in the literature. If y and y' are
the invariants associated with the original and the
excited state, respectively, we have

0'= 0+no= 0+ay; —a0; (126)
~ It should be noted that, in several textbooks and surveys,

Koopmans' theorem have been treated rather superficially,
proving only the relation i1(Q s)= —ar& without considering the
extreme value properties.

~ See also G. G. Hall and J, Lennard-Jones, Proc. Roy. Soc.
(London) A202, 155 (1950),where this problem is treated by using
perturbation theory.

for a single excitation, and we will now see that this
special form for hy leads to a considerable simplification
of our discussion.

The basic quantities (118) and (119) are expressed
in terms of determinants of the elements y and 5y, and
we note that all determinants of third or higher degree
in Ay will vanish identically independent of their orders,
since they may be expanded in determinants containing
two or more columns of Ag; or hy;, which vanish due
to the factorization in (128). By putting 0= 0'—d, 0 into
(21) and repeating the subtraction, we may also obtain
a new form for 6(Q,~) expressed in Q, ti', 0', and 60,
which is analogous to (118) but has minus signs for all
the determinants of the second degree in Ay. By adding
the two expressions for A(Q), the determinants of the
second-order cancel, and the higher order determinants
combine to determinants of the third degree in hg,
which will then vanish identically due to the argument
given above. In this way, we obtain the simple formula:t'

By using (119) and (128), we may further derive the

f We note that, in Eqs. (130)—(132) and (137)—(138), the
"prime" has been used with two different meanings, which must
not be confused: the prime on Q, gi'(1) indicates that the operator
is associated with the excited state, whereas the prime on xI in
the integrands indicates that the operators do not work on this
coordinate, which afterwards has to be put equal to xy.
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relation:

AQ&&ff (1){Ap;(I'&I)+Ap, (I'&I))dxf ——0, (131)

which, in combination with (130), gives

f& (Q.p) = Q.ff'(1)Ap j(1',1)dxi

or finally

Q ff(1)Ap, (1'&1)dhi& (132)

'

p,*(1)Q,ff(1)p,(1)dxi. (133)

Qeff 4j=f»j '4'j
&

Qefg'&=~f4'f

For the excitation difference, we then obtain

(135)

The process may therefore be described as an excita-
tion i—&j of an entire particle from an occupied spin-

According to the variation principle (I, 22), the
higher eigenvalues of Q,„are associated with the extreme
va, lues of (Q,~')A„, and since (Q,~)A„ is a constant, these
occur simultaneously with the extreme values of the
second and third terms of the right-hand member of
(133), i.e., for functions Pj and f; satisfying

orbital ip;, being an eigenfunction to Q, ff, to an unoc-
cupied spin-orbital pj', being an eigenfunction to Q,ff'.
We note particularly that, in (135), the quantity e&j is
a spin-orbital eigenvalue associated with the operator
0,«' for the excited state, and that 0,«' may have an
eigenvalue spectrum which is rather diGerent from the
corresponding spectrum for Q,«.35 It is evident that the
arguments leading to the naive form (foj—or;) for the
excitation difference d, (Q,~) must be erroneous, but also
that it is possible to preserve the visuality of the theory
by introducing the operator Q,ff'."

Let us now construct the wave function 0 ' for the
excited state by using (129) and (134). If the function
4 for the ground state is a determinant built up from
the eigenfunctions ff, (h=1, 2, E) to the operator
0 ff, then 0 ' is the determinant obtained from 0 by
replacing the column containing the spin-orbital P; by
a column containing the excited spin-orbital f; . Using
(119) and (128), we may derive the relation

J iaaf j *AQ,fag;dx=0, (136)

which shows that the spin-orbitals P& and P; satisfying
(134) will still be orthogofffJl, and, according to (I, 39),
the same is then true also for the total wave functions
0' and O'. The auxiliary condition to the variational
principle (I, 22) is therefore fulllled.

