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a/L is small, the steady state saturation voltage is
proportional to the surface recombination velocity o;
when a/L is large, the saturation voltage is independent
of o but inversely proportional to the diffusion length L.

Mathematically, the key to the initial peaking of
the function V lies in the relation of the first two terms
in each of the infinite series. In the numerator Fo>>F,;
and the v, increase progressively; hence the second
term with high exponential damping dominates the
series initially. Since the series is subtractive, the
numerator grows quickly. In the denominator, on the
other hand, F\/>>F,, and the first term with lower
damping dominates the series, also subtractive; thus
the denominator grows relatively slowly. However,
in a short time, only the first term in each series remains
significant and since F{>>F;, the denominator growth
overtakes that of the numerator and brings the potential
down toward a steady state value.

HALL

We have already seen in (17) the physically reason-
able behavior: the Hall voltage developed is directly
proportional to the current (through its proportionality
to the concentration gradient) and is inversely propor-
tional to the conductance.

While the steady state Hall voltage may be used to
measure the surface recombination velocity of a sample,
as observed by Moss e/ al.* the dependence of the
transient behavior on the specimen parameters appears
to be too complicated to afford a method for their
determination.
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In order to calculate the average value of a physical quantity
containing also many-particle interactions in a system of N anti-
symmetric particles, a set of generalized density matrices are
defined. In order to permit the investigation of the same physical
situation in two complementary spaces, the Hermitean density
matrix of order & has two sets of indices of each %k variables, and
it is further antisymmetric in each set of these indices.

Every normalizable antisymmetric wave function may be
expanded in a series of determinants of order NV over all ordered
configurations formed from a basic complete set of one-particle
functions yx, which gives a representation of the wave function
and its density matrices also in the discrete k-space. The coef-
ficients in an expansion of an eigenfunction to a particular operator
may be determined by the variation principle, leading to the
ordinary secular equation of the method of configurational inter-
action. It is shown that the first-order density matrix may be

N the nonrelativistic quantum theory of many-
particle systems, the basic Schrédinger equation
refers to a configuration space having a dimension pro-
portional to the number of particles. Even if it is
possible to find a solution with sufficient accuracy by
aid of for instance modern electronic computers, this
wave function is usually too complicated to provide a
simple physical picture of the system. The aim of this
paper is to give a discussion of the interpretation prob-
* This work was supported in part by the U. S. Office of Naval

Research under its contract with Massachusetts Institute of
Technology.

brought to diagonal form, which defines the “natural spin-
orbitals” associated with the system. The situation is then partly
characterized by the corresponding occupation numbers, which
are shown to lie between 0 and 1 and to assume the value 1, only
if the corresponding spin-orbital occurs in all configurations neces-
sary for describing the situation. If the system has exactly N spin-
orbitals which are fully occupied, the total wave function may be
reduced to a single Slater determinant. However, due to the
mutual ‘interaction between the particles, this limiting case is
never physically realized, but the introduction of natural spin-
orbitals leads then instead to a configurational expansion of most
rapid convergence.

In case the basic set is of finite order M, the best choice of this
set is determined by a form of extended Hartree-Fock equations.
It is shown that, in this case, the natural spin-orbitals approxi-
mately fulfill some equations previously proposed by Slater.

lem, and we will show that it is possible to define a
series of density matrices, which have a simpler and
more direct physical meaning than the wave function
itself. Dirac! has previously introduced a density matrix
for describing a system in the Hartree-Fock scheme,
where the total wave function is approximated by a
single Slater determinant, but the idea will here be
essentially generalized in order to include the treatment
of exact or approximate wave functions of arbitrary

!P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930);

27, 240 (1931). See also J. E. Lennard-Jones, Proc. Cambridge
Phil. Soc. 27, 469 (1931), and V. Fock, Z. Physik 61, 126 (1930).



QUANTUM THEORY OF MANY-PARTICLE SYSTEMS. I

forms. The number of coordinates will further be
doubled in order to permit us to consider the same
physical situation in two complementary spaces.

1. DEFINITION OF GENERAL DENSITY MATRICES

Let us consider a system of IV identical antisymmetric
particles with the coordinates Xi, Xs, -::Xy moving
under the influence of a fixed potential framework and
their mutual interaction. Each coordinate x; is a com-
bination of a space coordinate r; and a spin coordinate s,
and, in considering nucleons, we will include also the
coordinate of the isotopic spin. The physical situation
of the system is described by a wave function ¥, which
we assume to be normalized. It fulfills the antisymmetry
condition

P\I’(XhX?f : 'XN)= (_ l)p\If(xhXZy' ° 'XN)) (1)

where P is a permutation operator working on the
indices of the IV coordinates and p its parity. In con-
sidering the configuration space, we will let

(dX) = dx1dx2 e de

indicate integration-summation over all coordinates,
(dx/) the same procedure over all coordinates except
x;, (dx;;) the same over all coordinates except x; and
X, etc.

A physical quantity Q associated with the system is
represented in the configuration space by a Hermitean
operator Qop, which is symmetrical in the indices of the
particles. It may be expressed in the form

1 1
Qop= Q(o)—l—z Q+— Z, Qij+— Z’ 0 R (2)
i 2l 4 31k

where each term is a zero-, one-, two-, three-, ---, or
many-particle operator, respectively; the prime on the
summation signs indicates that we omit all terms having
two or more indices equal. In order to evaluate the
average value of this quantity in a situation charac-
terized by the normalized wave function ¥, we will
now introduce a series of density matrices of various
orders:

v(x/|x)=N f W*(123- - - N)¥(123- - - N) (dxy"),

T (X 1’X2’ l X1X2)

- (Z;’ ) f 23 - N)T(123- - V) (dm),

I‘(P)(xl’xz’. . .xﬂ’[xlxr . .xp)

= (Z)f\p*(llziy. cop’- )

X¥(123-- “pe 'N)(dxm’- . P)’

3)

I'(N) (X1,X2" . 'XN,IX1X2' . 'XN)
=T*(1/2/3"- - N')¥(123- - -N),
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where, in the integrands, 7’ and ¢ are abbreviations for
the coordinates x, and x;, respectively. These density
matrices are Hermitean, they are antisymmetric in
each set of indices, so that

T (x1X2 | X1'x5") =T (x1'X2 | X1X2),

4)

T (Xg’Xl’ [ X1X2) =~T (X1'X2/ [ X1Xz),
and they are further related by the formula,

I‘(P—l)<x1’xz’. . 'Xp—IIIXIXZ' . 'xp—l)

p
X1Xg* * -x,,_lx,,)dx,,. (5)
Of special importance are the diagonal elements:

(x) =7 (x1]x1),
v (x1) =" (x1|x1) ©

I' (x1,Xg) =T (X1X2 | X1X3),

which are all positive definite. Because of the antisym-
metry of each set of indices, they are symmetric in
their coordinates. The diagonal elements have the fol-
lowing physical interpretations: v (x;)dvi=number of
particles X the probability for finding a particle within
the volume dv; around the point r; having the spin sy,
etc., when all the other particles have arbitrary positions

-and spins; I' (x1Xs)dv1dv,=number of pairs X the prob-

ability for finding one particle within the volume dv,
around the point r; with the spin sy, etc., and another
within the volume dv, around the point ry with the
spin s;, all others having arbitrary positions and spins;
etc. According to (3), we obtain for the total integrals

f’y (X1)dx1=N, fI‘ (x1X2)dx1dx2=N(N— 1)/2,

‘ N
fI‘“”(xg(z- - Xp)dx1dxs- - -dx,= ( )
P

Since the matrices (3) are antisymmetric in each set
of their indices, they will vanish identically if two (or
more) indices of a set are equal. For the diagonal ele-
ments, we obtain in particular:

T(x1,x1)=0, T'®(x1,X9,X9)=0, --- (8)

(7

which shows that, for small distances, the antisym-
metry requirement leads to a correlation effect which
will strongly keep particles with parallel spins apart.
This general phenomenon, which is an important con-
sequence of the Pauli principle, was first noticed for free
electrons as the “Fermi hole.””?

Let us illustrate the calculation of average values of
physical quantities by considering the two-particle

2 See, for instance, E. Wigner and F. Seitz, Phys. Rev. 43, 804
(1933); and J. C. Slater, Phys. Rev. 81, 385 (1951).
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operator term in (2). By changing names of the inte-
gration variables and using the symmetry properties,
we obtain

[waz apea

=IN(V—1) f V¥ (dx)

=(ZZ) f {(T*(172/3- - - N)Qy, 9)

X‘I’(123 . 'N)}a:1’=m1, xg’:zzdxldxz(dxm')
= f{QHI‘ (xl’le ] X1X2)}x1’=xl, x2’=12dx1dx2.

In treating the density matrices, we will introduce the
convention that the operators ©;; will work only on
the unprimed coordinates x;, x;, etc., but not on x/,
x;, etc.,, and that, after the operations have been
carried out, we have to put x/=x;, x;/=x;, etc. We
note that the diagonal elements of (3) are sufficient for
describing the physical situation in the ordinary
x-space, but that we need the nondiagonal elements for
characterizing the situation also in complementary
spaces, as the momentum space. For the operator (2),
we obtain in this way

(Qop)n= f Qo ¥ (dx)
=9(o>+f917(x1'lxl)dx1
+ f QI2P(X11X2’IX1X2)dx1dx2

—I—fﬂmI‘ (X1,X2’X3, I X1X2X3)dx1dx2dx3+ RN (10)

In order to illustrate the use of this fundamental
formula by a few examples, let us first consider an
electronic system (atom, molecule, or crystal) without
external field at absolute zero. The system has the
following basic Hamiltonian:

p
—— Zu/"ia
2m P)

e
:}Cop=’_ Z ZGZh/rOh—i_Z
2 ok i
+3 2 é/r, (11)

where Z, is the atomic number of the nucleus g. Here
we have neglected relativistic effects (including all
spin couplings) and the zero-points vibrations of the
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nuclei. According to (10), the average energy is now
given by the expression.

e 1
<GCOP>Av=“ > ZyZn/Tont+—
gh 2m

2
v (1) T (21,%2)
- ng dx1+62f e dx1dxs,
g

719 712

fl’12')’(x1'|x1)dx1

(12)

where the first term is the repulsive Coulomb potential
between the nuclei, the second the kinetic energy of the
electrons, the third the attractive Coulomb potential
between the nuclei and the electrons, and the last term
the repulsive Coulomb potential between the electrons.
For the description of the energy of such a system, it is
therefore sufficient to know the second-order density
matrix I (x1'xy’ | X1X2), from which the first-order density
matrix may be calculated according to (5).

Let us then consider the total spin 5% measured in
units % of a system of NV antisymmetric particles. Ac-
cording to Dirac,® we have

=248 §;
=—NWNV—-4)/4+2 (1+0; 0))/4
=—N(WN—4)/4+3 2/ Pif,

(13)

~ where P;; is the operator for permuting the spin coor-

dinates s; and s; of the particles 4 and ;. Applying
formula (10), we obtain

(SHa=—N(N—-4)/4
+fI‘ (1'131,1‘2321 1'182,r2$1)dx1dx2, (14)

which expression may be evaluated from the knowledge
of the second order density matrix.

As a last example, we will consider the operator for
the electric moment D,

D=e Zz I (15)

According to (10), its average value for a particular
situation is given by the diagonal elements of the first-
order density matrix:

(D)Av=efrn/(x1)dx1. (16)

In this connection we observe that we shall some-
times need quantities which are related to the transition
of the system between two orthogonal states, I and II,
which are characterized by the normalized wave func-
tions ¥t and ¥rr. In analogy to (3), we will for this

3P, A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1929).



QUANTUM THEORY OF MANY-PARTICLE SYSTEMS. I

purpose define the fransition matrices:

Y1 II(X1'|X1)

=Nf\I/1*(1’23- NP1 (123- - N) (dwy),
¥

Ty (X%’ | x1%2)

_ (ZZ) f TS N (123- - W) (d),

and, in the same way as before, we can derive the
formula

(1] Q0p | TT) = f T 00T e ()

=f9171 1 (xy | x1)daxy (18)

+ f Qo1 11(Xa"%y’ | X1Xo)dwrdwa - - -

For the transition moment, we obtain, in particular,

{I|D|1T)= ef 11y 11 (X)das. (19)

We observe the simplification of the physical picture
of the system provided by the use of the density ma-
trices (3). In considering a physical quantity (2), con-
taining many-particle operators up to the order %, the
average value of this quantity is determined by (10)
and the density matrix of order k, from which all
density matrices of lower orders may be evaluated suc-
cessively by using (5). For k=2, we obtain for
instance .

(Qop>kv

N
f { Qo +N 91+( ) )QIZlI‘<X11X2, | x1%0)dx1ds
= , (20)

f T (xuxa)daeads

where, in agreement with the convention introduced
in connection with (9), we have to put x;’=x; and
X,/=x, after the operations in the integrand in the
numerator have been carried out; the denominator is
introduced in order to take care automatically of the
normalization.

The density matrices (3) may be derived from the
wave function ¥ or from the matrix of highest order
E=N. It would also be of some interest to investigate
the reverse problem and to see how much the knowledge
of a lower-order density matrix (#<XN) would determine
the wave function, i.e., the physical situation of the
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system. From (10) it is clear that the average values of
all physical quantities (2) containing only many-par-
ticle operators up to the order % are entirely fixed. The
eigenfunctions of such an operator fulfill the relation,

Qop ¥ =W, (21)
and may also be derived from the variation principle,
3{Qop)a=0, (22)

which leads to a variation condition for the density
matrix of order %; compare (20). In this and following
papers we will discuss these problems in some detail, and
we will show that these preliminary results are quickly
changed if we impose also additional restrictions on the
form of the wave function. It will, for instance, be
shown that, in the Hartree-Fock scheme where the
total wave function is approximated by a single Slater
determinant, the first-order density matrix v(x:/|x.)
alone determines all the higher-order matrices, the
wave function, and consequently the entire physical
situation. In the part of our present electronic theory
of atoms, molecules, and crystals, which is based on the
Hartree-Fock approximation, the first-order density
matrix is therefore an appropriate tool for giving a
simple physical picture of the system. In the following,
we will largely concentrate our interest on the proper-
ties of the general first-order density matrix, and we
will investigate its behavior also in the higher approxi-
mations.

2. ANALYSIS OF THE PROPERTIES OF THE
DENSITY MATRICES

(a) Expansion Theorem

In order to investigate the properties of the density
matrices in greater detail, we will introduce an ortho-
normal and complete set of discrete* one-particle func-
tions Y (x) (k=1, 2, 3, ---) of such a type that every
normalizable function ¥ (x) of a single coordinate x may
be expanded in the form

Y(X) =k (Xer, = f Y (x)* (x1)dxs.  (23)

Following Slater,® we will here include all spin proper-
ties explicitly in the wave functions, and the one-
particle functions ¥(r,s) are therefore spin-orbitals,
obtained by multiplying two complete orthonormal
sets of orbitals (being functions only of r) by the spin
functions a(s) and B(s), respectively. In considering
nucleons, we include the isotopic spin functions in the
same way. From the very beginning, we are going to
make ourselves free from the idea of ‘“‘doubly filled
orbitals,” and the two sets of basic orbitals associated

4 For the sake of simplicity, the set is here chosen discrete, but
there are no major difficulties in extending the treatment to
include also continuous sets.

8 J. C. Slater, Phys. Rev. 34, 1293 (1929).
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with the ordinary spin must therefore not necessarily
be the same, but the orbitals in one set may, of course,
be expanded in the orbitals of the other set. These
distinctions will later be of value in treating correlation
properties.

By introducing a set of spin orbitals ¥, (x;) for each
coordinate x; (¢=1, 2, ---N) and by successively ap-
plying (23), we may now expand every normalizable
function ¥ in configuration space in the following form:

U (x1,Xz, *Xn)= 2. Yr1(X0)¥ne(Xe)- -+
kikg - « kN

Xvn (xn)C (k1 ks, - - - kx), (25)

C(k1ks,- - 'kN)=f‘I’(12- < Nr™(1)
Xz*(2) - - Y™ (V) (d2).

For antisymmetric functions fulfilling (1), it follows
from (25) that also the coefficients C are antisymmetric
in their indices:

PC (k1 ks, < - kx)=(—1)?C(k1,ks,- - -kx).  (26)
A selection of NV indices ki, k2, ---kxy will in the fol-
lowing be called a configuration, and the space described
by all values of these indices will simply be called the
k-space. In the terminology of the transformation
theory, the antisymmetric quantity C(ky,ks,- - - kx) may
be considered as the representation of the wave function
in the k-space, and we note that it fulfills the nor-
malization condition

)3 IC(k1k2---kN)I2=f[\I/l2(dx). 27)

kik2 -« kN

Because of the property (26), the number of inde-
pendent coefficients C in expansion (24) may be essen-
tially reduced, for instance by referring the indices to a
specific order. If a selection of IV indices k1, ks, - - -kn
fulfills the condition k1<k:<::-<ky, it will in the
following be called an ordered configuration and will be
denoted by the abbreviated symbol K. In this connec-
tion, it is also convenient to introduce the symbol

CK= (N!)%C(kl:kzy' " 'kN)y (28)

for then the normalization condition (27) takes the form

> x|Cx|2= f I [2(da), (29)

where we have to sum only over the ordered configura-
tions K.

The quantities Cx represent all independent coef-
ficients in expansion (24). By permuting the dummy
indices ki, ks, ---kxy and by using (26) and (28), we

PER-OLOV LOWDIN

may now rearrange this expansion in the following way :
‘I’(Xl,Xz, e XN)
=D P Y dr(X)¥ra(Xo)- - -
P kik2- - kN
Xiw (xXv)C (Raka- - k)

=) . kZ ) C (kiks- - 'kN)g(_ PP,
X1 (X1)Pr2(Xs) - - - Yaw (Xa)
= > C(kiks - - ky) det{Yr1,rs, - - Y}
k1<ke< -+ -kN
=2k Cx¥x(X1,Xs, - -Xn), (30)
where
‘I’K(xlyx2)' : 'XN)= (N 1)_% det{‘l/’d)\bk?’ °e 'Il/kN} (31)

is the normalized Slater determinant belonging to the
ordered configuration K. Hence it is possible to expand
an antisymmetric wave function in configuration space
in a series of Slater determinants over all ordered con-
figurations K.

Two ordered configurations K= (ky,ks,-:-ky) and
L= (Iy,ls, - -ly) are said to be the same if they are
identical in all their indices, and they are said to be
different if they differ in at least one index. It is easily
shown® that two Slater determinants ¥x and ¥ be-
longing to two different ordered configurations K and
L are orthogonal, and hence we have

f W (d) = b (32)

The Slater determinants associated with all ordered
configurations form therefore an orthonormal set, which
is complete with respect to normalizable, antisymmetric
functions in configuration space. The coefficients Cx
may be derived from (30) and (32) or from (25) and
(28), which gives the two expressions

Cx= f V(12 - - N)¥ *(dw)

= (N!ﬁf\Il(lZ- <N (Das®(2) - - -
Xypun™ (V) (dx).

The connection between them is discussed in greater
detail in Appendix I.

We may now also expand the density matrices (3)
in a similar way. For the first-order matrix, we obtain

v (%1 | X1) = 2k * (31 W (x0)v (] B), (34)

where, according to (4) the coefficients form an Her-
mitean matrix: y(kl)=v*(lk). For a density matrix of
order p, which is Hermitean and antisymmetric in each

6 See Eq. (39).

(33)
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set of its indices, we obtain in general:

I‘(P) (xl’XZ" . .xp’[xlXE. . 'Xp) =

kikge < <kp
Llge--lp
vt (xd) o ()
b)Y

The expansion coefficients T'® (Iyly, - - -1p| k1,ka,* - - Bp),
which are Hermitean and antisymmetric in each set of
their indices, may be considered as the representations
of the density matrices in the k-space, and now it
remains to investigate how these densities depend on
the wave function‘C(ky,ks,- - -ky), i.e., to derive the
relations in k-space corresponding to the definitions (3).

(b) Density and Transition Matrices
for Slater Determinants

In order to derive the general expressions for the
density matrices in k-space, we will first consider the
transition matrices associated with two Slater deter-
minants U and V:

U= (V)% det{om,us,- - -un},

(36)
V=(N)"*det{v1,09," - -vn},

which are built up from two basic sets of spin-orbitals
%1, Ug, * - -Un, and vy, Vs, - - -vy. For the sake of com-
pleteness, we will not impose any orthogonality con-
dition on the sets #; and v;, and we will further assume
that they have mutual ‘“nonorthogonality’ integrals
Ao (kD) = f ¥ (X1) 0 (x1)d2%1, @37
which may be different from zero for kI, If there is
no risk for confusion, we will often in the symbol d.,

omit the indices # and .
By using formula (109) in Appendix I, we obtain

f UV (dx) = f s (K2 () - - -2* (x)
Xdet{v1,vq,- - -vx} (dx) (38)
= o (= 1)PPA(11)d(2ls) - - -d(Nly)
— det{d(kD)},

which shows that the “nonorthogonality” integral of
two Slater determinants U and V equals the deter-
minant Dyy of all the ‘“nonorthogonality” integrals
dy»(Rl) associated with the two sets of one-particle
functions involved:

f U*V (dx) = Dyy =det{d . (k])}. (39)

The determinant Dyy is of basic importance for the
following discussion, and we need it as well as its minors
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2 v (xd) Yt (X)) - i X)) TP (kg - -1y | Raks- - - ky)
Y (x1) Yip(X1)
ce e e T (e Ly Bakge - k). (35)
l»l/ll(xzo) t ‘plp(xp)
of various orders:
Dyvy (k|1), Dyy(kiks|lils), Dyy (Riksks|lilals), ---. (40)

These minors are originally defined only for ordered
sets k1 <ky<---<kyand /;<[,<:--<ly, but they are
easily generalized to the total (%,/)-space by assuming
that they are antisymmetric functions in each sets of
their indices.

In the following we need also the minors of the deter-
minants in (36), which will be denoted by symbols of
the type

detu(12- . P]k1k2 . 'kp), det,,(lZ- . ﬁllllz . 'lp). (41)

The minors of order p are determinants of order (N —p),
and we note that, according to (39), they fulfill the
relation

LV—2) !]"lf det,*(12- - - p| kika- - - ky)

Xdetv(12- . Pll1l2 . lp) (dx'm...p)
=DUv(k1k2' . 'kp”1l2' . 'lp). (42)

In order to derive the first-order transition matrix
associated with U and V and defined by (17), we will
expand the determinants (36) in terms of their first
rows:

U(xixg: - -X)= (V)™ 3p uz(xy) det,, (1] %),
V(X1X2' . ‘XN)= (N')—% Zz 7)[(X1) det,,(l]l)
By using (42), we then obtain

(43)

Nf U*(Xl'X2' . ‘XN)V(X1X2“‘ 'XN) (dxl’)
=2 we* (x1 )0 (x)) (V= 1) 1T

X f det,*(1] &) det,(1]7)(dx1")

=3 w* (x1)0(x0) Dov (D). (44)

Taking the normalization of U and V into account, we
finally get

oy (x| x1) = (DyuDyv)~ Xk we* (x1)

Xy (X1)DUV (k | l) . (45)
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In order to derive the transition matrix of order p, we will use Laplace’s theorem? and expand the deter-

minants (36) in terms of their first » rows:

o1 (X1) ey (X1)
U(xixg- - -xy)= (V)3 - det,(12- - - p|kika- - - ky),
Fi<ke<- - kp| g0 (X ) ”kp(xza)
: (40)
v (X1) v1p(X1)
V(xixe - -xy)=@)~+ 3 e det,(12-« - p|lils- - - 1,).
h<le<--:lp vll(xp) e vlp(xp)
According to (17) and (42), we then obtain
N
( )fU*(X{Xz" . 'Xp,Xp_\Ll' . ‘XN)V(X1X2' XpXpp1t ‘XN) (dxm...p’)
P
w*(x1) 0w (X)) oa(x) v1p(X1)
=(P‘.)" > .. e Y . .[(N_P)U—l
klii?zz s ..l]:,p 1™ (X,") ™ (X57) | |v11(xp) V1p(Xp)
Xf det *(12- - - p| kika- - - bp) det, (12 - p|Libe- - - 1) (d%1...0")
e (x17) ™ (X1") | o1 (x0) V1p(X1)
=)t 3 Coe A I Dyv(kiky: + - ky|lily- - -1,)
kllx?;zzél};p et (Xp') iy (Xp7)] o (x,) V15(X,)
=N X m™(xd) -y (%) 00 (X0) - - 015 (Xp) Duw (Rikea- - - kp | ila- - 1), (47)
it
where, in the last form, we are using the generalized where we have used the matrix notations
minors defined in the entire (k,/)-space by the antisym-
metry requirement. Observing the normalization of U _
and V, we get therefore for the transition matrix of (Rl2]fy= | ot (x0)Quoo(x:)das,
order p in the (k,))-space: (50)

Tov® (Ila- - - Ip| kika- - - k)
= (PI)_IDyv(klkz v kpllllz oo lp) (DUUDVV)—%-
According to (18), we are now able to find the matrix

element of an operator Q,, with respect to two Slater
determinants:

(48)

f U*Qu, V (d)
=g(o)pw+%{kiszlil}Duv(kll)

1
+5" > {kike | Q12 l lils} Dy (kike l lils)
kiks

lle

1
F— 3 {kikoks| Quos| lidals}
Sl

X Dyy (kikoks|ldads)+- - -,

7 See, for instance, G. Kowalewski, Deferminantentheorie (Veit
& Company, Leipzig, 1909).

(49)

{k1k2 ! Q1o l l1l2} =fuk1*(xl)uk2* (X2)
X Q19011 (X1) 022 (X0) dot1d e,

This is the general formula® for nonorthogonal basic sets
a, and v;. The corresponding formula for the orthogonal
case was first derived by Slater,® and the nonorthogonal
case has then been discussed rather extensively in the
literature.’® We note that the formula for the diagonal

8 A preliminary report of this result was given in P. O. Lowdin,
Quarterly Progress Report of the Solid-State and Molecular
Theory Group at Massachusetts Institute of Technology, January
15, 1952 (unpublished), p. 10. For some simplifications in the
present derivation, the author is indebted to discussions with Dr.
A. Meckler, Massachusetts Institute of Technology.

9 J. C. Slater, Phys. Rev. 34, 1293 (1929); 38, 1109 (1931); see
also E. U. Condon, Phys. Rev. 36, 1121 (1930).

10 7, C. Slater, Phys. Rev. 35, 509 (1930); J. E. Lennard-Jones,
Proc. Cambridge Phil. Soc. 27, 469 (1931), particularly p. 480;
D. R. Inglis, Phys. Rev. 46, 135 (1934); H. M. James, J. Chem.
Phys. 2, 794 (1934); J. H. Van Vleck, Phys. Rev. 49, 232 (1936);
R. Landshoff, Z. Physik 102, 201 (1936); G. H. Wannier, Phys.
Rev. 52, 191 (1937); B. H. Chirgwin and C. A. Coulson, Proc.
Ro;(r. Soc). (London) A201, 196 (1950); W. J. Carr, Phys. Rev. 92,
28 (1953).
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elements (U="7V) in the nonorthogonal case, previously
given by the author,'! was derived in an entirely dif-
ferent way.

In the special case when Dyy#0, a considerable sim-
plification may be introduced in (49), for, according to
a well-known theorem in the theory of determinants,’
we then have

Dyv(kiks: « - kp|lily- - -1,)
Dyy (ki) -+ Duyy(killy)

DUV (kzzl lp)
© A7 (k)

= Dyy—?

Dyy (ky|ly)
Id—l (l1k1)

=Dyr (51)

a7 (hkp) a7 (Ipky)

where d—1(lk) is the inverse matrix to the matrix d (%),
defined by (37). It may be shown that, in this case, all
transition matrices may be expressed in the fundamental

invariant
2ok (x1) v (x0)d 1 (IR), (52)

and that, except for a factor, all higher-order matrices
may be expressed as determinants of the first-order
matrix. This case will be discussed in greater detail in
a following paper.

(c) General Properties of the Density Matrices

We are now ready to discuss the general properties of
the density matrices (3) and their representations in the
k-space. If we let the symbol (%) denote all ordered con-
figurations K containing a specific index &, the symbol
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(k1ks) denotes all ordered configurations K containing
a specific pair of indices %; and ks, etc., then we may
rearrange our summations by the formulas

K k) K (k1k2)
2=, X=X %,
K &k k K

K kiky kik2 K

(53)

We will assume that our normalizable wave function
¥ may be expanded in a series of Slater determinants
¥k over all ordered configurations K :

V=3 x VrCg, (54)

according to (30). Applying (45) and (53), we obtain
for the first-order density:

v(x|x1) = Cx*vxr(x/|x1)Cr/> | Ck|?
XL I3

=I§ Ck*CL é i Ui (X1 ) (x1)
><l)1m(k|l)/§ICK'2

&) (1)

NS (z Ce*
XDKL(k[l)CL/E:[CKP, (5%)

or, for the first-order density in the k-space:
®)
v R)=2 2 Cx*Dxr(k|DCr/2[Ckl%  (56) .
K L K

Similarly, by using (48) and (53), we obtain for the
density of order p:

F(P)(xllxz’. . .xpllxlx2. . .xp):Z CK*FKL(p)(X1/x2,' . 'XpI(XIXZ' . 'xp)CL/Z{CKIZ
KL K

= 2 Y (X)) " (3 War(xe) - - Y (x) TP (il - - 1| Rk

kika: - -kp
lilz-«+lp

where

kp), (S7)

(kika- « ~kp) (Iil2- - +lp)

T (g - Ip| bakar - k)= (pN) T > Cx*Dir(kike - -ky|lils- - - 1,)CL/> | Cx |2
K L K

This formula gives the density matrices in k-space
expressed in the wave function C(ki,ks,- - ky) or its
independent elements Cg, and it corresponds therefore
to the definitions (3).

We note that the density matrices in k-space are
Hermitean and antisymmetric in each set of their
indices. By using (7) and (57), we find for their total

values
Zev(k|R)=N,

N
> r<p><k1k2---kp!klkz~-«kp>=( ) (59)
P

kikg -« -kp

1 P, 0. Lowdin, Arkiv mat. astron. fysik A35, No. 9 (1947); “A
Theoretical Investigation into Some Properties of Ionic Crystals”
(thesis) (Almqvist & Wiksells, Uppsala, 1948); J. Chem. Phys.
18, 365 (1950).

(58)

which shows that the normalization is correct. The
diagonal elements

v(k)=v(k|k), T(kks)=T (kikz|kiks),

may be interpreted analogously to the diagonal elements
in x-space: vy(k)=number of particles X the prob-
ability for finding a particle in the spin-orbital 2 when
all the other particles occupy arbitrary spin-orbitals;
T'(k1,ks) =number of pairs X the probability for finding
one particle in the spin-orbital 2; and another in the
spin-orbital ks, when all other particles may occupy
arbitrary spin-orbitals; etc.

However, even the nondiagonal elements of the
density matrices in k-space may have a physical
meaning. Taking over a terminology from quantum

(60)
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chemistry developed by Coulson and Longuet-Higgins,?
we will call v(k|%) the charge order of the spin-orbital
k and the coefficient y(I| k) for k=] the bond order of
the two spin-orbitals 2 and /, hence associating the
product of two spin-orbitals in (55) with a “bond”
between them. The first-order density matrix y(Z|%) in
k-space is therefore also called the charge- and bond-
order matrix. Similar concepts may be introduced also
for the higher-order densities in %-space, and we note
that the second-order density I'(Jis] k1ks) correlates the
charge and bond orders of two particles and maximum
four spin-orbitals.

Due to the antisymmetry of each set of indices in the
density matrices, we can conclude that, if two indices
in the same set are equal, then the corresponding ele-
ments vanish. For the diagonal elements, we obtain
in particular

F(kl,kl) =0, P(kl,kz,kg) =O, (61)
showing that the probability for two particles to be in
the same spin-orbital vanishes identically. This con-
sequence of the antisymmetry requirement is an ex-
pression for Pauli’s exclusion principle in k-space.

Let us now discuss the properties of the diagonal
elements (60) in greater detail. Since our basic set
¥i(x) of one-particle functions is assumed to be ortho-
normalized (dx;=0x7), the only nonvanishing elements
in the basic determinant Dk, defined by (39), appear
for pairs (k,0) referring to the same spin-orbital occurring
in both ordered configurations K and L (dr;=1). Due
to the ordering of the indices, these elements 1 may
occur anywhere in the determinant, but, by inter-
changing rows and columns in a suitable way, they may
be brought to the diagonal, which procedure changes
the value of the original determinant and its minors
only by a sign factor + or —. If K and L are different
ordered configurations, the diagonal contains also one
or more elements which are zero, and in general, we
therefore obtain the relation

DKL(k1k2' . 'kplklkz' . 'kp)=5KL. (62)
Substituting this expression into (56) and (58), we get
finally for the diagonal elements (60) :

v(k)=§lCK[2/§[CKP,
(63)

(kikz- - -kp)
P®(kaky k)= L |Cx|/Z|Ck[?,
K K
in agreement with the interpretation of C as a “wave
function” given before. However, we note that, since

2 C, A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc.
ELondon) A191, 39; 192, 16 (1947); 193, 447, 456 (1948); 195, 188
1948).
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the quantities |Ck/|? are all positive definite, (63) and
(64) lead to the inequalities

0<y()) <1, OST®(ksks-- k) <1,  (64)
showing that the charge order of a specific spin-orbital &
lies always between 0 and 1, and that it can assume the
value 1, only if the spin-orbital £ occurs in @/ ordered
configurations K, which are necessary in (54) for de-
scribing the total wave function characteristic for the
physical situation under consideration. Similarly, the
“combined charge order” for the group (ky,ks,- - kp)
lies always between 0 and 1, and it can assume the
value 1, only if the group (ki,ks,---%,) occurs in all
ordered configurations K necessary for describing the
situation.

The charge order y(k) may be interpreted as the
average number of particles in the spin-orbital % in the
physical situation under consideration; see also (59).
Since the inequalities (64) are essentially depending on
the antisymmetry requirement (1), this condition has
here deeper consequences than the Pauli principle in
its “naive” formulation, which considers only the occu-
pation numbers O or 1. This problem will be further
discussed in a following section.

3. METHOD OF CONFIGURATIONAL INTERACTION

In quantum mechanics we are particularly interested
in finding the eigenvalues of the Hermitean operators
Qop corresponding to physical quantities, i.e., in solving
the equation

Qopl =W, (65)
In order to discuss this problem, we will assume that
the eigenfunction ¥ exists and is normalizable. We will
further introduce a complete orthonormal basic set of
one-particle functions or spin-orbitals ¥ (k=1, 2, ---).
According to (30), the solution may now be expanded
in a series of Slater determinants ¥ over all ordered
configurations K= (ky,ks,- « - kx) with ki <ke<.:  <kny:

V=3 x ¥kCk,
V= (N1)~* det{yri, e, - -Yan}.

(66)

According to (28), the coefficients Cx are the inde-
pendent elements of an antisymmetric wave function
C(ky,ks,- - - ky) in k-space.

Every normalizable wave function ¥ may be ex-
panded in the same way, and, for the average value of
Qop With respect to such a wave function, we find there-
fore

Gunhu= [W050(0) / [

(67)
=X Cx*(K|Qp|L)CL/2 Cx*ok1Cr,
KL KL
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where, according to (2) and (49), we have
(K100 | )= [ Wi ()

K L
=QDxr+2 Z{k| |} Drr(k]1)
P

K L
+ 2N X S {kike| Que|lile}

kik2 lil2

X Dgr(kiks| i)

K L
+@BY Y X {kikoks| Quas| lilols)

kikoks lil2ls

X Drr(kiksks| ldods)+- -+, (68)
with the matrix notations
(Rl = [ )ewxidda,
(69)

{kiko| Q| lla} = f\Pkl* (XD)Pra* (x2) Qa2
Xy (X1)¢12(Xa)dx1dxco,

In order to determine the coefficients Ck, i.e., the
wave function in k-space, we will now apply the varia-
tion principle (22) to expression (68). This leads to a
system of linear equations

2 1{{K | Qop| L)—Wix}Cr=0. (70)

The condition for solubility is given by the secular
equation

det{(K|Qop|L)—Wdx1} =0, (71)

which determines the eigenvalues ‘W. The values of Cx
may then be determined from the system (70), which
may be considered as the representation of the eigen-
value problem (65) in k-space.

The many-body problem (65) is in this way reduced
to a form which is essentially the same as in the one-
particle problem; the Egs. (70) and (71) are in both
cases infinite. The method of ‘“configurational inter-
action” is therefore in principle simple, but the ana-
lytical or numerical work necessary for evaluating the
matrix elements (68) and for solving the Egs. (70) and
(71) is certainly still formidable. However, during the
last few years, the work in several research groups has
shown that it is practically possible to tackle the
numerical problem of solving secular equations (70)
of comparatively high orders by means of the modern
electronic computers, and one can expect a steady
development of the methods of programming, etc. In
this connection there are also two principal problems
which have been put in the foreground, namely, firstly,
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how to determine the basic set of one-particle functions
in such a way that the series (66) obtains as rapid con-
vergence as possible, and, secondly, how to get simple
physical interpretations of the complicated total wave
functions derived in this way. In the next section, we
will show that the theory of density matrices is useful
for treating both these problems.

4. NATURAL SPIN-ORBITALS AND THE CONVERGENCE
PROBLEM IN THE METHOD OF
CONFIGURATIONAL INTERACTION

The many-particle problems, which have been solved
with the greatest accuracy up till now, are connected
with the theory of electronic structure of atoms, mole-
cules, and crystals. In their treatments of atoms and
molecules, Boys'® and Meckler* and others have used
the method of configurational interaction in an approxi-
mate form, and they have overcome the numerical
difficulties by aid of electronic computers. However,
their preliminary results are then rather complicated
wave functions in configuration space, and one is still
looking for simple physical interpretations. In this con-
nection, we would like to point out the importance of
the first, second, and higher order density matrices (3).

Let us start by considering only the first-order density
matrix y(x:/|x;), derived from the wave function ac-
cording to (3) or (55). The corresponding matrix v (?| &)
in the k-space, i.e., the charge- and bond-order matrix, is
Hermitean, and it is therefore possible to find a unitary
matrix U which transforms this matrix to diagonal form
with the eigenvalues 7= :

(72)

We have further, in matrix form, y=UnUf, and, if we
introduce a new set of spin-orbitals x; by the matrix
relation x=¢U, or

Uty U=n=diagonal matrix.

Xk=Za Ipz:zl']ak, (73)
we may rewrite the density matrix in the form
v (%1 | x0) = 2ok o™ (x1) i (X0). (74)

This form is characterized by the fact that all bond
orders are vanishing, and the new spin-orbitals x; will
therefore be called the natural spin-orbitals associated
with the system and state under consideration. The
corresponding charge orders 7, which are the eigen-
values of the matrix y(!| %), will be interpreted as their
occupation numbers, since they represent the average
number of particles in each one of the natural spin-
orbitals. We note that, if two or more charge orders
are the same for spin-orbitals of the same spin type, the
corresponding orbitals form a degenerate group, and
v(x1/|x1) is then invariant against unitary transforma-
tions of the orbitals within such a group.

133, F. Boys, Proc. Roy. Soc. (London) A200, 542 (1950); 201,
125 (1950); 206, 489 (1951); 207, 181, 197 (1951); etc.
14 A, Meckler, J. Chem. Phys. 21, 1750 (1953).
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According to (64) and (59), the occupation numbers
fulfill the two conditions

OSM,]CSI, Ek nk=N, (75)

and we can therefore conclude that the particles must
be distributed over more than N natural spin-orbitals
with a limiting case, when they are occupying exactly
N spin-orbitals. The condition for the limiting case may
be expressed in the form

=1 (76)

where Tr(=trace) means the formation of the diagonal
sum, for v (/%) has then exactly NV eigenvalues equal
to 1 and the remaining zero. If, in such a case, we would
choose the natural spin-orbitals as our basic set, all
configurations in expansion (66) must contain the fully
occupied spin-orbitals, i.e., this expansion is reduced to
a single Slater determinant. This would mean that,
provided the necessary existence and convergence
theorems for the solution ¥ are fulfilled, the relation
v*=+ in k- or x-space would form a sufficient condition
for the possibility of reducing the total wave function
to a single determinant, i.e., for the strict validity of
the Hartree-Fock approximation. Our conclusion,
which is based on Egs. (63) and (64), is the reverse to
a theorem previously shown by Dirac.!

It is well known that, in a system where the particles
show mutual interaction, the Hartree-Fock approxi-
mation is usually not strictly valid, and this means
that, by the effect of this interaction, the occupation
numbers are depressed below 1: 0<#;,<1. The cor-
responding Cayley-Hamilton equation for the matrix y
is then more complicated than the first relation (76).

We note that the antisymmetry requirement (1),
which leads to the first condition (75), is here more
general than Pauli’s exclusion principle in its original
form, which considers only the occupation numbers 0
or 1 and therefore explicitly must refer to the Hartree-
Fock approximation. We note that part of the im-
portance of the Hartree-Fock scheme depends on its
physical simplicity and visuality connected with the
fact that some changes of the system, as ionization!®
and excitation, may be described as resulting from
entire particles jumping from occupied to unoccupied
spin-orbitals or to infinity. In this scheme, the natural
spin-orbitals are identical with the ordinary Hartree-
Fock functions, being undetermined on unitary trans-
formations of the two groups of orbitals, associated
with different spin types. Already at this stage, the
numerical computations involved are extremely labo-
rious, but, by aid of the modern electronic computers,
it seems now possible to reach beyond this approxima-
tion. In a more exact theory, the circumstances are
certainly more complicated,® since the occupation

Tr(y)=N,

16 T, Koopmans, Physica 1, 104 (1933).

16 The same complications will also occur, for instance, in an
exact electron-positron theory, which is based on Dirac’s original
idea of a fully-occupied vacuum.
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numbers may lie between 0 and 1, and ionizations and
excitations of the system are then accompanied by
changes of the numbers #; by fractions of 1 with pos-
sible changes also of the nondiagonal elements #;;.
However, in a following paper, we will show that it is
possible to preserve some of the simplicity and visuality
of the Hartree-Fock scheme even in more exact treat-
ments using the method of configurational interaction.

Let us now turn to the convergence problem con-
nected with the expansion (66) after ordered con-
figurations K. It could happen that the arbitrarily
chosen basic set ¥ is inconvenient for its purpose, and
the convergence of (66) is then correspondingly slow.
In order to investigate the effect of introducing natural
spin-orbitals x;, we will now carry out the matrix trans-
formation ¢=xU", or

lpk: sz Xa UakT-

By using a theorem’ for expanding a determinant of a
matrix being a product of two rectangular matrices, we
obtain the following transformation for the basic Slater
determinants ¥x and Xz.:

(77)

‘I’K=ZL XLALK; X= (N')_i det{XI)X% . 'XN}7 (78)
where
UT (lxkl) Uf (l1k1v)
Arg= (79)
Ut(lyky) Ut(lxky)

By putting this formula into (66), the total wave
function may instead be expanded in determinants X
over all ordered configurations L of the natural spin-
orbitals x;:

U= 71X x ArxCk).

In contrast to (66), we could call (80) the natural
expansion of the total wave function.

Its convergence properties may now be understood
from the relations (63), (64), and (74). In the limiting
case, when exactly NV natural spin-orbitals are fully
occupied and the relation y*= # is fulfilled, the natural
expansion (80) is reduced to a single Slater determinant.
In considering the convergence, this is of course the
most favorable case. However, if only a finite number of
the occupation numbers #; in (74) are essentially dif-
ferent from zero, the natural expansion (80) will be
reduced to a sum of determinants over all ordered con-
figurations associated with these essentially occurring
spin-orbitals, i.e., to a sum of comparatively few terms.
The introduction of natural spin-orbitals seems there-
fore to provide a simple solution of the convergence
problem, previously discussed by Slater.}”

(80)

17 J. C. Slater, Quarterly Progress Report of Solid-State and
Molecular Theory Group at M.I.T., 6, January 15, 1953 (unpub-
lished); Technical Report No. 3, 39, February 15, 1953 (un-
published); Phys. Rev. 91, 528 (1953).
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Note added in proof —It is desirable to have also a more exact
mathematical measure for the rapidity of convergence of the two
configurational interaction series (66) and (80). We note that,
according to (60) and (63), the charge order (k) gives the
probability for the ordinary spin-orbital ¥ to occur in the expan-
sion of the total wave function ¥. If only M of the numbers
v(&), k=1, 2, 3, -+, are essentially different from zero, then the
number of essential terms in (66) is given by the corresponding
number of possible configurations: M//N! (M — N)!. In using this
procedure, however, it is necessary to evaluate the individual
quantities (%) and to distinguish between essential and unessen-
tial charge orders.

A still simpler measure of convergence may be constructed by
observing that the charge orders always lie between 0 and 1 and
that, in the limiting cases v(%)=0 and v (k)=1, the corresponding
spin-orbital ¢ occurs in none or in all of the terms in (66), respec-
tively, without contributing to the slowing down of the con-
vergence of the series. The eventual slowness of the convergence
of (66) depends instead on the possibility for an electron to be
distributed over two or more spin-orbitals, giving charge orders
of an intermediate order of magnitude, 0 <y (%) <1. The rapidity
of convergence of (66) may therefore be measured by the small-
ness of the quantity

3= (1/N) Zi{1—v(k)}v (B)=1— (1/N) Zx{~ (R)}?,

which fulfills the inequality of 0=<#<1. In considering different
basic sets ¢1, s, ¥, - - - for the description of the same total wave
function ¥, it is clear that the natural spin-orbitals xx are char-
acterized by having the smallest 3 value possible. According to
(72), we have v=UnUT and y2=Un?U", leading to Tr(y?)=Tr(n?)
and

Zry= Zmii— sz [vael2< Zamad,

with the final result
1—-(1/N) Zmi2<1—(1/N) Zwvid,

which proves our theorem. This means that the natural spin-
orbitals are distinguished not only by having vanishing bond
orders but also by giving the smallest number of essential charge
orders possible. By investigating the quantity &, one can therefore
easily estimate how much improvement one can expect in the
convergence of a given configurational interaction series by intro-
ducing the natural spin-orbitals.

The quantity #nas for the natural spin-orbitals themselves may
also be expressed in the form

Fnar=(1/N) Tr(y—+?),

and we note that, provided the necessary existence and conver-
gence conditions are fulfilled, the relation

t’m', = O

is a necessary and sufficient condition for expressing an arbitrary
antisymmetric wave function in the form of a single determinant.
The necessity follows from Dirac’s theorem (see reference 1)
0*=p, and, in order to prove the sufficiency, we note that from
Pnat=0 it follows that Zunr(l—n,)=0 with 0=<#;<1, and that,
since this sum does not contain any negative terms, this relation
can be fulfilled only if #,=0 or 1. Combined with the normaliza-
tion condition Tr(y)=N, this means that exactly N natural
spin-orbitals are fully occupied each by one electron, and, accord-
ing to the first relation (63), the antisymmetric wave function
must then be expressible as a single determinant built up from
these spin-orbitals. The deviation from zero of the single number
Tnat tells us also how far our wave function ¥ is from the Hartree-
Fock approximation. (Received January 24, 1955.)

By the transformation (77), even the higher-order
densities may now be expressed in the natural spin-
orbitals, but we note that, unlike the first-order density,
they are usually not brought to diagonal form. As an
example, we may consider the second-order density
matrix in the limiting case, when exactly N spin-
orbitals are fully occupied, i.e., the relation (76) is
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fulfilled. According to (74) and (51), we obtain

‘Y(Xxl | X1) = Zk xi* (xl’)Xk(xl),

v(xd[x1) v (x| %)
T (Xl’Xz’ I X1X2) = %
v (x| x1) v (x2'|X2)

=3 2a{xe® (X1 )xe (x0)x* (x2") x1 (x2)

—x* (%1 )xa (X0) x* (x2) xx (X2) }.-

(81)

In the last term in the expansion for T, there are cross
products of the form x*(x1")x:(x1) which, for k%1, lead
to the existence of the well-known exchange effects
associated with each pair of natural spin-orbitals xx
and x;. Higher-order densities may be treated analo-
gously. The corresponding expansions in the general
case (74) are slightly more complicated, but there are
no principal difficulties in deriving them.

We note finally that the diagonal elements of the
secondo-rder matrix have previously been used suc-
cessfully by, among others, Lennard-Jones!® in dis-
cussing correlation properties between electrons in
atoms and molecules. In case of symmetric wave
functions ¥, they have also been used by London®® for
investigating the distance correlation in a Bose-Einstein
gas.

5. LIMITED CONFIGURATIONAL INTERACTION.
EXTENDED HARTREE-FOCK EQUATIONS

In the last three sections, we have assumed that the
basic set ¥y of one-particle functions is infinite and
complete. An arbitrary normalizable function F(x,’|x;)
may then be expressed by the expansion

F(xl'|x1)=k>;¢k*<x1'>¢z<xom. (82)

However, it is immediately clear that, in applications
to particular problems, we must usually replace this set
by a set of finite order M. Since the basic set is then no
longer complete, we meet the problem how to determine
this set in order to obtain a solution (66) to (65), which
is as accurate as possible. In the case M =N, this leads
to the ordinary Hartree-Fock problem, but, if M>N,
it leads to an extension of this scheme recently proposed
by Slater.20

Let us assume that M >N and that our basic set
(k=1, 2, .- -M) is orthonormal,

f Y*Yida =5y, (83)

which imposes an orthogonality condition on the

18 J. Lennard-Jones, J. Chem. Phys. 20, 1024 (1952); J. Len-
nard-Jones and J. A. Pople, Phil. Mag. 43, 581 (1952).

¥ F, London, J. Chem. Phys. 11, 203 (1943).

2 J. C. Slater, see reference 17. Compare also J. Frenkel, Wave
Mechanics, Advanced General Theory Clarendon Press, Oxford,
1934), pp. 460462, who has treated the same problem by the
method of second quantization.
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orbitals belonging to the same spin type. We will
further characterize our basic set by a projection mairix
o defined by

p(xx:) =,,E: P (e (). (84)

We observe, that, since g fulfills the relations

f p(x1,E1)p (£1,X2)dE1=p(X1,Xs), f o(X1,X1)dx1=M,

or

o’=¢, Tr(o)=M, (83)

it has really the character of a projection operator? In
the case M=N, it is identical with Dirac’s density
matrix,! but it must not be confused with this matrix
for M>N. It is now no longer possible to obtain an
exact expansion (82) of an arbitrary function F(x,|xy),
we have to be satisfied with the approximate form

fxd'|x1) Eé e (x1 )W (x0) Fe. (86)

The function f(xi/|x1), defined by this interrupted ex-
pansion, is said to represent the orthogonal projection of
the function F(x,'|x:) on the subspace of the general
Hilbert space, defined by the basicset ¥ (k=1,2, - - - M).
We note the validity of the matrix relation

(87)

which shows the use of the projection operator g. For
every function f(x;'|x;) which is expansible in the
basic set yx, i.e., which belongs to the subspace defined
by this set, we have further

f=oFp,

(88)

Let us now again study the eigenvalue problem (65).
In expansion (66) of the solution ¥, both the coefficients
Ck and the basic spin-orbitals ¢4 (k=1, 2, ---M) are
undetermined, and, in order to derive the best approxi-
mation of the solution, we will apply the variation
principle (22). According to (10), (57), and (58), we
have

<Qop>kv=9<0)+§l{k| | By (k)

f=of=fp=ofp.

+Z { klkz [ Q12‘ l1l2}I‘ (l]lz | klkz)
kike
Ulz

4+ X {Eikoks| Quas| Iilols)
kikoks
lilads

><I‘(3> (lllglgl k1k2k3)+ AN (89)
where the matrix elements are defined by (69). Varia-

2 J.v. Neumann, Math. Grundlagen der Quantenmechanik (Dover
Publications, New York, 1943), p. 41.
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tion of the coefficients Cx leads to Egs. (70) and (71),
and variation of the basic set ¢, leads to extended Har-
tree-Fock equations of the form

Zz: Qi (x1)y (2] k)

+2 Zl‘, > | Yie* (2)uaia () dopr (x:)T (U | ko)

kala

+3 ; kZ Vo™ (2™ (3) Quasyi2 ()13 (3) dwadies
oks
lads

X (X)T'® (Uols| kloks)+ - - - =1 a(xi)N (| B).

The quantities A(/|k) are here the Lagrangian multi-
pliers associated with the orthonormality condition
(83). Since spin-orbitals with different spins are auto-
matically orthogonal, the multipliers A(}|%) may be
different from zero only for spin-orbitals 2 and / asso-
ciated with the same spin type. Since further the
quantity

(90)

G183 f Vtdn 1)

must be real, we can conclude that the multipliers
A(I| k) form an Hermitean matrix: A (k| =N*(1| k).

By multiplying Egs. (90) for each & by ¥x*(&:") and
by summing % from 1 to M, we may express the ex-
tended Hartree-Fock equations in the more condensed
form

Ql’Y(fl'[X1)+2fﬂlzf(fl'xz' | x1X2)dzxs

+3 f Q1257 ® (E1/%2'x35" | X1X9X5) dcad s

4o =NE %), (92)

where we have assumed that the operators ©i, Qi
Qi93, -+ etc. do not work on the variables &/, x//,
x5+ - -. After the operations in the integrands have been
carried out, we shall as before put all x;/=x;, whereas &,
may have an arbitrary value. The function \(&’|x,) in
the right-hand member is here given by the Lagrangian
multipliers:

MEI,]XO:;,él Y (EWa(x)N (| B). (93)

We note that, in Eq. (92), the left-hand member is
entirely independent of M, and this form is therefore
convenient for discussing the transition from M=N
to M = «. The function (93) may be considered as the
“projection” of an arbitrary Hermitean function
A(%/|x:) on the subspace defined by the basic set of.
order M :

2=pAp. (94)

It is apparently this relation which gives the essential
condition for determining the best set of a finite order.
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However, in the limiting case when M— and the set
tends to be complete, we have
(95)

lim p(x1,%0) =8(x1—x3),

and relation (94) is then.changed into the identity
A=A. This means that, in the limiting case, the ex-
tended Hartree-Fock equations (92) loose their meaning
as a restraining condition on the basic set Y&, which may
then be chosen arbitrarily, in agreement with our
previous assumptions.

Let us now turn back to the case of a finite order M.
The quantities y(&/|x1) and A(&'|x1) in (92) are
quadratic forms with Hermitean coefficients, and the
question is whether we can bring them to diagonal

forms. In the case when M =N, the first-order density -

v(%/|x1) is from the very beginning on diagonal form,
and it is then possible to determine a unitary trans-
formation of the basic set which brings also the matrix
A(&'|x1) to diagonal form. This is a conventional pro-
cedure in the ordinary Hartree-Fock scheme, and the
eigenvalues of the matrix A(/|%) are called the orbital
energies of the basic spin-orbitals ¢,. However, if M >N,
the first order density matrix v (%|x;) may be brought
to diagonal form (74) first by introducing the natural
spin-orbitals xx, and, only if several occupation numbers
m, are the same with a corresponding degeneracy in the
spin-orbitals xx, we have any additional transformations
free for changing the form of A(£,/|x;), too. In general,
we cannot therefore expect that it should always be
possible to bring v (&/|x1) and A (&' |x1) simultaneously
to diagonal form.

In order to consider the natural spin-orbitals in
greater detail, we will start from (92) and rewrite the
extended Hartree-Fock equations (90) in the form

f (8 v (& | x1)dEY

+2 f Vi (E¢)Qual (£1% | X1X0)d &1 dixs

+3f¢k(f1')9123F(3)(fl'lexs'|X1X2X3)d£1'dxzdx3+ ces

- f G (EONE | x)dE. (96)

Carrying out the transformation (77) to natural spin-
orbitals x; and dividing by 7,50, we obtain

Quxe (x1)+ Z”k_lf)(k(il/)ﬂmr (8%’ | x1x9)d 1/ dxcy

+3nk—lek(§1')9msF ® (fl'lexal l X1X2X3)

M
Xdgdxadwst- - - =3 xa(x)N @ By, (97)
=1
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where A'=UTAU. This is the exact integro-differential
equation satisfied by the natural spin-orbitals, which
previously are shown to lead to the most rapid con-
vergency of the expansion (66).

Connection with Slater’s Extension of the
Hartree-Fock Equations

In some recent work, which has appeared only in
preprints, Slater!” has investigated the convergence
problem in the method of configurational interaction,
and he has intuitively proposed that the basic set of
one-particle functions, which would lead to the most
rapid convergence, should satisfy an extended form of
the Hartree-Fock equations. Since we have here shown
that this set satisfies (97), it is of interest to investigate
the connection with Slater’s equation.

Equation (97) may also be written in the form

{91+Vop(1)}x:c(1)=§x:(l)k'(llk)nk“, 98)

where V,p is a rather complicated operator containing
ordinary potentials as well as exchange operators. Since
Vop does not commute with the coordinate x, these two
quantities are usually not compatible. However, in
order to obtain the connection with Slater’s approach,
we will now replace V,, by its “best approximation” in
x-space:

Volec (xl) = V(Xl)Xk (Xl))

E=1,2,---M  (99)

which may be defined by the condition that the sum
M

2 kk] Vopx(x1) =V (x1)xx (x1) | 2,

k=1

(100)

should be as small as possible. The quantities «; are here
appropriate weights, and, for the natural spin-orbitals,
it seems natural to choose them as being just the occu-
pation numbers: k= 7. In this way, using the minimum
condition, we obtain

2k ™ (X1) Vopxe (X1)

Tk ot () (x1)

V(x)= (101)

According to (74), the quantity in the denominator is
just the first-order density v(x:|x;). Using (97) and
(98), and observing the validity of the relations .

fP (XI: El')F (fl’xz' | X1X2)d51' =T (X1X2' ] X1X2) ,
(102)

(X, E1)T (E1'x2'X5" | X1XoX3)d &1 =T (X1X'X5' | X1X2X3),
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we get finally for the “average potential” V(x,):

V(x1)=2 f Q12T (x1'X2’ | X1X2)do/v (X1)

+3f91231‘ (Xl’X2/X3, | X1X2X3)dx2dx3/‘y (X1)+ LN (103)

Equation (97) may therefore be replaced by the ap-
proximate form

{@+V (x0) }xe(x1) = ?_::1 xi(XON (| B)ymt. (104)

Since the operator (H:4V,) is Hermitean, the same
must hold also for the matrix N (| ) in the right-
hand member, which implies that, in this approxima-
tion, there can be N-couplings only between natural
spin-orbitals having the same occupation number.
However, each such group is degenerate and, by carry-
ing out a suitable unitary transformation, we may then
also bring the matrix N (/|k)ns? to diagonal form.
Instead of the rather complicated Eq. (97), we have
now obtained an approximate representation in the
form of an eigenvalue problem

{1+ V (1) e (1) = wrxr (1),

where V (xy) is the “average potential” given by (103).

We are now ready to carry out a comparison with the
extended Hartree-Fock equations intuitively proposed
by Slater.’” Since we are then mainly interested in elec-
tronic systems, the basic Hamiltonian is of the specific
form (11), with @;;=¢€*/7:;, Q:z=0, - - -, etc. According
to (103), we get for the “average potential”

sz [ TERED,

which is just the potential discussed by Slater. Our
procedure, based on the minimization of (100), gives
then a strict derivation of this potential for M >N.
Hence we obtain also a new derivation of Slater’s
average exchange potential® in the ordinary Hartree-
Fock scheme with M =N.

As Slater has pointed out, the approximate form
(105) is much more convenient to handle numerically
than the exact Egs. (97) containing exchange operators
and leading to coupled integro-differential equations of
a rather complicated type. Since the approximation
also seems to he very good, as shown, e.g., by Pratt®
for the case of M =N, it seems feasible for most appli-
cations to use (105) instead of (97). However, for
investigating the convergence problem, it is not neces-
sary to solve neither (105) nor (97), since this problem
is now simply treated by the diagonalization (74) of the

(105)

(106)

2 J. C. Slater, Phys. Rev. 81, 385 (1951).
%G. W. Pratt, Jr., Phys. Rev. 88, 1217 (1952).
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first-order density matrix, leading automatically to the
natural spin-orbitals.

6. CONCLUSIONS

In the case in which our basic set of one-particle
functions is chosen infinite and complete, we have
shown that, in principle, the fundamental problems in
the many-particle theory may be solved in a simple
way : the eigenfunctions to (65) may be determined by
the method of configurational interaction, which leads
to a system of linear equations (70) with a secular
equation (71) for determining the eigenvalues, and the
convergence problem may then be treated by the diag-
onalization (74) of the first-order density matrix and
the introduction of natural spin-orbitals.

However, the discussion in the previous section
shows that, if our basic set is only of a finite order M,
the circumstances are much more complicated. The
conditions for determining the bdest choice of this set
of this order are nonlinear integro-differential equations
of the type (92) or of the approximate form (105), which
may be solved only numerically by successive approxi-
mations by using the method of “self-consistent-fields.”
In the case M=N, i.e., in the ordinary Hartree-Fock
scheme, it is certainly worthwhile to try to carry out
this numerical procedure, since the corresponding solu-
tion has a physical simplicity and visuality of great
importance. However, in the case M >N, it can be
discussed whether it is worth the trouble to solve the
complicated nonlinear equations (92) even in their
simplified form (105). Instead it seems better to try to
introduce an orthonormal set of a considerably higher
order than M, where the limitation is given only by
the capacity of the electronic computer or mathematical
machine available, and to solve the algebraic secular
equation (71) and the linear system (70). Afterwards,
by transformation to natural spin-orbitals, one may
then try to diminish the order of the basic set by taking
only those spin-orbitals into account which have occu-
pation numbers essentially different from zero. The
number M of essential spin-orbitals, found in this way,
is characteristic for the system and may serve for de-
fining “closed shells,” etc., in a more exact theory.

Our discussion could give the impression that it
would be entirely meaningless to use any form of
extended Hartree-Fock equations in the method of
configurational interaction. However, in a following
paper, we will show that, in treating degenerate systems
and correlation effects, it is possible to extend the ordi-
nary Hartree-Fock scheme for M =N to include a
specific form of ‘fixed” configurational interaction
based on the use of projection operators. The total
wave function is here defined as the ‘“projection’ of a
single determinant, and the basic set in this determinant
of order M =N is determined by an ordinary Hartree-
Fock equation associated with a ‘“‘composite” Hamil-
tonian, modified to take the degeneracy into proper
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account. This form of “fixed” configurational interac-
tion has the advantage that it is possible to preserve
some of the physical simplicity and visuality of the
ordinary Hartree-Fock scheme.

APPENDIX I
An Integral Formula

Let ¥, be an approximate (or exact) solution to the
Schrodinger equation (21), which does not possess the
correct symmetry property. Since Qop is symmetric in
the coordinates, every function P¥, is then also a solu-
tion of the same type, and the linear combination

V5= (N~ 2 p(—1)PP¥,, (107)

summed over all N ! permutations P (p being the parity),
has the correct antisymmetry character. This new wave
function is simple to deal with in calculations, for, if ®
is an arbitrary antisymmetric function obtained, e.g.,
by letting a symmetric operator work on an antisym-
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metric wave function, we obtain

f Vas2 (@)= (V) S (1) f PHU 3 (da)

= (Nt ?(— 1)» f Wo* Pi® (dx)

= f Vo (d), (108)

since the sum over all P contains V! identical terms.
We get therefore the basic formula:

f ¥ 45*D(dx) = (V1) f vop(ds),  (109)

which is of value in treating wave functions ¥, built on
simpler elements, as one- or two-particle functions.