Even under the simplifying assumptions leading to
(128), the treatment of the excited states is a rather
complicated problem due to the unknown character of
the operator Q,«'. According to (119), Q,«' is given by
the formula

Q.«'(1) =Q.ff(1)+ Qis(1 —Pis)Ap(2'&2)dxs

Ap(2', 2) p(2', 3) Ap(2', 2) Ap(2', 3)
+ (2!) ' Qiss(1 —Pi2 —Pfs) 2 + '

dhsdxs+ . , (137)
Ap(3', 2) p(3', 3) Ap(3', 2) Ap(3', 3)

but, as usual in the Hartree-Fock scheme, the problem of finding its eigenfunctions has a nonlinear character,
since Q,«' depends on Ap and consequently also on Pj'.

In principle, this problem could be solved by the general method developed in (3a) by expanding the eigen-
functions pj to Q,«' in the set formed by the ordinary and virtual eigenfunctions to Q,ff. In a first very rough ap-
proximation, the eigenvalues to 0„1& are then given by first-order perturbation theory:

f& p;(1',1) Apj(1', 2)
f»j fj (1)Qeff ( )pI( j) Idlh= Mj Qls — dhidhs

Apj(2', I) Apj(2', 2)

Dpj(1', 1) hp;(1', 2) Ap&(1', 3)

Qfss AP;(2'&1) AP;(2'&2) AP;(2'&3) dhidxsdhs —,(138)

p(3', 1) p(3', 2) p(3', 3)

3'Compare, e.g., J. C. Slater, "Technical Report No. 6 of the Solid-State and Molecular Theory Group at M.I.T.," April 15,
1954 (unpublished).

"Compare C. C. J. Roothaan, Revs. Modern Phys. 23, 69 (1951),p. 80,
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where we have used (128). Using the notations (49),
this may also be written

(139)

which result corresponds to the formula for the two-
particle case and average singlet-triplet state given by
Roothaan. "However, first-order perturbation theory is
probably not accurate enough for treating the question
of the nature of the excited states, and a much more
detailed study seems therefore to be necessary. '5 In a
really accurate theory, one must finally remove the
simplifying assumptions leading to the factorization in
(128).

(c) Limitations of the Present Theory

Up till now we have assumed that the total wave
function for the state and system under consideration
may be represented by a single Slater determinant. We
note that, in most cases, this means a rather hard
restriction on the validity of the Hartree-Pock scheme;
only in exceptional cases can we consider, e.g., pure
spin states, since a single determinant will in general
represent a mixture between several multiplets.

In order to treat this problem in greater detail, we
will assume that the natural spin-orbitals involved have
either plus or minus spin and write the fundamental
density matrix y, defined by (35), in the form

p (xi x2) p+ (rl 12) tx ($1)ll ($2)+p—(ri rn) p ($1)p ($2) (140)

where we have separated the two groups of orbitals
having different spins. The matrices y+ and y are
"projection operators" in the ordinary r-space satis-
fying the relations

(141)

where Ã+ and S are the number of orbitals associated
with plus and minus spin, respectively. Independent of

the way in which we have chosen our two sets of orbitals,
we will further let v denote the number of "doubly
occupied orbitals, " defined by the integral

V= p+(Fl t2)p (r2 rl)d~ld&2. (142)

(S'),=-,' (E —X )'+ (-,'1V—). (143)

Only in the special cases X~=N = v= 1V/2 and Z+——X,
X =v=0, we have, respectively,

(S') „=0, (S') „=~Ã(-,'1V+1), (144)

corresponding to the pure spin states of lowest and
highest multiplicity.

It is therefore evident that the ordinary Hartree-Fock
scheme cannot properly treat states and systems
showing spin or orbital degeneracies, since, in such
cases, the wave function cannot be represented. by a
single determinant. It is also well known that corre-
lation eGects associated with particles having diGerent
spins are not taken into account in constructing the
single-determinant wave function (2). These weaknesses
in the present theory may be removed only by con-
sidering wave functions to be sums of Slater deter-
minants, i.e., by using the method of "configurational
interaction" described in Part I. However, between the
ordinary Hartree-I'oek scheme and the exact method
of configurational interaction, there seems to exist also
an intermediate stage of "fixed" configurational inter-
action, where it is possible to preserve part of the
physical simplicity and visuality characteristic of the
Hartree-Fock method. This problem will be treated in
a following paper of this series.

The average value of the total spin S' (measured in
units of h) with respect to a single determinant, charac-
terized by the invariant (140), is given by the general
formula (l, 14), and, since the second-order density is
represented by the determinant (19), we obtain after
some elementary calculations:


